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We propose the first framework for defining relational program logics for arbitrary monadic effects. The
framework is embedded within a relational dependent type theory and is highly expressive. At the semantic
level, we provide an algebraic presentation of relational specifications as a class of relative monads, and link
computations and specifications by introducing relational effect observations, which map pairs of monadic
computations to relational specifications in a way that respects the algebraic structure. For an arbitrary
relational effect observation, we generically define the core of a sound relational program logic, and explain
how to complete it to a full-fledged logic for the monadic effect at hand. We show that this generic framework
can be used to define relational program logics for effects as diverse as state, input-output, nondeterminism,
and discrete probabilities. We, moreover, show that by instantiating our framework with state and unbounded
iteration we can embed a variant of Benton’s Relational Hoare Logic, and also sketch how to reconstruct
Relational Hoare Type Theory. Finally, we identify and overcome conceptual challenges that prevented
previous relational program logics from properly dealing with control effects, and are the first to provide a
relational program logic for exceptions.

CCS Concepts: • Theory of computation → Type theory; Program specifications; Program verifica-
tion; Categorical semantics; Program reasoning; Pre- and post-conditions; Hoare logic.

Additional Key Words and Phrases: program verification, relational program logics, side-effects, monads, state,
I/O, nondeterminism, probabilities, exceptions, dependent types, semantics, relative monads, foundations

ACM Reference Format:
KenjiMaillard, CătălinHrit,cu, Exequiel Rivas, andAntoine VanMuylder. 2020. TheNext 700 Relational Program
Logics. Proc. ACM Program. Lang. 4, POPL, Article 4 (January 2020), 33 pages. https://doi.org/10.1145/3371072

1 INTRODUCTION
Generalizing unary properties, which describe single program runs, relational properties describe
relations between multiple runs of one or more programs [Abate et al. 2019; Clarkson and Schneider
2010]. Formally verifying relational properties has a broad range of practical applications. For
instance, one might be interested in proving that the observable behaviors of two programs are
related, showing for instance that the programs are equivalent [Blanchet et al. 2008; Chadha et al.
2016; Ştefan Ciobâcă et al. 2016; Godlin and Strichman 2010; Hur et al. 2012, 2014; Kundu et al. 2009;
Timany et al. 2018; Wang et al. 2018; Yang 2007], or that one refines the other [Timany and Birkedal
2019]. In other cases, one might be interested in relating two runs of a single program, but, as soon
as the control flow can differ between the two runs, the compositional verification problem becomes
the same as relating two different programs. This is for instance the case for noninterference, which
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4:2 Kenji Maillard, Cătălin Hrit,cu, Exequiel Rivas, and Antoine Van Muylder

requires that a program’s public outputs are independent of its private inputs [Antonopoulos et al.
2017; Banerjee et al. 2016; Barthe et al. 2019; Clarkson and Schneider 2010; Nanevski et al. 2013;
Sabelfeld and Myers 2003; Sousa and Dillig 2016]. The list of practical applications of relational
verification is, however, much longer, including verified program transformations [Benton 2004],
cost analysis [Çiçek et al. 2017; Qu et al. 2019; Radicek et al. 2018], program approximation [Carbin
et al. 2012; He et al. 2018], semantic diffing [Girka et al. 2015, 2017; Lahiri et al. 2012; Wang et al.
2018], cryptographic proofs [Barthe et al. 2009, 2013a, 2014; Petcher and Morrisett 2015; Unruh
2019], differential privacy [Barthe et al. 2013b, 2015b; Gavazzo 2018; Zhang and Kifer 2017], and
even machine learning [Sato et al. 2019].
As such, many different relational verification tools have been proposed, making different

tradeoffs, for instance between automation and expressiveness (see §6 for further discussion). In
this paper we focus on relational program logics, which are a popular formal foundation for various
relational verification tools. Relational program logics are proof systems whose rules can be used to
prove that a pair of programs meets a rich relational specification. As such they are very expressive,
and can in particular handle situations in which verifying the desired relational properties requires
showing the full functional correctness of certain pieces of code. Yet they can often greatly simplify
reasoning by leveraging the syntactic similarities between the programs one relates. Since Benton’s
[2004] seminal Relational Hoare Logic, many relational program logics have been proposed [Aguirre
et al. 2017; Banerjee et al. 2016; Barthe et al. 2013b, 2014, 2015b, 2016; Carbin et al. 2012; Nanevski
et al. 2013; Petcher and Morrisett 2015; Qu et al. 2019; Radicek et al. 2018; Sato et al. 2019; Sousa
and Dillig 2016; Unruh 2019; Yang 2007; Zhang and Kifer 2017]. However, each of these logics is
specific to a particular combination of side-effects that is completely fixed by the programming
language and verification framework; the most popular side-effects these logics bake in are mutable
state, recursion, cost, and probabilities.

The goal of this paper is to distil the generic relational reasoning principles that work for a broad
class of side-effects and that underlie most relational program logics. We do this by introducing the
first framework for defining program logics for arbitrarymonadic effects. Our generic framework is
embedded within a dependent type theory, e.g., Coq, which makes it highly expressive and simpler
to describe.

Syntactic rules. To factor out the fully generic parts, the rules of the relational program logics
derived in our framework are divided into three categories, following the syntactic shape of the
monadic programs on which they operate:
R1 rules for pure language constructs, derived from the ambient dependent type theory (these

rules target the elimination constructs for positive types, like if-then-else for booleans,
recursors for inductive types, etc.);

R2 rules for the generic monadic constructs return and bind; and
R3 rules for effect-specific operations (e.g., get and put for the state monad, or throw and catch

for the exception monad).
This organization allows us to clearly separate not only the generic parts (R1&R2) from the effect-
specific ones (R3), but also the effect-irrelevant parts (R1) from the effect-relevant ones (R2&R3).
In its simplest form (§2), the judgment of the relational program logics of our framework has

the shape: ⊢ c1 ∼ c2 {w }, where c1 : M1 A1 is a computation in monad M1 producing results of
type A1, where c2 : M2 A2 is a computation in monad M2 producing results of type A2, and where
w is a relational specification of computations c1 and c2 drawn from the type Wrel(A1,A2). Here
M1 andM2 are two arbitrary and potentially distinct computation monads (e.g., the state monad
St A = S → A × S and the exception monad Exc A = A + E), whilew could, for instance, be a pair
of a relational precondition and a relational postcondition, or a relational predicate transformer—in
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The Next 700 Relational Program Logics 4:3

this introduction we will use relational weakest preconditions. For instance, for relating two state
monads on states S1 and S2, we often use relational specifications drawn from

WSt
rel (A1,A2) = ((A1 × S1) × (A2 × S2) → P) → S1 × S2 → P

which are predicate transformers mapping postconditions relating two pairs of a result value and a
final state to a precondition relating two initial states (here P stands for the type of propositions of
our dependent type theory). As an example of the judgment above, consider the programs c1 =
bindSt (get ()) (λx . put (x + k)), which increments the content of a memory cell by k , and c2 = retSt (),
which does nothing. These two programs are related by the specificationw = λφ (s1, s2). φ (((), s1 +
k), ((), s2)) : WSt

rel (1,1) saying that for the postcondition φ to hold for the final states of c1 and c2, it
is enough for it to hold for s1 + k and s2, where s1 and s2 are the computation’s initial states. Note
that since c1, c2, and w are terms of our ambient type theory, free variables (like k) are handled
directly by the type theory, which saves the simple judgment from an explicit context.

For pure language constructs R1, we try to use the reasoning principles of our ambient dependent
type theory as directly as possible. For instance, our framework (again in its simplest incarnation
from §2) provides the following rule for the if-then-else construct:

if b then ⊢ c1 ∼ c2
{
w⊤

}
else ⊢ c1 ∼ c2

{
w⊥

}
⊢ c1 ∼ c2

{
if b thenw⊤ elsew⊥

}
In order to prove that c1 and c2 satisfy the relational specification ifb thenw⊤ elsew⊥, it is enough
to prove that c1 and c2 satisfy both branches of the conditional in a context extended with the value
of b. Interestingly, this rule does not make any assumption on the shape of c1 and c2. Relational
program logics often classify each rule depending on whether it considers a syntactic construct
that appears on both sides (synchronous), or only on one side (asynchronous). In the rule above,
taking c1 to be of the shape if b then c⊤1 else c⊥1 and c2 to be independent of b, we can simplify
the premise according to the possible values of b to derive an asynchronous variant of the rule:

⊢ c⊤1 ∼ c2
{
w⊤

}
⊢ c⊥1 ∼ c2

{
w⊥

}
⊢ if b then c⊤1 else c⊥1 ∼ c2

{
if b thenw⊤ elsew⊥

} (1)

By requiring that both commands are conditionals, we can also derive the synchronous rule:
⊢ c⊤1 ∼ c⊤2

{
w⊤

}
⊢ c⊥1 ∼ c⊥2

{
w⊥

}
⊢ if b1 then c⊤1 else c⊥1 ∼ if b2 then c

⊤
2 else c⊥2 {w• }

(2)

where the relational specificationw• = λφ s12. (b⇔b1) ∧ (b⇔b2) ∧ ifb thenw⊤ φ s12 elsew⊥ φ s12
ensures that the booleans b1 and b2 controlling the choice of the branch in each computation share
the same value b.
For the monadic constructs R2, the challenge is in lifting the binds and returns of the two

computation monads M1 and M2 to the specification level. For instance, in a synchronous rule
one would relate bindM1 m1 f1 to bindM2 m2 f2 by first relating computationsm1 andm2, say via
relational specificationwm , and then one would relate the two functions f1 and f2 pointwise via a
functionw f mapping arguments in A1 ×A2 to relational specifications:

⊢m1 ∼m2 {wm } ∀a1,a2 ⊢ f1 a1 ∼ f2 a2
{
w f (a1,a2)

}
⊢ bindM1 m1 f1 ∼ bindM2 m2 f2

{
bindWrel wm w f

} (3)

In the conclusion of this rule, we need a way to compose w : Wrel(A1,A2) and w f : A1 × A2 →
Wrel(B1,B2) to obtain a relational specification for the two binds. We do this via a bind-like construct:

bindWrel : Wrel(A1,A2) → (A1 ×A2 →Wrel(B1,B2)) →Wrel(B1,B2) (4)
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4:4 Kenji Maillard, Cătălin Hrit,cu, Exequiel Rivas, and Antoine Van Muylder

For the concrete case of WSt
rel , this bind-like construct takes the form

bindW
St
rel wm w f = λφ (s1, s2). wm (λ ((a1, s ′1), (a2, s ′2)). w f (a1,a2) (s ′1, s ′2) φ) (s1, s2).

This construct is written in continuation passing style: the specification of the continuationw f maps
a postcondition φ : (B1×S1)×(B2×S2)→P to an intermediate postcondition (A1×S1)×(A2×S2)→P,
thenwm turns it into a precondition for the whole computation.

Asynchronous rules for bind can be derived from the rule above, by takingm1 to be retM1 () or
f1 to be retM1 above and using the monadic laws of M1 (and symmetrically forM2):

⊢ retM1 () ∼m2 {wm } ∀a2 ⊢ c1 ∼ f2 a2
{
w f a2

}
⊢ c1 ∼ bindM2 m2 f2

{
bindWrel wm (λ((),a2). w f a2)

} (5)

⊢ c1 ∼m2 {wm } ∀a1,a2 ⊢ retM1 a1 ∼ f2 a2
{
w f (a1,a2)

}
⊢ c1 ∼ bindM2 m2 f2

{
bindWrel wm w f

} (6)

Finally, for the effect-specific operations R3, we provide a recipe for writing rules guided by our
framework. For state, we introduce the following asynchronous rules for any a1,a2 and s:

⊢ get () ∼ reta2
{
wgetl

}
⊢ reta1 ∼ get ()

{
wgetr

} (7)

⊢ put s ∼ reta2
{
wputl

}
⊢ reta1 ∼ put s

{
wputr

} (8)

where wgetl = λφ (s1, s2). φ ((s1, s1), (a2, s2)), wgetr = λφ (s1, s2). φ ((a1, s1), (s2, s2)), wputl =

λφ (s1, s2). φ (((), s), (a2, s2)) andwputr = λφ (s1, s2). φ ((a1, s1), ((), s)). Each of these rules describes
at the specification level the action of a basic stateful operation (get, put) from either the left or
the right computations, namely returning the current state for get or updating it for put. From
these rules, we can derive two synchronous rules:

⊢ get () ∼ get ()
{
wget

}
⊢ put s ∼ put s ′

{
wput

}
wherewget = λφ s1 s2. φ ((s1, s1), (s2, s2)) andwput = λφ s1 s2. φ (((), s), ((), s ′)). These rules can be
derived from the rule for bindWrel , since by the monadic equations we can replace for instance
⊢ get () ∼ get ()

{
wget

}
by the following derivation

⊢ ret () ∼ get ()
{
wgetl

} ∀u : 1, s2 : S2 ⊢ getu ∼ ret s2
{
wgetr

}
⊢ bindStS1 (ret ()) get ∼ bindStS2 (get ()) retStS2

{
bindW

St
rel wgetl (λ(u, s2). wgetr )

}
where the last specification reduces towget using the definition of bindWSt

rel .

Simple semantics. To define a semantics for the ⊢ judgment above, we generalize recent
work on (non-relational) effect observations [Maillard et al. 2019] to the relational setting, which
raises significant challenges though. We start from two ideas from the non-relational setting:
(1) specifications are drawn from a monad, ordered by precision [Ahman et al. 2017; Delbianco and
Nanevski 2013; Maillard et al. 2019; Nanevski et al. 2008a,b, 2013; Swamy et al. 2013, 2016] and (2) one
can link any computation with its specification by defining a monad morphism, i.e., a mapping
between two monads that respects their monadic structure. In the case of state, an example monad
morphism is θSt(c) = λφ s . φ (c s) : StA→ WStA, mapping a stateful computation to the unary
specification monadWStA = (A×S→P)→S→P, by running the computation and then checking
whether the postcondition holds of the result. Inspired by Katsumata [2014], Maillard et al. [2019]
call such monad morphisms effect observations and use them to decouple the computational monad
from the specification monad, which brings great flexibility in choosing the specification monad and
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The Next 700 Relational Program Logics 4:5

verification style most suitable for the verification task at hand. Intuitively, an effect observation
accounts for the various choices available when specifying computations with a particular effect,
for instance total or partial correctness, angelic or demonic nondeterminism, ghost state, etc. In
this paper we bring this flexibility to the relational verification world.

For this, we observe that even thoughWrel(A1,A2) is not a monad, it is a relative monad [Altenkirch
et al. 2015] over the product (A1,A2) 7→ A1 × A2, as illustrated by the type of bindWrel above (4),
where the continuation specification is passed a pair of results from the first specification. Similarly,
we generalize monad morphisms to relative monads and observe that a relative monad morphism
θrel : M1 A1 ×M2 A2 →Wrel(A1,A2) can immediately give us a semantics for the judgment above:

⊨θrel c1 ∼ c2 {w } = θrel(c1, c2) ≤ w,

by asking that the specification obtained by θrel is more precise than the user-provided specification
w . In the case of state, θStrel (c1, c2) = λφ (s1, s2). φ (c1 s1, c2 s2) simply runs the two computations and
passes the results to the postcondition. If we unfold this, and the definition of precision for WSt

rel

w ′ ≤WSt
rel w = ∀φ s1 s2. w φ (s1, s2) ⇒ w ′φ (s1, s2), (9)

we obtain the standard semantics of a relational program logic for stateful computations (but
without other side-effects):

⊨θ St
rel
c1 ∼ c2 {w } = ∀φ s1 s2. w φ (s1, s2) ⇒ φ (c1 s1, c2 s2)

Another important point is that the relational effect observation can help us in deriving simple
effect-specific rules, such as the ones for get (7) and put (8) above. For deriving such rules, one
first has to choose c1 and c2 (and we hope that the product programs of §5 can provide guidance
on this in the future) and then one can simply compute the specification using θ . For instance,
wgetl = λφ (s1, s2). φ ((s1, s1), (a2, s2)) in the first get rule (7) really is just θ (get (), reta2). This idea
is illustrated for various other effects in §2.6.
Finally, for probabilities and sometimes nondeterminism, one has to relax the definition of

relational effect observations to account for the fact that, in the relational setting, modular verifica-
tion can have a precision cost compared to whole-program verification. While for relative monad
morphisms the following bind law has to hold with equality (and analogously for returns):

θrel (bindM1 m1 f1, bind
M2 m2 f2) = bindWrel (θrel (m1,m2)) (θrel ◦ (f1, f2))

we introduce a notion of lax relative monad morphism that allows the left-hand-side (i.e., less
modular verification) to be more precise than the right-hand-side (i.e., more modular verification):

θrel (bindM1 m1 f1, bind
M2 m2 f2) ≤ bindWrel (θrel (m1,m2)) (θrel ◦ (f1, f2)).

For instance, the refinement relational effect observation θ∀∃ interprets two nondeterministic
computations c1 : NdA1 and c2 : NdA2 (represented as finite sets of possible outcomes) into the
relational specification monad WPure

rel (A1,A2) = (A1 ×A2 → P) → P as follows:
θ∀∃rel (c1, c2) = λφ. ∀a1∈c1. ∃a2∈c2. φ(a1,a2)

This interpretation is a natural generalization of subset inclusion (i.e., refinement of nondeterminism)
to arbitrary relational postconditions φ, but only satisfies the lax monad morphism law relating
bindNd m f =

⋃
a∈m f a and bindW

Pure
rel w f = λφ. w (λ(a1,a2). f (a1,a2) φ):

θ∀∃rel (bindNdm1 f1, bind
Ndm2 f2) = λφ. ∀a1∈m1. ∀b1∈ f1 a1. ∃a2∈m2. ∃b2∈ f2 a2. φ(b1,b2)

≤
bindW

Pure
rel (θ∀∃rel (m1,m2)) (θ∀∃rel ◦ (f1, f2)) = λφ. ∀a1∈m1. ∃a2∈m2. ∀b1∈ f1 a1. ∃b2∈ f2 a2. φ(b1,b2)

On the left-hand-side one can choose a different a2 for every b1, while on the right-hand-side a
single a2 has to work for every b1, so the two preconditions are not logically equivalent. Supporting
such lax relational effect observations when needed is still relatively simple, even if deriving useful
effect specific rules is generally more challenging in this case.
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4:6 Kenji Maillard, Cătălin Hrit,cu, Exequiel Rivas, and Antoine Van Muylder

Exceptions, and why the simple semantics is not enough. The simple construction we
described so far is a natural extension of the solution we previously proposed in the unary set-
ting [Maillard et al. 2019]. It works well for defining relational program logics for state and
nondeterminism (and also input-output and probabilities), but it hits a limit when we try to incor-
porate exceptions. Indeed, defining a relational program logic for exceptions was an open research
problem, and our proposed solution depends on solving several non-trivial technical challenges.
Here we begin with an analysis of the main obstruction of applying the simple construction above
to exceptions, and how that guides us to a generic construction that can be made to work.

For relating computations that can raise exceptions, we often need to use expressive specifications
that can tell whether an exception was raised or not in each of the computations. For instance,
such relational specifications could be drawn from:

WExc
rel (A1,A2) = ((A1 + E1) × (A2 + E2) → P) → P.

A predicate transformerw : WExc
rel (A1,A2) maps an exception-aware postcondition φ : (A1 + E1) ×

(A2 + E2) → P to a precondition, which is just a proposition in P. However, more work is needed
to obtain a compositional proof system. Indeed, suppose we have derivations for ⊢m1 ∼m2 {wm }
and ∀a1,a2, ⊢ f1 a1 ∼ f2 a2

{
w f (a1,a2)

}
with specificationswm andw f (a1,a2) drawn from WExc

rel .
In order to build a composite proof relating c1 = bindExcm1 f1 and c2 = bindExcm2 f2 we need
composewm andw f in some way. Ifwm ensures thatm1 andm2 terminate both normally returning
values we can compose with w f and if they both throw exceptions we can pass the exceptions
to the final postcondition. Otherwise, a computation, saym1, returns a value and the other,m2,
raises an exception. In this situation, the specification relating c1 and c2 needs a specification for
the continuation f1 ofm1, but this cannot be extracted out ofw f alone. In terms of the constructs
ofWExc

rel , this failure is an obstruction to complete the following tentative definition of bindWExc
rel :

let bindW
Exc
rel wm (w f : A1 ×A2→ (((B1 + E1) × (B2 + E2))→P)→P) (φ : (B1 + E1) × (B2 + E2)→P) =

wm (λx : (A1 + E1) × (A2 + E2).
match x with

| Inl a1, Inl a2→w f a1 a2 φ

| Inr e1, Inr e2→φ (Inr e1, Inr e2)
| _→ ??? )

Our solution is to pass in two independent unary (i.e., non-relational) specifications for the contin-
uations f1 and f2 as additional arguments for bind:

let bindW
Exc
rel wm (wf1 : A1→ ((B1 + E1)→P)→P) (wf2 : A2→ ((B2 + E2)→P)→P)w f φ =

wm (λx : (A1 + E1) × (A2 + E2).
match x with

...
| Inl a1, Inr e2→w f1 a1 (λbe. φ be (Inr e2))
| Inr e1, Inl a2→w f2 a2 (λbe. φ (Inr e1) be) )

The first new case corresponds to whenm2 terminated with an exception whereasm1 returned a
value normally. In this situation, we use the unary specification w f2 to further evaluate the first
computation, independently of the second one, which already terminated. The key observation
is that the operation bindW

Exc
rel can still be used to define a relative monad, but in a more complex

relational setting that we introduce in §3. As a consequence of moving to this more complex setting
our relational judgment needs to also keep track of unary specifications, and its semantics also
becomes more complex. We tame this complexity by working this out internally to a relational
dependent type theory [Tonelli 2013]. These two novel conceptual ideas (combining unary and
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The Next 700 Relational Program Logics 4:7

binary specifications, and embedding inside a relational dependent type theory for dealing with
contexts) are fundamental pieces that make the generic framework work. In practice we can still
implement this relational dependent type theory inside our ambient type theory and continue using
the same tools for verification. We use Coq for developing a proof of concept implementation: we
represent the types in the relational type theory using relations, and implement a set of combinators
that account for type formers such as Π-types.
This paper makes the following contributions:
▶ We introduce the first generic framework for deriving relational program logics for arbitrary

monadic effects, distilling the essence of previous relational program logics for specific effects.
The proposed framework is highly expressive, and not only allows one to prove arbitrary
relations between two programs with different monadic effects, but it also inherits the features
of dependent type theory (higher-order logic, dependent types, polymorphism, lambdas, etc).

▶ We provide a generic semantics for these relational program logics based on the novel observa-
tions that (1) the algebraic structure of relational specifications can be captured by particular
relative monads, and (2) the two considered computations can be mapped to their specifications
by particular relative monad morphisms we call relational effect observations. Our framework
provides great flexibility in choosing the kind of relational specifications and the effect observa-
tion best suited for the verification task at hand. Finally, our generic rules are proven sound for
any specification monad and any effect observation.

▶ We show that this generic framework can be used to define relational program logics for effects
as diverse as state, input-output, nondeterminism, and discrete probabilities. Moreover, we show
that by instantiating our framework with state and unbounded iteration, we obtain a logic
expressive enough to encode a variant of Benton’s [2004] Relational Hoare Logic (RHL) (§4.1).
Finally, we also sketch how Nanevski et al.’s [2013] Relational Hoare Type Theory (RHTT) can
be reconstructed on top of our framework (§4.2).

▶ We identify and overcome conceptual challenges that prevented previous relational program
logics from dealing with control effects such as exceptions [Barthe et al. 2016]. We provide a
proper semantic account of exceptions and the first relational program logic for this effect.

▶ We propose a monadic notion of product programs, and illustrate it for the state effect.

Outline. After recalling how computational monads can express a wide range of effects, §2
introduces relational specification monads and effect observations, on top of which we build a
simplified variant of our relational reasoning framework, which we illustrate for state, input-output,
nondeterminism, discrete probabilities, and unbounded iteration, and also with proofs of non-
interference. §3 then extends this simplified setting to account for effects including exceptions,
based on a relational dependent type theory and also using relative monads as a unifying tool for
the two settings. §4 explains how to embed RHL and the connection to RHTT. In §5 we discuss
product programs, before reviewing related work in §6 and concluding in §7. The ideas of this
paper are supported by an accompanying Coq development providing a proof of concept imple-
mentation (available at https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all/tree/relational) that
includes both the simplified and generic frameworks.

2 SIMPLIFIED FRAMEWORK
In this section we introduce a simple framework for relational reasoning about monadic programs
based on (1) relational specification monads, capturing relations between monadic programs, and (2)
relational effect observations, lifting a pair of computations to their specification. By instantiating
this framework with specific effects, we show how the specific rules of previous relational program
logics can be recovered in a principled way and illustrate by example how these rules can be used
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to prove relational properties of monadic programs, such as noninterference. But first, we recall
the monadic presentation of a few effects such as state, exceptions, and nondeterminism.

2.1 From Effects to Monads
The seminal work of Moggi [1989] proposes using computational monads to encapsulate effects.
A monad is a parametrized type MA equipped with two operations retM : A→ MA, sending a
value to an effectful context, and bindM : MA→ (A→ MB) → MB, sequentially composes an
effectful computation returning values in A with a continuation returning values in B, resulting in
a B-valued computation. Crucially, these operations obey 3 laws – unitality of ret with respect to
bind and associativity of bind – ensuring that any combinations of retM and bindM can be seen
as a linear sequence of computations.

bindM (retM a) f = f a bindMm retM =m

bindMm (λx . bindM (f x) д) = bindM (bindMm f ) д
A considerable number of effects are captured by monads, including stateful computations,

exceptions, interactive input-output, nontermination, nondeterminism, and continuations [Benton
et al. 2000]. Each monad comes with specific operations [Plotkin and Power 2002] that allow the
computation to perform the actual effects that the monad provides. To fix notation, we recall the
basic monads corresponding to the effects that we will use in the rest of the paper.

Stateful computations. State passing functions StA = S → A × S are used to model state,
where S is the type of the state. The functions retSt and bindSt are defined as

let retSt a : St A = λs. (a,s) let bindSt (m:St A) (f:A→ St B) : St B = λs. let (a,s') = m s in f a s'

This monad comes with two operations
let get : St S = λs. (s,s) let put (s:S) : St 1 = λs0. ((), s)

that permit reading and updating the state. A particular case of state are stores with many locations
of a particular type Val. If L is a set of locations, then a computations with a store of type
S = L → Val are expressed by monad StS . In this case, we have custom operations that are
parameterized by the location which we are accessing in the store:

let getL (l:L) : StVal= λs. (s l,s) let putL (l : L) (v :Val) : St 1 = λs. ((), upd s l v)

where let upd s l1v = λl2. if l2= l1then v else s l2.
Exceptions. Computations potentially throwing exceptions of type E are captured by the type

constructor ExcA = A + E. The monadic operations are

let retExc a : Exc A = Inl a
let bindExc (m:Exc A) (f:A→Exc B) : Exc B = match m with | Inl a→ f a | Inr e→ Inr e

The operations provided are throwing and catching exceptions1:

let throw (e:E) : Exc 0= Inr e
let catch (m:Exc A) (mexc : E→Exc A) : Exc A = match m with | Inl a→ Inl a | Inr e→mexc e

Interactive Input-output. Computations doing interactive input of type I and output of type
O are captured using monads as well. The type constructor has a tree-like form

type IO A = | Ret : A→ IO A | Input : (I→ IO A)→ IO A | Output : O→ IO A→ IO A

1Catching exceptions is the primary example of a handler [Plotkin and Pretnar 2009]; we use here the term operation in a
wide sense englobing both algebraic operations (that we present as generic effects [Plotkin and Power 2002]) and handlers.
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The Next 700 Relational Program Logics 4:9

which consists of three possible cases: either we are done with a return value (Ret), or we expect a
new input and then continue (Input), or we output and the continue (Output). The monadic function
retIO constructs a unique leaf tree using Ret and bindIO does tree grafting. The operations perform
input and output, and they are directly captured using the corresponding constructors.

let input : IO I = Input (λi . retIO i) let output (o : O) : IO 1 = Output o (retIO ())

We call this monad the input-output monad on (I ,O).
Nondeterminism. The finite powerset NdX = Pfin(X ) models nondeterministic computa-

tions as a set of possible outcomes. The return operation maps a value v to the singleton {v},
and the bind operation uses union to collect all results, i.e., bindNd m f =

⋃
v ∈m f v . The opera-

tion pick = {tt, ff} : NdB nondeterministically select a boolean value, whereas the operation
fail : Nd0 does not return any value. Repeating this operation, we can nondeterministically
choose : (n : N) → finn an element of a finite set finn.

Imp-like effect. To capture the syntax of simple imperative programs, manipulating state and
unbounded iteration, we introduce the Imp monad:

type Imp A = | Ret : A→ Imp A | DoWhile : Imp B→ Imp A→ Imp A
| Get : (S→ Imp A)→ Imp A | Put : S→ Imp A→ Imp A

Besides the monadic operations and the stateful ones, the Imp monad is built to offer an operation

let do_while (body : Imp B) : Imp 1 = DoWhile body (Ret ())

The expected semantics of this operation is to take a computation body and to iterate body as long
as it returns true, so that the following equation – which does not hold in Imp – is satisfied

do_while body = bindImp body (λb . if b then do_while body else retImp ())

When defining functions out of Imp, we will thus make sure that it holds in the target.
Probabilities. A probabilistic computation is a sub-probability distribution on possible out-

comes, i.e., for a countable type A, ProbA represents functions f : A → I (where we write I for
the unit interval [0; 1]) such that

∑
a∈A f a ≤ 1. Restricting our attention to discrete probabilities,

the monad structure on Prob is known as the Giry monad [Giry 1982]. The Dirac distribution at
v assigning weight 1 to v and 0 to any other value implements returns. Binding a distribution
m : ProbA to a function f : A → ProbB amounts to computing the distribution on B given by
λy. Σx ∈supp(m) f x y. We can consider various basic distributions on countable spaces as operations,
for instance flip : I→ ProbB provides a Bernoulli distribution Bp on booleans (with parameter
p ∈ I).

2.2 Specifications as (Relative) Monads
An important idea in the non-relational verification setting is to encapsulate the specification of a
monadic computation inside a monad [Ahman et al. 2017; Delbianco and Nanevski 2013; Maillard
et al. 2019; Nanevski et al. 2008a,b, 2013; Swamy et al. 2013, 2016], giving the same algebraic footing
to both computations and specifications. For instance, stateful computations returning values in A
are elements of a state monad StA = S → (A × S) and can be given specifications drawn from the
monad WStA = (A × S → P) → (S → P) equipped with the monad structure given by

let retW
St
(a:A) :WStA = λφ s. φ (a,s)

let bindW
St
(wm : WStA) (wf : A→WStB) :WStB = λφ s. wm (λ a. wf a φ) s

Intuitively, a specificationw : WStA is a predicate transformer mapping postconditions, which are
predicates on the return value and final state, to preconditions, which are predicates on the initial
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state. The monadic structure onWSt provides a canonical way to describe the monadic rules of a
non-relational program logic, i.e.,

⊢ v : A

⊢ retStv : StA { retWSt
v }

⊢m : StA { wm } a : A ⊢ f a : StB { w f }

⊢ bindStm f : StB { bindWSt
wm w f }

(10)

This is, in fact, the main idea behind Dijkstra monads [Ahman et al. 2017; Jacobs 2015; Maillard
et al. 2019; Swamy et al. 2013, 2016], which additionally internalize StA {w} as a computation type.
Now returning to the relational setting, a relational specification for a pair of stateful compu-

tations c1 : StS1 A1 and c2 : StS2 A2 consists of a predicate transformerw mapping postconditions
relating two pairs of a result value and a final state to a precondition relating two initial states, i.e.,

WSt
rel (A1,A2) = ((A1 × S1) × (A2 × S2) → P) → S1 × S2 → P. (11)

WSt
rel does not posses the monad structure its unary variant has. To begin with it is not even an

endofunctor: it takes two types as input and produces one. However, in order to derive a relational
program logic, we need operations playing the role of retWSt and bindWSt in the unary rules (10). In
detail, we need a specification covering the case of two returns, as well as a combinator producing
a specification for a pair of bindSt out of specifications for the subcomputations. In the particular
case of WSt

rel , the monadic operations of the unary variant WSt can be naturally extended to the
relational setting providing such combinators:

let retW
St
rel (a1,a2):A1 ×A2 : WSt

rel (A1,A2) = λφ (s1, s2). φ ((a1,s1), (a2,s2))

let bindW
St
rel (wm : WSt

rel (A1,A2)) (wf:A1 ×A2→WSt
rel (B1,B2)) :WSt

rel (B1,B2) =
λφ (s1,s2). wm (λ ((a1,s1'),(a2,s2')). wf (a1, a2) φ (s1',s2'))

These operations satisfy equations analogous to the monadic ones and are part of a relative monad
structure in the sense of Altenkirch et al. [2015]. The relational specifications for state WSt

rel are also
naturally ordered by ≤WSt

rel (see (9) in §1) and this ordering is compatible with the relative monad
structure, as long as we restrict our attention to monotonic predicate transformers, a condition that
we will assume from now on for all monads on predicate transformers. We call such a monad-like
structure equipped with a compatible ordering a simple relational specification monad.

Definition 1. A simple relational specification monad consist of
• for each pair of types (A1,A2), a type Wrel(A1,A2) equipped with a preorder ≤Wrel

• an operation retWrel : A1 ×A2 →Wrel(A1,A2)
• an operation bindWrel : Wrel(A1,A2) → (A1 × A2 → Wrel(B1,B2)) → Wrel(B1,B2) monotonic in
both arguments
• satisfying the 3 following equations

bindWrel (retWrel (a1,a2))w f = w f (a1,a2) bindWrel wm retWrel = wm

bindWrel (bindWrel wm w f )wд = bindWrelwm(λx . bindWrel (w f x)wд)
for any a1 : A1,a2 : A2,w

f : A1×A2→Wrel(B1,B2),wm : Wrel(A1,A2),wд : B1×B2→Wrel(C1,C2).

A simple way to produce various examples of simple relational specification monads besidesWSt
rel

is to start from a non-relational specification monadW in the sense of Maillard et al. [2019], that is a
monad equipped with a compatible order, and to compose it with the function (A1,A2) 7→ A1×A2. A
result of Altenkirch et al. [2015] (prop. 2.3.(1)) then ensures thatWrel(A1,A2) =W(A1×A2) is a simple
relational specification monad. In the following paragraphs, we illustrate this construction with a
few concrete instances showing the flexibility of this construction. Depending on the property we
want to verify and the desired verification style, we can pick relational specification monads among
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many different alternatives. For instance, choosing a simpler relational specification monad can
often simplify verification, but also have less expressive power than more sophisticated variants.
Similarly, relational weakest preconditions are better suited for (semi-)automated verification, but
relational pre-/postconditions are more intuitive to humans and make the connection to established
relational program logics more evident.

Backward predicate transformer. A stateless version of WSt
rel is the predicate transformer

WPure
rel (A1,A2) = (A1 ×A2 → P) → P

equipped with monadic operations and order derived from the monotonic continuation monad. We
call this simple relational specification monad Pure because it naturally applies to the relational
verification of pure code, however it can also be useful to verify effectful code as we will see for
nondeterministic computations in §2.6.

Pre-/postconditions. Specifications written in terms of pre-/postconditions are simpler to
understand than their predicate transformer equivalents. We show that relational specifications
written as pre-/postcondition also form a relational specification monad. The type constructor

PPPurerel (A1,A2) = P × (A1 ×A2 → P)
models a pair consisting of a precondition in P and a postcondition, that is a relation on final values
of two computations. There is a natural ordering between such pairs, namely

(pre1, post1) ≤PP
St
rel (pre2, post2) ⇐⇒ pre2 ⇒ pre1 ∧∀(a1 : A1)(a2 : A2).post1(a1,a2)⇒post2(a1,a2).

The monadic structure is given by

let retPP
Pure
rel (a1, a2) = ( ⊤, λ(a1', a2'). a1 = a1' ∧ a2 = a2' )

let bindPP
Pure
rel (pre, post) f =

let pre' = pre ∧ ∀a1, a2 . post (a1, a2) =⇒ π 1 (f (a1, a2)) in
let post' (b1, b2) = ∃a1, a2 . post (a1, a2) ∧ π 2 (f (a1, a2)) (b1, b2) in
(pre', post')

The return operation results in a trivial precondition and a postcondition holding exactly for the
given arguments, whereas bindPPPurerel strengthens the precondition of its first argument so that the
postcondition of the first computation entails the precondition of the continuation.

Stateful pre-/postconditions. Continuing on pre-/postconditions, we consider a stateful vari-
ant of PPPurerel :

PPStrel (A1,A2) = (S1 × S2 → P) × ((S1 ×A1 × S1) × (S2 ×A2 × S2) → P)
These are pairs, where the first component consists of a precondition on a pair of initial states, one
for each sides, while the second component is a postcondition formed by a relation on triples of an
initial state, a final value and a final state.

The simple relational monadic specification structure is similar to the one of PPPurerel , threading in
the state where necessary, and specifying that the initial state does not change for return:

let retPP
St
rel (a1,a2) = (λ(s1, s2) . ⊤, λ((si1, a1', s

f
1 ),(s

i
1, a2', s

f
2 )) . a1 = a1' ∧ a2 = a2' ∧ si1 = s

f
1 ∧ si2 = s

f
2 ).

There is a natural embedding of stateful pre-/postconditions (pre, post) : PPStrel (A1,A2) into stateful
backward predicate transformers WSt

rel (A1,A2) given by
λφ (si1, si2). pre(si1, si2)∧∀a1,a2, s f1 , s f2 .post ((si1,a1, s f1 ), (si2,a2, s f2 ))⇒φ ((a1, s f1 ), (a2, s

f
2 )) : W

St
rel (A1,A2).

Errorful backward predicate transformer. While exceptions turn out to be complex in
general, a coarse approach is still possible using the simple relational monad

WErr
rel (A1,A2) = ((A1 ×A2 + 1) → P) → P. (12)
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This construction represents a predicate transformer that works on either successful computations,
or on an indication that at least one of the computations threw an exception, but losing the
information of which of the two sides raised the exception. We can actually show that, under mild
assumptions, no simple relational specification monad accounting for exceptions can distinguish
the three situations where the left, the right, or both programs are raising exceptions. Intuitively,
this is due to the fact that the two programs are supposed to run independently, but the simple
relational specification monad impose some amount of synchronization. We return to WExc

rel from
§1 and solve this problem in §3, while previous relational program logics have generally been stuck
with weak specification monads in the style ofWErr

rel above [Barthe et al. 2016].
Input-output backward predicate transformer. A relational specification monad similar to

WSt
rel can be used to specify interactive I/O computations. For relating two computational monads

on input-output sets (I1,O2) and (I2,O2), we use
WIO

rel (A1,A2) = (A1 ×A2 → list(E1) × list(E2) → P) → list(E1) × list(E2) → P (13)
where E1 = I1 +O1 and E2 = I2 +O2 represent a log element of possible input-output behaviour.
Intuitively, a specification of typeWIO

rel (A1,A2) is a backward predicate transformer that transforms a
postcondition on the output results and the I/O history into a precondition describing the I/O history
before running the computations. Alternative relational specification monads for input-output are
easily defined following the discussion in Maillard et al. [2019].

Quantitative predicate transformers. The backward predicate transformerWPure
rel generalizes

to quantitative settings were propositions are replaced by a notion of resource. We use a particular
case of this generalization as the relational specification monad for probabilities, restricting to
monotonic additive continuous2 maps in the type [Audebaud and Paulin-Mohring 2006; Faissole
and Spitters 2017]

WProb
rel (A1,A2) = (A1 ×A2 → I) → I

2.3 Relational Semantics from Effect Observations
The relational judgment ⊢ c1 ∼ c2 {w } should assert that monadic computations c1 : M1A1
and c2 : M2A2 satisfy a relational specification w : Wrel(A1,A2) drawn from a simple relational
specification monad. What does this judgment mean in our semantic framework? Certainly it
requires a specific connection between the computational monadsM1,M2 and the simple relational
specification monad Wrel. In the non-relational setting, this is accomplished by an effect observation,
i.e., a monad morphism from the computational monad to the specification monad [Katsumata
2014; Maillard et al. 2019]. An effect observation accounts for the various choices available when
specifying a particular effect, for instance total or partial correctness in the case of errors or
recursion, angelic or demonic interpretations of nondeterministic computations, or connecting
ghost state with actual state or with past IO events. In the relational setting, we introduce relational
effect observations, families of functions respecting the monadic structure, defined here from first
principles, but arising as an extension of monad morphisms as we will show in §3.4.

Definition 2. A simple lax relational effect observation θrel from computational monads M1,M2
to a simple relational specification monad Wrel is given by
• for each pair of types A1,A2 a function θrel : M1A1 ×M2A2 →Wrel(A1,A2)
• such that

θrel (retM1 a1, ret
M2 a2) ≤Wrel retWrel (a1,a2)

θrel (bindM1 m1 f1, bind
M2 m2 f2) ≤Wrel bindWrel (θrel (m1,m2)) (θrel ◦ (f1, f2))

2as maps between ω-cpo
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We say that θrel is a simple strict relational effect observation if these two laws hold with equality.

As explained in the introduction, for stateful computations a simple strict relational effect
observation targetingWSt

rel runs the two computations and passes the results to the postcondition:
θStrel (c1, c2) = λφ (s1, s2). φ(c1 s1, c2 s2). (14)

A more interesting situation happens when interpreting nondeterministic computations (c1, c2) :
NdA1 × NdA2 into the relational specification monad WPure

rel (A1,A2). Two natural simple strict
relational effect observations are given by

θ∀rel(c1, c2) = λφ. ∀a1 ∈ c1,a2 ∈ c2. φ(a1,a2), θ∃rel(c1, c2) = λφ. ∃a1 ∈ c1,a2 ∈ c2. φ(a1,a2). (15)
The first one θ∀rel prescribes that all possible results from the left and right computations have to
satisfy the relational specification, corresponding to a demonic interpretation of nondeterminism,
whereas the angelic θ∃rel requires at least one final value on each sides to satisfy the relation.

These examples are instances of the following theorem, which allows to lift unary effect obser-
vations to simple strict relational effect observations. To state it, we first recall that two monadic
computations c1 : MA1 and c2 : MA2 commute [Bowler et al. 2013; Führmann 2002] when

bindM c1
(
λa1. bind

M c2
(
λa2. ret

M(a1,a2)
))
= bindM c2

(
λa2. bind

M c1
(
λa1. ret

M(a1,a2)
))
.

The intuition is that executing c1 and then c2 is the same as executing c2 and then c1.

Theorem 1. Let θ1 : M1 →W and θ2 : M2 →W be unary effect observations, whereM1 andM2
are computational monads and W is a (unary) specification monad. We denote with Wrel(A1,A2) =
W (A1 × A2) the simple strict relational specification monad derived from W (see §2.2). If for all
c1 : M1A1 and c2 : M2A2, we have that θ1(c1) and θ2(c2) commute, then the following function
θrel : M1A1 ×M2A2 →Wrel(A1,A2) is a simple relational effect observation

θrel(c1, c2) = bindW θ1(c1)
(
λa1. bind

W θ2(c2)
(
λa2. ret

W(a1,a2)
))
.

Moreover, a partial converse for this theorem holds: given a simple relational effect observation
θrel : M1A1 × M2A2 → Wrel(A1,A2) where Wrel is a lifting of a unary specification monad (i.e.,
Wrel(A1,A2) = W(A1 × A2)), then there exist commuting unary effect observations θ1 : M1 → W
and θ2 : M2 →W such that θrel is equal to the simple relational effect observation obtained from
applying Theorem 1 to these.
Another class of examples of lax effect observations, covering for instance the refinement

observation for nondeterminism θ∀∃rel (c1, c2) = λφ. ∀a1∈c1. ∃a2∈c2. φ(a1,a2) from §1, is provided
by the following theorem that connects lax effect observations to relators Γ over the monadM [Dal
Lago et al. 2017; Gavazzo 2018] which lift relations on values to relations on monadic computations:

Γ : (A1 ×A2 → P) −→ MA1 ×MA2 → P.

Theorem 2. A relator Γ over a monadM induces a simple lax relational effect observation of the
form θ Γrel : MA1 ×MA2→WPure

rel (A1,A2).

Proof. The carrier of θ Γrel : MA1 ×MA2 → (A1 × A2 → P) → P is obtained by swapping the
arguments of Γ, while the two inequalities are direct consequences of the compatibility of the
relator Γ with the monadM . □

Relators provide interesting examples of relational effect observations for nondeterminism and
for probabilities. Relational effect observation extend relators by providing the possibility of relating
two different computational monads, as well as having more sophisticated specifications with ghost
state or exceptional postconditions. Conversely, relators preserve – in a lax sense – identities and
relational composition.
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In general, given a simple lax relational effect observation θrel : M1,M2 → Wrel, we define the
semantic relational judgment by

⊨θrel c1 ∼ c2 {w } = θrel (c1, c2) ≤Wrel w, (16)
where we make use of the preorder given byWrel. The following 3 subsections explain how to derive
sound rules for a relational logic parameterized by the computational monads M1,M2, the simple
relational specification monad Wrel, and the simple lax relational effect observation θrel.

2.4 Pure Relational Rules
We start with rules coming from the ambient dependent type theory. Even though the semantics
of the relational judgment depends on the choice of an effect observation, the soundness of the
basic pure rules introduced in Figure 1 is independent from both the computational monads and
effects observation. Indeed, the proof of soundness of these follows from applying the adequate
dependent eliminator coming from the type theory.

B-Elim
if b then ⊢ c1 ∼ c2

{
w⊤

}
else ⊢ c1 ∼ c2

{
w⊥

}
⊢ c1 ∼ c2

{
if b thenw⊤ elsew⊥

} 0-Elim2
w ≤ Û⊥

⊢ c1 ∼ c2 {w }

N-Elim

n : N w = elimN w0 wsuc ⊢ c1[0/n] ∼ c2[0/n] {w0 }
∀n : N, ⊢ c1 ∼ c2 {w n } ⇒ ⊢ c1[Sn/n] ∼ c2[Sn/n] {wsuc (w n) }

⊢ c1 ∼ c2 {w n }

Fig. 1. Pure relational rules

These rules can then be tailored as explained in the introduction to derive asynchronous (1) or
synchronous (2) rules more suited for applications. For some of the derived rules, there is, however,
an additional requirement on the simple relational specification monad, so that we can strengthen
preconditions. This small mismatch in the theory, already present in the unary setting of Maillard
et al. [2019] on top of which we work, could be solved by adopting a richer definition of specification
monads, for instance taking inspiration in the work of Gavazzo [2018], and is left as future work.

2.5 Generic Monadic Rules
Given any computational monads M1,M2 and a simple relational specification monad Wrel, we
introduce three rules governing the monadic part of a relational program logic (Figure 2). Each of

Ret
a1 : A1 a2 : A2

⊢ retM1 a1 ∼ retM2 a2
{
retWrel (a1,a2)

} Weaken
⊢ c1 ∼ c2 {w } w ≤ w ′

⊢ c1 ∼ c2 {w ′ }

Bind
⊢m1 ∼m2 {wm } ∀a1,a2 ⊢ f1 a1 ∼ f2 a2

{
w f (a1,a2)

}
⊢ bindM1 m1 f1 ∼ bindM2 m2 f2

{
bindWrel wm w f

}
Fig. 2. Generic monadic rules in the simple framework

these rules directly corresponds to one aspect of the simple relational specification monad and are
2Assuming that Wrel contains a top element Û⊥ that entails falsity of the precondition; this is the case for all our examples.
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all synchronous. As explained in the introduction (5), it is then possible to derive asynchronous
variants using the monadic laws of the computational monads.

Theorem 3 (Soundness of generic monadic rules). The relational rules in Figure 2 are sound
with respect to any lax relational effect observation θrel, that is

⊢ c1 ∼ c2 {w } ⇒ ∀θrel, ⊨θrel c1 ∼ c2 {w } .

Proof. For rules Ret and Bind, we need to prove that θrel(retM1 a1, ret
M2a2) ≤ retW(a1,a2)

and θrel (bindM1 m1 f1, bind
M2 m2 f2) ≤ bindW (θrel (m1,m2)) (θrel ◦ (f1, f2)), which are exactly the

laws of a lax relational effect observation. ForWeaken, we need to show that θrel(c1, c2) ≤ w ′ under
the assumptions that θrel(c1, c2) ≤ w andw ≤ w ′ so we conclude by transitivity. □

2.6 Effect-Specific Rules
The generic monadic rules together with the rules coming from the ambient type theory allow to
derive relational judgments for the main structure of the programs. However, these rules are not
enough to handle full programs written in the computational monads M1 and M2, as we also need
rules to reason about the specific effectful operations that these monads provide. The soundness of
effect-specific relational rules is established with respect to a particular choice of relational effect
observation θrel : M1,M2 →Wrel. Consequently, we make essential use of θrel to devise effect-specific
rules. The recipe was already illustrated for state in the introduction: first pick a pair of effectful
algebraic operations (or ret for the asynchronous rules), unfold their definition, and then compute
a sound-by-design relational specification for this pair by simply applying θrel. By following this
recipe, we are decoupling the problem of choosing the computations on which these rules operate
(e.g., synchronous vs. asynchronous rules to which we return in §5) from the problem of choosing
sensible specifications, which is captured in the choice of θrel.

Nondeterministic computations. The two relational effect observations θ∀rel and θ∃rel provide
different relational rules for the operation pick. As an example of how the recipe works, suppose
that we want to come up with an asymmetric rule for nondeterministic computations that works
on the left program, and which is sound with respect to θ∀rel. This means that the conclusion will
be of the form ⊢ pick ∼ reta2

{
wpickl

}
for somewpickl : PP

Pure
rel . To obtainwpickl , we apply the

effect observation to the two computations involved in the rule
wpickl = θ

∀
rel (pick, reta2) = λφ. ∀b ∈ {tt, ff},a ∈ {a2}. φ(b,a) = λφ. φ(tt,a2) ∧ φ(ff,a2),

obtaining a rule that is trivially sound:
DemonicPickLeft

⊢ pick ∼ reta2 { λφ. φ(tt,a2) ∧ φ(ff,a2) } .
Similarly for fail, we computewfaill for ⊢ fail ∼ reta2

{
wfaill

}
as follows:

wfaill = θ
∀
rel (fail, reta2) = λφ. ∀b ∈ {tt, ff},a ∈ ∅. φ(b,a) = λφ. ⊤,
DemonicFailLeft

⊢ fail ∼ reta2 { λφ. ⊤ } .
Following the same approach, we can come up with an asymmetric rule on the right as well as a
symmetric one. For concreteness, we show the symmetric rule for the effect observation θ∃rel:

Angelic
⊢ pick ∼ pick { λφ. φ(tt, tt) ∨ φ(tt, ff) ∨ φ(ff, tt) ∨ φ(ff, ff) } .

Taking inspiration from the sample rule in [Barthe et al. 2015a], we introduce a rule for the refine-
ment effect observation θ∀∃rel using an auxilliary function to select the elements in correspondence:

Refinement
h : finn → finm

⊢ choosen ∼ choosem { λφ. ∀k .φ(k,h k) } .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 4. Publication date: January 2020.



4:16 Kenji Maillard, Cătălin Hrit,cu, Exequiel Rivas, and Antoine Van Muylder

Exceptions usingWErr
rel . TakingM1 andM2 to be exception monads on exception sets E1 and E2,

and the relational specification monadWErr
rel (Equation 12 on page 11), we have an effect observation

interpreting any thrown exception as a unique erroneous termination situation, that is
let θErrrel ((c1, c2) : Exc A1 ×Exc A2) :WErr

rel (A1,A2) =
λφ. match c1, c2 with | Inl a1, Inl a2→φ (Inl (a1, a2)) | _, _→φ (Inr ())

Under this interpretation we can show the soundness of the following rules:

ThrowL
⊢ throw e1 ∼ reta2 { λφ. φ(Inr ()) }

ThrowR
⊢ reta1 ∼ throw e2 { λφ. φ(Inr ()) }

Catch

⊢ c1 ∼ c2 {w } ∀e1 e2 ⊢ c✠1 e1 ∼ c✠2 e2
{
w✠ }

∀e1 a2 ⊢ c✠1 e1 ∼ reta2
{
w✠ } ∀a1 e2 ⊢ reta1 ∼ c✠2 e2

{
w✠ }

⊢ catch c1 c✠1 ∼ catch c2 c
✠
2

{
λφ.w(λa0. match a0with Inl a→φ (Inl a) | Inr ()→w✠ φ)

}
The rules ThrowL and ThrowR can be derived using the recipe above, but the exceptions have
to be conflated to the same exceptional result Inr (), a situation that is forced by the choice of
relational effect observation and a weak specification monad. As a consequence, the Catch rule
considers one successful case and three exceptional cases. The specification in the conclusion
takes a postcondition φ and computes a precondition by running the transformer w on a new
postcondition that depends on the result of c1 and c2. If both computations were successful, then
this new postcondition is simply the original φ. If an exception was thrown (in any of the sides
or both), then the new postcondition is computed using the transformerw✠, which specifies the
three exceptional cases. The specification for Catch does not follow mechanically from θErrrel using
our recipe, since it is a handler and not an algebraic operation.

Input-output computations. Let M1 and M2 be the input-output monads on (I1,O1) and
(I2,O2) respectively (§2.1). We want an effect observation on the relational specification monad
WIO

rel (Equation 13 on page 12):
θ IOrel : M1 A1 ×M2 A2 →WIO

rel (A1,A2)
Notice that WIO

rel (A1,A2) =WIO(A1 ×A2), where WIO is a unary specification monad defined by
WIO(A) = (A→ list(E1) × list(E2) → P) → list(E1) × list(E2) → P

By applying Theorem 1 to unary effect observations θ IO1 : M1 → WIO and θ IO2 : M2 → WIO, we
obtain the desired relational effect observation θ IOrel . The unary effect observation θ IO1 is defined by
recursion on the computation trees (θ IO2 is analogous):

let rec θ IO1 (c :M1 A) : WIO A = match c with

| Ret x→ retW
IO
x

| Input k→ bindW
IO
(λ φ (h1, h2) . ∀i, φ i (Inl i :: h1, h2)) (λ i . θ IO1 (k i))

| Output o k→ bindW
IO
(λ φ (h1, h2) . φ () (Inr o :: h1, h2)) (λ () . θ IO1 k)

The relational rules we get by applying our recipe to input and output are the following:
InputL

⊢ input ∼ reta2 { λφ, (h1,h2). ∀i1 ∈ I1,φ (i1,a2) (Inl i1 :: h1,h2) }
OutputL

⊢ output o1 ∼ reta2 { λφ, (h1,h2). φ ((),a2) (Inr o :: h1,h2) }
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Unbounded iteration. Specifications for imperative programs as modeled by the Imp monad
from §2.1 come in two flavors. This is reflected here by two unary effect observations: a first
one for total correctness θTot ensuring the termination of a program; and a second one for partial
correctness θPart assuming the termination of a program. We explain how this situation extends to
the relational setting, focusing on partial correctness, but the same methodology applies to total
correctness. Concretely, we define a simple strict relational effect observation

θPartrel : Imp A1 × Imp A2 →WSt
rel (A1,A2)

by applying Theorem 1 to a unary effect observation θPart defined using the domain structure with
which WSt is naturally endowed. From basic domain theoretic results, WSt can be endowed with a
least fixpoint combinator fix : (WSt B→WSt B) →WSt B, used to define

let θPart (c : Imp A) :WSt A = match c with

| Ret x→ retW
St
x | Get k→ λφ s . θPart (k s) φ s | Put s' k→ λφ s . θPart k φ s'

| DoWhile body k→
let loop (w :WSt B) = bindW

St
(θPart body) (λ b. if b then w else retW

St
ff) in

bindW
St
(fix loop) (λ _ . θPart k)

How does θPart work? In the first three cases, it trivially returns in the Ret branch, evaluates a
continuation to the current state in the Get branch, and evaluates a continuation with an updated
state in the Put branch. The interesting part is in the DoWhile branch, where the body is repeatedly
run using fix as long as the guard returns tt. We proved by induction on c that θPart is a monad
morphism. Theorem 1 asks for two monad morphisms whose images commute. We provided those
morphisms by tweaking a bit the definition of θPart: we embed in a variation of WSt that accounts
for a pair of states, the first θPart1 : Imp→WSt uses the left state and the second θPart2 : Imp→WSt

uses the right state. Applying Theorem 1, we obtain the definition of θPartrel .
This simple relational effect observation θPartrel captures partial correctness in the following sense:

intuitively, ⊨θ Part
rel
{ψ } c1 ∼ c2 { φ } implies that ifψ (s1, s2) holds and the two programs c1 and c2

terminate on these initial states s1, s2, then the postcondition holds of the final states. This judgment
using pre-/postconditions is expressed in terms of the usual judgment by applying the translation
into stateful backward predicate transformers (see §2.2). On top of this θPartrel , we devise a rule for
do_while using an invariant invb1,b2 : S × S → P:

⊢ { invtt,tt } body1 ∼ body2
{
λ(_,b1, s1) (_,b2, s2). b1 = b2 ∧ invb1,b2 (s1, s2)

}
⊢ { invtt,tt } do_while body1 ∼ do_while body2

{
λ(_, (), s1) (_, (), s2). invff,ff(s1, s2)

} (17)

This rule is synchronous in the sense that the bodies always yield the same boolean values. Conse-
quently the two loops run the same number of steps. The postcondition ensures that if the loop
terminates, then the invariant invff,ff holds.

Probabilistic computations. For discrete probabilistic computations modeled by the monad
Prob, a first idea would be to use a unary effect observation and appeal once again to Theorem 1.
This simple strict relational effect observation however does not validate a rule correlating two
flip operations with an arbitrary coupling between the Bernoulli distributions on each side [Barthe
et al. 2009]. A posteriori this is not so surprising, since the commutation hypothesis of Theorem 1
implies that the effects on each side are observed in an independent fashion.
Hence we rely on a more sophisticated lax relational effect observation θProb : ProbA1 ×

ProbA2 →WProb(A1,A2) defined as
θProb(c1, c2) = λφ. inf

d∼c1,c2

∑
a1:A1,a2:A2

d(a1,a2) · φ(a1,a2)
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where we write d ∼ c1, c2 to specify a coupling d of the two distributions c1 and c2, i.e., a distribution
on A1 ×A2 such that the marginals satisfy Prob(π1)d = c1 and Prob(π2)d = c2. Since we are taking
the infimum over all such couplings, the resulting relational effect observation is necessarily lax
and the conditions of linearity and continuity imposed on WProb are needed to show the monadic
inequalities. Using this relational effect observation we straightforwardly validate the following
rule for correlating two sampling operations as in (×)pRHL [Barthe et al. 2009, 2017].

d ∼ Bp ,Bq
⊢ flipp ∼ flipq

{
λφ.

∑
b1,b2:B d(b1,b2) · φ(b1,b2)

}
2.7 Example: Noninterference
As a specific example of the simplified framework, we explore noninterference, a popular relational
property for information flow control systems [Antonopoulos et al. 2017; Banerjee et al. 2016;
Barthe et al. 2019; Clarkson and Schneider 2010; Nanevski et al. 2013; Sabelfeld and Myers 2003].
The noninterference property dictates that the public outputs of a program cannot depend on its
private inputs. Formally, and in its most basic form, we can capture this property by classifying the
store’s locations by two security levels: high for private information and low for public information.
By s =L s ′ we express that the two stores s and s ′ are equal for all low locations. We use s

p
{ s ′ to

denote that the execution of a program p on a store s ends in store s ′. The noninterference property
is then written as

∀si , s ′i , so , s ′o . si =L s
′
i ∧ si

p
{ so ∧ s ′i

p
{ s ′o =⇒ so =L s

′
o

A typical solution for enforcing noninterference is to define a static type system which is capable
of rejecting obviously interferent programs [Sabelfeld and Myers 2003]. For example, such a type
system can rule out interferent programs such as

if h > 0 then l := 1 else l := 0

where h is a high reference and l is a low one. However, the static nature of these type systems
restricts the family of programs that we can show noninterferent. A characteristic example of this
limitation is the following noninterferent program:

if h = 1 then l := h else l := 1

Relational program logics such as Benton’s [2004] RHL provide a less restrictive framework for
proving non-interference, as the proof can rely on information accumulated during the derivation
steps. We follow the approach of relational program logics and show how noninterference proofs
can be done in our framework. We restrict ourselves to programs with conditionals but without
while-loops. In §4.1, we will show a complete embedding of RHL, including iteration. For now
though, we assume that we are working with a memory consisting of locations L = {l, h} storing
natural numbers, and consider the data in h to be private and the data in l to be public. As discussed
in §2.1, these stateful computations can be captured using the monad StS where S = L → N. The
program above can be represented using this monad as follows:

c = let x = get h in if x = 1 then put l x else put l 1 : St 1

We instantiate our framework with the computational monad StS on both sides, and use the simple
relational specification monadWSt

rel from §1. The judgment we establish to prove noninterference is

⊢ c ∼ c
{
λφ (si1, si2). si1 l = si2 l ∧ ∀ s

f
1 s

f
2 .s

f
1 l = s

f
2 l =⇒ φ (((), s f1 ), ((), s

f
2 )

}
This weakest precondition transformer comes from taking the pre-/postcondition pair

λ(s1, s2). s1 l = s2 l : S×S → P λ(si1, (), s
f
1 ) (s

i
2, (), s

f
2 ). s

f
1 l = s

f
2 l : (S×1×S)×(S×1×S) → P
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and translating it to its predicate transformer form following the description in §2.2. The proof
derivation consists of applying the Bind rule after a weakening, and later applying the asymmetric
conditional rules (see page 3) for covering the four cases.

A similar example of noninterference can be done by changing the state monad St for the input-
output monad IO described in §2.1. In this case, input and output channels are classified as high
or low, and the noninterference policy is spelled out in terms of these by using the specification
monad WIO

rel or one of its variants.
Finally, an interesting characteristic of our framework is that we can easily adapt the setting to

handle more than one effect at the same time. For example, if we are interested in modeling both
IO and state with noninterference, then it is enough to apply the state monad transformer to the IO
monad, and replace the relational specification monadWSt

rel by a monad which takes into account
the input-output in the specifications as well.

3 GENERIC FRAMEWORK
While the simple framework works well for a variety of effects, it falls short of providing a convinc-
ing treatment of control effects such as exceptions. This limitation is due to the fact that simple
relational specification monads merge tightly together the specification of two independent compu-
tations. We now explain how to overcome these limitations starting with the example of exceptions,
and how it leads to working inside a relational dependent type theory. Informed by the generic
constructions on relative monads underlying the simple setting, we derive a notion of relational
specification monad and relational effect observation in this enriched setting. These relational speci-
fication monads require an important amount of operations so we introduce relational specification
monad transformers for state and exceptions, simplifying the task of building complex relational
specification monad from simpler ones. As a consequence, we can easily combine exceptions with
any of the effects already handled by the simplified framework (e.g., state, nondeterminism, IO, and
probabilities).

3.1 Exceptional Control Flow in Relational Reasoning
We explained in §2.6 how to prove relational properties of programs raising exceptions, as long as
we give up on the knowledge of which program raised an exception at the level of relational speci-
fications. This restriction prevents us from even stating natural specifications such as simulations:
“if the left program raises, so does the right one”.

In order to go beyond this unsatisfying state of affairs, we consider a type of relational specifica-
tions allowing to write specifications consisting of predicate transformers mapping a postcondition
on pairs of either a value or an exceptional final state to a proposition:

WExc
rel (A1,A2) = ((A1 + E1) × (A2 + E2) → P) → P.

For instance, the specification of simulation above can be stated as
λφ. ∀ae1ae2.(Inr? ae1 ⇒ Inr? ae2) ⇒ φ(ae1,ae2) : WExc

rel (A1,A2),
where Inr? ae = match ae with Inr _→⊤| _→⊥.

As explained in the introduction, this type does not admit a monadic operation bindwm w f using
only a continuation of typew f : A1 ×A2 →WExc

rel (B1,B2) due to the fact thatwm could result in an
intermediate pair consisting of a normal value on one side and an exception on the other side. Our
solution is to provide to bindW

Exc
rel the missing information it needs in such cases. To that purpose,

we use the unary specification monadsWExc
1 A1 = (A1+E1→P)→P andWExc

2 A2 = (A2+E2→P)→P
to provide independent specifications of each program. With the addition of these, we can write a
combinator that relies on the unary specifications when the results of the first computations differ
(one raise an exception and the other returns).
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val bindW
Exc
rel : WExc

rel (A1,A2)→ (A1→WExc
1 B1)→ (A2→WExc

2 B2)→
(A1 ×A2→WExc

rel (B1,B2))→WExc
rel (B1,B2)

let bindW
Exc
rel wm (f1 : A1→ ((B1 + E1)→P)→P) (f2 : A2→ ((B2 + E2)→P)→P) f =

λ(φ : (B1 + E1)→P).
wm (λ ae : (A1 + E1) × (A2 + E2).

match ae with
| Inl a1, Inl a2→ f a1 a2 φ | Inl a1, Inr e2→ f1 a1 (λ be→φ be (Inr e2))
| Inr e1, Inr e2→φ (Inr e1, Inr e2) | Inr e1, Inl a2→ f2 a2 (λ be→φ (Inr e1) be))

3.2 A Problem of Context
In order to keep track of these unary specifications drawn fromWExc

1 andWExc
2 in the relational

proofs, we extend the relational judgment to
⊢ c1 {w1} ∼ c2 {w2} | wrel.

Here,w1 : WExc
1 A1 is a unary specification for c1 : Exc1A1, symmetricallyw2 : WExc

2 A2 is a unary
specification for c2 : Exc2A2, andwrel : WExc

rel (A1,A2) specifies the relation between the programs c1
and c2. Using this richer judgment, we would like a rule for sequencing computations as follows,
where a bold variablew stands for the triple (w1,w2,wrel):

⊢m1 {wm
1 } ∼m2 {wm

2 } | wm
rel ∀a1,a2 ⊢ f1 a1 {w f

1 a1} ∼ f2 a2 {wm
2 a2} | w f

rel a1 a2

⊢ bindExc1 m1 f1 {bindW
Exc
1 wm

1 w
f
1 } ∼ bindExc2 m2 f2 {bindW

Exc
2 wm

2 w
f
2 } | bind

WExc
rel wm w f

What would the semantics of such a relational judgment be? A reasonable answer at first sight
is to state formally the previous intuition in terms of unary and relational effect observations:

⊨ c1 {w1} ∼ c2 {w2} | wrel = θExc1 c1 ≤ w1 ∧ θExc2 c2 ≤ w2 ∧ θExcrel (c1, c2) ≤ wrel

However this naive attempt does not validate the rule for sequential composition above. The problem
lies in the management of context. To prove the soundness of this rule, we have in particular to
show that θExc1 (bindExc1 m1 f1) ≤ bindW

Exc
1 wm

1 w
f
1 under the hypothesis θExc1 m1 ≤ wm

1 ∧ . . . and
∀a1,a2,θWExc

1 (f1 a1) ≤ w
f
1 a1 ∧ . . ., in particular the second hypothesis requires an element a2 : A2

that prevents3 us from concluding by monotonicity of bindWExc
1 .

This problematic hypothesis only depends on the part of the context relevant for the left program
and not on the full context, so we introduce structured contexts Γ = (Γ1, Γ2) in our judgments,
where Γ1 and Γ2 are simple contexts. The judgment Γ ⊢ c1 {w1} ∼ c2 {w2} | wrel now presupposes
that Γi ⊢ ci : Mi Ai , Γi ⊢ wi : Wi (i = 1, 2) and that Γ1, Γ2 ⊢ wrel : Wrel(A1,A2). The semantics of this
judgment is given by

Γ ⊨ c1 {w1} ∼ c2 {w2} | wrel =
©«

∀γ1 : Γ1,θ1(c1 γ1) ≤ w1 γ1,
∀γ2 : Γ2,θ2(c2 γ2) ≤ w2 γ2,

∀(γ1,γ2) : Γ1 × Γ2,θrel(c1 γ1, c2 γ2) ≤ wrel(γ1,γ2)
ª®¬ (18)

A conceptual understanding of this interpretation that will be useful in the following is to consider
Γ as a (trivial) relation Γr = (Γ1, Γ2, λ(γ1 : Γ1)(γ2 : Γ2). 1) instead of a pair and define the family of
relations Θr (γ ) = (Θ1(γ1),Θ2(γ2),Θrelγ ) dependent over Γr :

Θ1(γ1 : Γ1) = θ1(c1 γ1) ≤ w1 γ1, Θ2(γ2 : Γ2) = θ2(c2 γ2) ≤ w2 γ2,

Θrel(γ : Γ)(w1 : Θ1 γ1,w2 : Θ2 γ2) = θrel(c1 γ1, c2 γ2) ≤ wrelγ .

3Instead of insisting that ⊢ c1 {w1 } ∼ c2 {w2 } | wrel proves the correctness of c1 and c2 with respect to w1 and w2 we
could try to presuppose it, however this idea does not fare well since it would require a property akin of cancellability with
respect to bind θ Exc

1 (bindExc1 m1 f1) ≤ bindW
Exc
1 wm

1 w f
1 ⇒ θ Exc

1 m1 ≤ wm
1 that has no reason to hold in our examples.
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Ar ,Br , Γr ::= 0r | 1r | Br | Nr | Ar + Br | (a : Ar ) × Br a | (a : Ar ) → Br a

J−K maps a relational type Ar to its underlying representation JAr K = (A0,A1,Ar )

J0r K = (0,0,=) J1r K = (1,1,=) JBr K = (B,B,=) JNr K = (N,N,=)

JAr + Br K = ©«
ab1 : A1 + B1
ab2 : A2 + B2
case (ab1,ab2) [(Inla1, Inla2).Arel a1 a2 | (Inrb1, Inrb2).Brel b1 b2 | (_, _) . 0]

ª®¬
J(a : Ar ) × Br aK = ©«

(a1,b1) : (a1 : A1) × B1 a1,
(a2,b2) : (a2 : A2) × B2 a2,
(ar : Ar a1 a2) × Br a1 a2 ar b1 b2

ª®¬
J(a : Ar ) → Br aK = ©«

f1 : (a1 : A1) → B1 a1,
f2 : (a2 : A2) → B2 a2,
(a1 : A1)(a2 : A2)(ar : Ar a1 a2) → Br a1 a2 ar (f1 a1) (f2 a2)

ª®¬
Fig. 3. Syntax of RDTT and translation to base type theory

Then the relational judgment Γ ⊨ c1 {w1} ∼ c2 {w2} | wrel can be interpreted as a dependent
function

(
γ : Γr

)
→ Θr γ in an appropriate relational dependent type theory.

3.3 A Relational Dependent Type Theory
Adding unary specifications in the relational judgment enables a full treatment of exceptions,
however the pure rules of section §2.4 do not deal with a structured context Γr = (Γ1, Γ2, Γrel).
In order to recover rules dealing with such a context, we apply the same recipe internally to a
relational dependent type theory as described by Tonelli [2013]. In practice, this type theory could
be described as a syntactic model in the sense of Boulier et al. [2017], that is a translation from a
source type theory to a target type theory that we take to be our ambient type theory, where a
type in the source theory is translated to a pair of types and a relation between them. We call the
resulting source type theory RDTT and describe part of its construction in Figure 3. A systematic
construction of RDTT at the semantic level is obtained by considering the category with families
Span(Type) consisting of families of types and functions indexed by the span (1← rel→ 2), a
special case of Kapulkin and Lumsdaine [2018]; Shulman [2014].
Moving from our ambient type theory to RDTT informs us on how to define rules coming

from the type theory. For instance, generalizing the rule for if-then-else, we can use the motive
P(ab : Ar + Br ) = Θr (ab) : Typer on the dependent eliminator for sum type

elim_sum : (P : (Ar + Br )→Typer ) → (a : Ar→P a) → (b : Br→P b) → (x : Ar + Br )→P x

to obtain a rule for case splitting. This eliminator translates to the large term in Figure 4 that
induces the following relational rule usingwl = (w l

1,w
l
2,w

l
rel),wr = (wr

1 ,w
r
2 ,w

r
rel) and the relational

specifications of the conclusion – where we abbreviate pattern matching with a case construction
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Jelim_sumK : (P1 : A1 + B1 → Type) → (P2 : A2 + B2 → Type) →
(Prel : ∀(ab1 : A1 + B1)(ab2 : A2 + B2), (Ar + Br )rel ab1 ab2 → Type) →
(∀(a1 : A1), P1 (Inla1)) → (∀(a2 : A2), P2 (Inla2)) →
(∀a1 a2 (arel : Ar a1 a2), Prel (Inla1) (Inla2)arel)
(∀(b1 : B1), P1 (Inrb1)) → (∀(b2 : B2), P2 (Inrb2)) →
(∀b1 b2 (brel : Br b1 b2), Prel (Inrb1) (Inrb2)brel) →
∀ab1 ab2 (abrel : (Ar + Br )rel ab1 ab2), Prel ab1 ab2 abrel

Fig. 4. Relational translation of the eliminator for sum types

– as arguments to the eliminator
Γ,a : Ar ⊢ c1[Inl a1/ab1] {w l

1} ∼ c2[Inl a2/ab2] {w l
2} | w l

rel[arel/abrel]
Γ,b : Br ⊢ c1[Inr b1/ab1] {wr

1 } ∼ c2[Inr b2/ab2] {wr
2 } | wr

rel[brel/abrel]

Γr ,ab : Ar +Br ⊢
c1 {case ab1 [Inl a1.w l

1 | Inr b1.wr
1 ]}∼

c2 {case ab2 [Inl a2.w l
2 | Inr b2.wr

2 ]}

����� caseab1,ab2 [
Inl a1, Inl a2.w

l
rel

Inr b1, Inr b2.w
r
rel

]
As in the simple setting, we can then refine this rule to obtain synchronous or asynchronous rules
specifying a required shape for the programs c1, c2.

3.4 Relative Monads and Monad Morphisms
Before giving the general framework able to derive monadic rules dealing with exceptions, we
return to the notions of relative monads and relative monad morphisms, since these will be the
common underlying concept relating the simple and generic frameworks.

Definition 3 (relativemonads [Altenkirch et al. 2015]). LetI,C be categories andJ : I→C
a functor between these. A J -relative monad is given by
• for each A ∈ I, an object T A ∈ C
• for each A ∈ I, a morphism retTA ∈ C(J A;T A)
• for each A,B ∈ I, a function (−)†T : C(J A;T B) → C(T A;T B)
• satisfying the 3 following equations

f †T ◦ retTA = f (retTA )
†T
= idT A д†T ◦ f †T = (д†T ◦ f )†T

Noting Type for the category of types and functions of our ambient type theory, Ord for the
category of preordered sets and monotonic functions, andDisc : Type→ Ord the functor equipping
a type with its discrete preorder structure , a simple relational specification monad could be
described as a relative monad Wrel : Type2→Ord over the functor Disc ◦ × : Type2→Ord sending a
pair of types (A1,A2) to their product A1 ×A2 equipped with a discrete preorder. The monotonicity
condition imposed on bindWrel amounts to require that all the structure is enriched in Ord4 [Kelly
1982].

Simple relational effect observations fromM1,M2 to Wrel can also be interpreted as instances of
relative monad morphisms. First, a pair of computational monadsM1,M2 yields a monadM1 ⊗M2 :
Type2 → Type2 acting on pairs of types, that isM1 ⊗ M2 (A1,A2) = (M1A1,M2A2) with monadic
structures provided by each sides. Second, by proposition 2.3 of Altenkirch et al. [2015], the monad

4Type2 can be enriched over Ord by change-of-enrichment through the monoidal functor Disc.
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M1 ⊗M2 is a relative monad on the identity functor IdType2 . A simple relational effect observation
is a relative monad morphism from M1 ⊗ M2 to Wrel over the functor Disc ◦ Û×.

Definition 4 (Lax relative monad morphism). Let I,C1,C2 be categories enriched over Ord
and J1 : I → C1,J2 : I → C2,F : C1 → C2 be Ord-enriched functors such that φ : F ◦ J1 � J2.
A lax relative monad morphism from a J1-relative monad T1 : I → C1 to a J2-relative monad
T2 : I → C2 is
• a family of morphisms θA : F ◦ T1A→ T2A indexed by objects A ∈ I,
• such that

θ ◦ F retT1 ≤ retT2 ◦ φ θ ◦ F (f †T1 ) ≤ (θ ◦ F f ◦ φ−1)†T2 ◦ θ (19)
We say that θ is a relative monad morphism when the last two conditions are equalities.

Crucially, this definition of relative monadmorphism generalizes the notion defined by Altenkirch
et al. [2015] by enabling different base functor, a relative monad analog to the monad opfunctors of
Street [1972].5 Up to the enrichment, we recover the definition of Altenkirch et al. [2015] by taking
J1 = J2, F = Id and φ = id.

3.5 Relational Specification Monads, Relational Effect Observations
Motivated by the case of exceptions, we now define the general notion of a relational specification
monad. This definition is obtained by instantiating the definitions of an (enriched) relative monad
to our relational dependent type theory, ensuring that we obtain a theory uniform with the simple
setting, and crucially that we can use a similar methodology to introduce relational rules. We note
Span(Ord) for the category of relations between ordered types, J× : Type × Type→ Span(Ord)
for the functor defined on objects by J×(A1,A2) = DiscA1

π1←−−DiscA1×DiscA2
π2−−→DiscA2 and π1,2 :

Span(Ord) → Type × Type sending a relation A1←Arel→A2 to its legs (A1,A2).

Definition 5. A relational specification monad consist of a pair of unary specification monads
W1,W2 : Type→ Ord and a relative monadW : Type×Type→ Span(Ord) over J× liftingW1,W2,
that is such that π1,2 ◦W =W1 ×W2, and whenever π1,2(f ) = (f1, f2)

π1,2(retW) = (retW1 , retW2 ), π1,2(bindW f ) = (bindW1 f1, bind
W2 f2).

In components, a relational specificationmonad over unary specificationmonadsW1,W2 consists
of a relationWrel(A1,A2) : W1A1 →W2A2 → Type equipped with a preorder ≤W, and operations

retWrel : (a1,a2) : A1×A2 →Wrel(A1,A2) (retW1 a1) (retW2 a2)
bindWrel : wm

1 : W1A1 → wm
2 : W2A2 → wm

rel : Wrel(A1,A2)wm
1 wm

2 →

w
f
1 : (A1 →W1B1) → w

f
2 : (A2 →W2B1) →

w
f
rel : (((a1,a2) : A1 ×A2) →Wrel(B1,B2) (w f

1 a1) (w
f
2 a2)) →

Wrel(B1,B2) (bindW1wm
1 w

f
1 ) (bind

W2wm
2 w

f
2 )

satisfying equations analogous to the monadic laws.
If these operations look complex, in most of our examples the relation Wrel(A1,A2)w1w2 is

independent ofw1 andw2. This happens for our leading example of exceptions, but also for any
relational specification monad constructed out of a simple relational specification monad. Indeed,
we can associate to any simple relational specification monadWrel the relational specification monad
W(A1,A2) = (Wrel(A1,1),Wrel(1,A2), λw1w2.Wrel(A1,A2)). The monadic operations just discard the
superfluous arguments.
5However, in contrast to the situation of monads, these relative monad morphisms do not dualize well.
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Weaken
Γr ⊢ c1 {w1} ∼ c2 {w2} | wrel w1 ≤W1 w ′1 w2 ≤W2 w ′2 wrel ≤Wrel w ′rel

Γr ⊢ c1 {w ′1} ∼ c2 {w ′2} | w ′rel

Ret
Γ1 ⊢ a1 : A1 Γ2 ⊢ a2 : A2

Γr ⊢ retM1a1 {retW1a1} ∼ retM2a2 {retW2a2} | retWrel (a1,a2)

Bind
Γr ⊢m1 {wm

1 } ∼m2 {wm
2 } | wm Γr ,a : Ar ⊢ f1 a1 {w f

1 a1} ∼ f2 a2 {wm
2 a2} | w f a

Γr ⊢
bindM1 m1 f1 {bindW1 wm

1 w
f
1 }∼

bindM2 m2 f2 {bindW2 wm
2 w

f
2 }

����� bindWrel wm w f

Fig. 5. Generic monadic rules in the full relational setting

We now turn to the definition of a relational effect observation.

Definition 6 (Lax relational effect observation). A lax relational effect observation from
M1,M2 to the relational specification monadW overW1,W2 is a lax relative monad morphism θ from
M1 ⊗ M2 to W over J×. A relational effect observation is strict when the inequalities (19) hold as
equalities.

Explicitly, such a lax relational effect observation θ of three components θ1,θ2,θrel where θ1 :
M1 →W1, θ2 : M2 →W2 are (plain) monad morphisms, and

θrel : ((m1,m2) : M1A1 ×M2A2) →Wrel(A1,A2) (θ1m1) (θ2m2)
verify the two inequations with respect to the monadic operations

θrel(retM1 a1, ret
M2 a2) ≤ retWrel (a1,a2) : Wrel(A1,A2) (θ1 (retM1 a1)) (θ2 (retM2 a2))

θrel(bindM1m1 f1, bind
M2m2 f2) ≤ bindWrel (θ1m1) (θ2m2) (θrelmrel) θ1◦f1 θ2◦f2 θrel◦(f1 × f2)

Given a relational effect observation θ : M1 ⊗ M2 → W, we can define in full generality the
semantics of the relational judgment by the Equation 18. We introduce the generic monadic rules
in Figure 5, and similarly to the simple setting obtain the following soundness theorem.

Theorem 4 (Soundness of monadic rules). The relational rules in Figure 5 are sound with
respect to any lax relational effect observation θ , that is

Γr ⊢ c1 {w1} ∼ c2 {w2} | wrel ⇒ ∀θ , Γr ⊨θ c1 {w1} ∼ c2 {w2} | wrel

3.6 Relational Specification Monad Transformers
Having a category of relational specification monads and relative monad morphisms between
them, we define a relational specification monad transformer to be a pointed endofunctor on this
category [Lüth and Ghani 2002]. Under mild assumptions, the usual state and exception transformer
lifts to this setting, yielding in each case both a left-variant and a right-variant applying either
to the left type A1 or right one A2 of a relational specification monad W(A1,A2). Since the two
variants are symmetric, we only detail the left ones.

Adding state. The usual state monad transformer maps a monadM to the monad StT(M)A =
S → M (A × S). The left relational state monad transformer StTrel maps a relational specifica-
tion monadW (A1,A2) = (W1A1,W2A2, λw1w2.Wrel(A1,A2)w1w2) to the relational specification
monad with carrier

StTrel(W)(A1,A2) = (StT(W1)A1, W2A2, λw1w2. (s1 : S1) →Wrel(A1 × S1,A2) (w1 s1)w2)
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The monadic operations on StTrel(W)1 are given by the usual state transformer. The added data
resides in the ret and bind operations responsible for the relational part:

let ret
StT(W)
rel (a1,a2) : (s1: S1)→Wrel (A1× S1,A2) (retStT (W )1 (a1,s1)) (retW2 a2) = λs1. retWrel ((a1,s1), a2)

let bind
StT(W)
rel (m1 : StT(W)1 A1) (m2 : W2 A2) (mrel : StT(W)rel (A1,A2) m1 m2)

(f1 : A1→ StT(W)1 B1) (f2 : A2→W2 B2)
(frel : (a1,a2):A1×A2→ StT(W)rel (B1, B2) (f1 a1) (f2 a2))
: StT(W)rel (B1,B2) (bindStT(W)1 m1 f1) (bindW2 m2 f2) =

λs1. bindWrel (m1 s1) m2 (mrel s1) (λ (a1,s1'). f1 a1 s1') f2 (λ ((a1,s1'), a2). frel (a1,a2) s1')

Adding exceptions. In a similar flavor, the exception monad transformer ExcT mapping a
monad M to ExcT(M)A = M(A + E1) gives raise to the carrier its relational specification monad
counterpart ExcTrel(W)(A1,A2) = (ExcT(W1)A1,W2A2,Wrel(A1 + E1,A2)).
However, in order to define the bind operation we need to restrict our attention to relational

specification monad for which unary specification can be lifted to relational ones. This is provided
by the structure of two maps:

τ1 : w1 : W1(A1,1) →Wrel(A1,1)w1 (retW2 ()),
τ2 : w2 : W2(1,A2) →Wrel(1,A2) (retW1 ())w2.

such that pairing each of themwith identity provides amonadmorphism, that is (id,τ1) : W1(A,1) →
(w : W1(A,1))×Wrel(A,1)w (retW2 ()) respects the monadic equations. Any relational specification
monad induced by a simple one has a canonical such structure, taking τ1 and τ2 to be identity. The
state transformer and the exception transformer also preserve this structure.

Assuming that W is equipped with τ1,τ2, we define the return and bind operation on ExcT(Wrel)
as:

let retExcT(W)rel (a1,a2) : Wrel (A1 + E1, A2) (retExcT(W)1 a1) (retW2 a2) = retWrel (Inl a1, a2)

let bindExcT(W)rel (m1 : ExcT(W)1 A1) (m2 : W2 A2) (mrel : ExcT(W)rel (A1,A2) m1 m2)
(f1 : A1→ExcT(W)1 B1) (f2 : A2→W2 B2)
(frel : (a1,a2):A1×A2→ExcT(W)rel (B1, B2) (f1 a1) (f2 a2))
: ExcT(W)rel (B1,B2) (bindExcT(W)1 m1 f1) (bindW2 m2 f2) =

bindWrel m1 m2 mrel (λ ae1. match ae1 with | Inl a1→ f1 a1 | Inr e1→ retW1 (Inr e1)) f2
(λ ae1 a2 . match ae1 with

| Inl a1→ frel a1 a2
| Inr e1→ bindWrel (τ 2 (f2 a2)) (λ ((), b2) . retWrel (Inr e1, b2)))

Putting these monad transformer to practice, we can finally define the full relational specification
monad for exceptions validating the rules in Figure 6 by first lifting the simple relational WPure

rel

and applying the exception transformers on both left and right sides. Further, applications would
involve specifications relating state and exceptions with rollback state. The structure provided by
τ1,τ2 is a technical requirement, and we leave to further investigation the conceptual understanding
of this structure in the setting of relational specification monads.
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Γr ⊢ throw e1 {λφ1. φ1 (Inr e1)} ∼ retExc a2 {retW
Exc
2 a2} | λφ. φ (Inr e1, Inla2)

Γr ⊢ retExc a1 {retW
Exc
1 a1} ∼ throw e2 {λφ2. φ2 (Inr e2)} | λφ. φ (Inla1, Inr e2)

Γr ⊢ c1 {w1} ∼ c2 {w2} | wrel Γr ⊢ cerr1 {werr
1 } ∼ cerr2 {werr

2 } | werr
rel

Γr ⊢ catch c1 cerr1 {wcatchw1w
err
1 } ∼ catch c2 c

err
2 {wcatchw2w

err
2 } | wcatch

rel wrelw
er r

letwcatch (w :WExcA) (werr : E→WExcA) : W A =
λφ. w (λ ae. match ae with | Inl a→ retW

Exc
a φ | Inr e→werr e φ)

letwcatch
rel (w:WExc

rel (A1,A2)) (werr1 : E1→WExc1A1) (werr2 : E2→WExc2A2)
(werrrel : E1 × E2→WExc

rel (A1,A2)) :WExc
rel (A1,A2) =

λφ. w (λ (ae1, ae2). match ae1, ae2 with
| Inl a1, Inl a2→ retW

Exc
rel (a1,a2) φ

| Inr e1, Inl a2→werr1 e1 (λ ae1→φ (ae1, Inl a2))
| Inl a1, Inr e2→werr2 e2 (λ ae2→φ (Inl a1, ae2))
| Inr e1, Inr e2→werrrel (e1,e2) φ)

Fig. 6. Rules for exceptions

4 EMBEDDING RELATIONAL PROGRAM LOGICS
4.1 Relational Hoare Logic
As explained in the introduction, Benton [2004]’s seminal relational Hoare logic (RHL) is at the
origin of many works on relational program logics (see also §6). We present here a syntactic
embedding of RHL, showing that our simple framework can host usual program logics.
Concretely, we define a translation fromWhile-language to monadic programs using the Imp

monad, and show that the translation of all Benton [2004]’s rules (with the exception of two partial
equivalence specific ones) are admissible in our framework using the effect observation θPartrel .

The translation from direct-style imperative programs to monadic ones follows closely Moggi’s
[1989] interpretation of call-by-value in his monadic metalanguage. The Impmonad of §2.6 directly
interprets read and write, and while loops are translated using the following definable combinator
let while (guard: Imp B) (body : Imp 1 ) : Imp 1 =
do_while (bindImp guard (λ b . if b then bindImp body (λ () . retImp tt) else retImp ff))

The proofs of admissibility for the various rules exhibit a recurrent pattern.We first useweakening
to adapt the specification obtained through the translation to an appropriate shape for the rules of
our logic. Then we use the pure and generic monadic rules to decompose the programs on both
sides. Finally, effect-specific rules together with admissibility of the premises finish the proof.
An easy corollary of our proof is that Benton [2004]’s relational rules are valid for our partial

correctness interpretation. However, our interpretation treats non-termination in a slightly different
way from his semantics. Indeed, our partial correctness semantics relates two programs whenever
one of them diverges, whereas his requires both program to have the same divergence behaviour. A
main difference is that our semantics is more compositional and allows to compute a precise specifi-
cation by applying θPartrel to the parts and combining the results, while for Benton’s semantics this will
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not produce precise specifications. This makes additional rules sound with respect to our semantics,
allowing for instance to derive that ⊢ skip ∼ loop

{
λφ(si1, si2). ∀a1,a2, s f1 , s f2 .φ((a1, s f1 ), (a2, s f2 ))

}
(equivalent to ⊢ { ⊤ } skip ∼ loop { ⊤ } in pre-/postcondition form), although it is of course a
choice whether one wants a semantics that validates such rules or not. Another difference is that
Benton’s semantics assumes a classical logic, in which one can "decide" termination, while our
semantics easily works in a constructive logic. We leave as future work to investigate if Benton’s
semantics can be successfully expressed using a simple lax effect observation.

4.2 Relational Hoare Type Theory
Nanevski et al. [2013] introduce Relational Hoare Type Theory (RHTT) for the specific goal of
proving noninterference properties of programs. RHTT builds upon powerful but specific semantic
objects embedded in the type theory of Coq to support specifications relating two runs of a single
program. We explain here how we can reconstruct their model with a relational specification monad
and an effect observation. This connection between the two frameworks could help extending
RHTT to other effects, for instance exceptions.

A model of state and partiality. The effects supported by RHTT are manipulation of a
structured heap – a refined version of the simple state monad of §2.1 – and partiality. In order to
model these effects, a close variant of the following monad is used

MA = (p : heap→P) × (f : (r :≤p) → A→heap→P)×coherent(f )
where ≤p = {r : heap→P | ∀h, r h⇒p h} and the predicate coherent specifies that f is defined by
its value on singleton predicates consisting of only one heap. Using predicates enables the definition
of fixpoint operators, in the same fashion as we did in our interpretation of while loops for the Imp
effect in §2.6.

The relational specification used by Nanevski et al. [2013] is a variation on the simple relational
monad of stateful pre- and postconditions from §2.2 where the precondition only takes one input
heap corresponding to the fact only one program is considered at a time.

PPrel(A1,A2) = (heap → P) × (heap × heap → A1 ×A2 → heap × heap → P)
Taking the same computational monad M on both sides, that is M1 = M2 = M, we define the

following simple relational effect observation θ : M,M → PPrel
θ (c1, c2) = (λh0. π1 c1 h0 ∧ π1 c2 h0,

λ(h1,h2)(a1,a2)(h′1,h′2). π1 c1 h1 ∧ π2c1h1a1h′1 ∧ π1 c2 h2 ∧ π2c2h2a2h′2)

5 PRODUCT PROGRAMS
The product programs methodology is an approach to prove relational properties that can serve as
an alternative to relational program logics [Barthe et al. 2011, 2016]. In this section we show how
to understand this methodology from the point of view of our framework.

Product programs reduce the problem of verifying relational properties on two programs c1 and
c2 to the problem of verifying properties on a single product program c capturing at the same time
the behaviors of c1 and c2. To prove a relational propertyw on programs c1 and c2, the methodology
tells us to proceed as follows. First, we construct a product program c of c1 and c2. Then, by standard
methods, we prove that the program c satisfies the propertyw seen as a non-relational property.
Finally, from a general argument of soundness, we can conclude that φ must hold on c1 and c2. In
what follows, we show how these three steps would be understood in our framework if we wanted
to prove ⊨θ c1 ∼ c2 {w }.

First of all, we need a notion of product program. In the setting of monadic programs, we capture
a product program of c1 : M1A1 and c2 : M2A2 as a program c : P(A1,A2), where P is a relative
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monad over (A1,A2) 7→ A1 ×A2 (see §3.4). We can think of c : P(A1,A2) as a single computation
that is computing both a value of type A1 and a value of type A2 at the same time. We expect P to
support the effects from both M1 and M2, mixing them in a controlled way. As a concrete example,
we can define products of stateful programs – M1A1 = StS1A1 and M2A2 = StS2A2 – inhabiting
the relative monad PSt(A1,A2) = StS1×S2 (A1 ×A2). To complete the definition of product programs,
we also need to explain when a concrete product program c : P(A1,A2) is capturing the behavior
of c1 : M1A1 and c2 : M2A2. We propose to capture this in a relation c1×c2{c that exhibits the
connection between pairs of computations and their potential product programs. This relation
should be closed under the monadic construction of the effects, that is

a1 : A1 a2 : A2

retM1 a1×retM2 a2{retP (a1,a2)
m1×m2{mrel ∀a1 a2, f1 a1×f2 a2{ frel (a1,a2)

bindM1 m1 f1×bindM2 m2 f2{bindP mrel frel
but also spells out how particular effects that P supports correspond to the effects from M1 and M2.
Second, to fully reproduce the product program methodology, we need to explain how spec-

ifications relate to product programs. We can use simple relational specification monads (§2.2)
for specifying the properties on products programs. The lifting of unary specification monads
described there extends to unary effect observations, providing an important source of examples
of effect observations for product programs. For example, going back to the example of state, we
can specify product programs in P(A1,A2) = StS1×S2 (A1 ×A2) with specifications provided by the
simple relational specification monad WSt

rel , and the effect observation ζ : P → WSt
rel obtained by

lifting the unary effect observation θSt : St→WSt of the introduction, resulting in
ζ (f : S1 × S2 → (A1 ×A2) × (S1 × S2)) = λφ (s1, s2) . φ σ (f (s1, s2))

where σ : (A1×A2)×(S1×S2)→(A1×S1)×(A2×S2) simply swaps the arguments. Then, the concrete
proof verifying the propertyw in this step consists of proving ζ (c) ≤ w as usual.
Finally, the third step simply relies on proving and then applying a soundness theorem for

product programs. In the case of stateful computations, this theorem has the following form:

Theorem 5 (Soundness of product programs for state). If c1×c2{c and ζ (c) ≤ w , then
⊨θ St

rel
c1 ∼ c2 {w }.

In this case, the soundness theorem is proved by analyzing the relation c1×c2{c and showing in
each case that our choice of θStrel and ζ agree.

The interpretation of product programs as computations in a relative monad accommodate well
the product program methodology. In particular we expect that algebraic presentations of these
relative monads used for product programs could shed light on the choice of primitive rules in
relational program logics, in a Curry-Howard fashion. We leave this as a stimulating future work.

6 RELATEDWORK
Many different relational verification tools have been proposed, making different tradeoffs, espe-
cially between automation and expressiveness. This section surveys this prior work, starting with
the techniques that are closest related to ours.

Relational program logics. Relational program logics are very expressive and provide a formal
foundation for various tools, which have found practical applications in many domains. Benton
[2004] introduced Relational Hoare Logic (RHL) as a way to prove the correctness of various static
analysis and optimizing transformations for imperative programs. Yang [2007] extended this to the
relational verification of pointer-manipulating programs. Barthe et al.’s [2009] introduced pRHL as
an extension of RHL to discrete probabilities and showed that pRHL can provide a solid foundation
for cryptographic proofs, which inspired further research in this area [Barthe et al. 2014; Basin et al.
2017; Petcher and Morrisett 2015; Unruh 2019] and lead to the creation of semi-automated tools such
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as EasyCrypt [Barthe et al. 2013a]. Barthe et al. [2013b] also applied variants of pRHL to differential
privacy, which led to the discovery of a strong connection [Barthe et al. 2017] between coupling
proofs in probability theory and relational program logic proofs, which are in turn connected to
product programs even without probabilities [Barthe et al. 2016].

Carbin et al. [2012] introduced a program logic for proving acceptability properties of approximate
program transformations. Nanevski et al. [2013] proposed Relational Hoare Type Theory (RHTT),
a verification system for proving rich information flow and access control policies about pointer-
manipulating programs in dependent type theory. Banerjee et al. [2016] addressed similar problems
using a relational program logic with framing and hypotheses. Sousa and Dillig [2016] devised
Cartesian Hoare Logic for verifying k-safety hyperproperties and implement it in the Descartes
tool. Finally, Aguirre et al. [2017] introduced Relational Higher-Order Logic (RHOL) as a way of
proving relational properties of pure programs in a simply typed λ-calculus with inductive types
and recursive definitions. RHOL was later separately extended to two different monadic effects:
cost [Radicek et al. 2018] and continuous probabilities with conditioning [Sato et al. 2019].
Each of these logics is specific to a particular combination of side-effects that is fixed by the

programming language and verification framework. We instead introduce a general framework
for defining program logics for arbitrary monadic effects. We show that logics such as RHL and
HTT can be reconstructed within our framework, and we expect this to be the case for many of
the logics above. It would also be interesting to investigate whether RHOL can also be extended to
arbitrary monads, but even properly representing arbitrary monads, which is completely straight-
forward in dependent type theory, is not obvious in less powerful systems such as HOL. In this
respect, Lochbihler [2018] recently built a library for effect polymorphic definitions and proofs in
Isabelle/HOL, based on value-monomorphic monads and relators.

Type systems and static analysis tools. Various type systems and static analysis tools
have been proposed for statically checking relational properties in a sound, automatic, but over-
approximate way. The type systems for information flow control generally trade off precision for
good automation [Sabelfeld and Myers 2003]. Various specialized type systems and static analysis
tools have also been proposed for checking differential privacy [Barthe et al. 2015b; Gaboardi et al.
2013; Gavazzo 2018; Winograd-Cort et al. 2017; Zhang and Kifer 2017; Zhang et al. 2019] or doing
relational cost analysis [Çiçek et al. 2017; Qu et al. 2019].

Product program constructions. Product program constructions and self-composition are
techniques aimed at reducing the verification of k-safety hyperproperties [Clarkson and Schneider
2010] to the verification of traditional (unary) safety proprieties of a product program that emulates
the behavior of multiple input programs. Multiple such constructions have been proposed [Barthe
et al. 2016] targeted for instance at secure IFC [Barthe et al. 2011; Naumann 2006; Terauchi and
Aiken 2005; Yasuoka and Terauchi 2014], program equivalence for compiler validation [Zaks and
Pnueli 2008], equivalence checking and computing semantic differences [Lahiri et al. 2012], program
approximation [He et al. 2018]. Sousa and Dillig’s [2016] Descartes tool for k-safety properties
also creates k copies of the program, but uses lockstep reasoning to improve performance by
more tightly coupling the key invariants across the program copies. Antonopoulos et al. [2017]
develop a tool that obtains better scalability by using a new decomposition of programs instead
of using self-composition for k-safety problems. Eilers et al. [2018] propose a modular product
program construction that permits hyperproperties in procedure specifications. Recently, Farzan
and Vandikas [2019] propose an automated verification technique for hypersafety properties by
constructing a proof for a small representative set of runs of the product program.

Logical relations and bisimulations. Many semantic techniques have been proposed for
reasoning about relational properties such as observational equivalence, including techniques based
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on binary logical relations [Ahmed et al. 2009; Benton et al. 2009, 2013, 2014; Dreyer et al. 2010,
2011, 2012; Mitchell 1986], bisimulations [Dal Lago et al. 2017; Koutavas and Wand 2006; Sangiorgi
et al. 2011; Sumii 2009], and combinations thereof [Hur et al. 2012, 2014]. While these powerful
techniques are often not directly automated, they can still be used for verification [Timany and
Birkedal 2019] and for providing semantic correctness proofs for relational program logics [Dreyer
et al. 2010, 2011] and other verification tools [Benton et al. 2016; Gavazzo 2018].

Other program equivalence techniques. Beyond the ones already mentioned above, many
other techniques targeted at program equivalence have been proposed; we briefly review several
recent works: Benton et al. [2009] do manual proofs of correctness of compiler optimizations using
partial equivalence relations. Kundu et al. [2009] do automatic translation validation of compiler
optimizations by checking equivalence of partially specified programs that can represent multiple
concrete programs. Godlin and Strichman [2010] propose proof rules for proving the equivalence of
recursive procedures. Lucanu and Rusu [2015] and Ştefan Ciobâcă et al. [2016] generalize this to a
set of co-inductive equivalence proof rules that are language-independent. Wang et al. [2018] verify
equivalence between a pair of programs that operate over databases with different schemas using
bisimulation invariants over relational algebras with updates. Finally, automatically checking the
equivalence of processes in a process calculus is an important building block for security protocol
analysis [Blanchet et al. 2008; Chadha et al. 2016].

Reasoning about effectful semantics. Relating monadic expressions is natural and very
wide-spread in proof assistants like Coq, Isabelle [Lochbihler 2018], or F⋆[Grimm et al. 2018], with
various degrees of automation. Boulier et al. [2017]; Casinghino et al. [2014]; Pédrot and Tabareau
[2018] extend dependent type theory with a few selected primitive effects: partiality, exceptions,
reader. The resulting theory allows to some extent to reason directly on pairs of effectful programs,
without resorting to a monadic encoding. In another line of work, Barthe et al. [2019] proposed to
encode the semantics of imperative programs and their relational properties in an extension of
first-order logic that can be automated by Vampire.

7 CONCLUSION AND FUTUREWORK
This paper introduced a principled framework for building relational program logics. We extended
the work of Maillard et al. [2019] to the relational setting, and solved the additional challenges of
correlating two independent computations with a relational specification, by we leveraging relative
monads and introducing a novel notion of relative monad morphism. Now it’s time to put this
framework to the test and discover whether it can be in part automated, whether it can be scaled
to realistic relational verification tasks, and whether it can deal with more complex effects.

In particular, it would be interesting to see whether our generic framework of §3 can support other
control effects, such as breaking out of loops and continuations. These are, however, challenging
to accommodate, even in our unary setting [Maillard et al. 2019]. Another interesting direction
is providing a more precise treatment of nontermination. While the simple framework of §2 can
already handle nontermination by choosing globally between total and partial correctness with
an effect observation, the generic framework of §3 could allow to explicitly observe whether
each computation terminates or not inside the relational specifications. This could allow one
to choose at the specification level between partial or total correctness and between Benton
[2004]’s or our semantics for RHL, or to define termination-sensitive noninterference, or that one
computation terminates whenever the other does. Another interesting research direction, opened
by the correspondence with product programs, would be to develop techniques to select which
proof rules should be considered as primitive, using proof-theoretical tools like focusing [Zeilberger
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2009], and also to investigate at the categorical level notions of presentations of relative monads, in
connection with the theory of monads with arities [Berger et al. 2012].
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