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ABSTRACT
Asteroid (514107) Ka‘epaoka‘awela is the first example of an object in the 1/1 mean motion
resonance with Jupiter with retrograde motion around the Sun. Its orbit was shown to be
stable over the age of the Solar system, which implies that it must have been captured
from another star when the Sun was still in its birth cluster. Ka‘epaoka‘awela orbit is also
located at the peak of the capture probability in the coorbital resonance. Identifying the
periodic orbits that Ka‘epaoka‘awela and similar asteroids followed during their evolution is
an important step towards precisely understanding their capture mechanism. Here, we find the
families of periodic orbits in the two-dimensional retrograde coorbital problem and analyse
their stability and bifurcations into three-dimensional periodic orbits. Our results explain the
radical differences observed in 2D and 3D coorbital capture simulations. In particular, we
find that analytical and numerical results obtained for planar motion are not always valid at
infinitesimal deviations from the plane.

Key words: celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

The Solar system contains only one known asteroid in coorbital
resonance with a planet, Jupiter, that moves with a retrograde motion
around the Sun: asteroid (514107) Ka‘epaoka‘awela (Morais &
Namouni 2017; Wiegert, Connors & Veillet 2017). Large-scale
numerical integrations of its past orbital evolution, including per-
turbations from the four giant planets and the Galactic tide, have
shown that it has been at its current location since the end of planet
formation 4.5 Gyr in the past. Since a retrograde orbit could not have
formed from the material of the Sun’s protoplanetary disc at that
early epoch, Ka‘epaoka‘awela must have belonged to a different
star system and was captured by our own when the Sun was still
in its birth cluster (Namouni & Morais 2018b). Ka‘epaoka‘awela is
thus the first known example of an interstellar long-term resident in
the Solar system. Understanding exactly how it reached its current
location is particularly important.

Coorbital retrograde resonance has been studied in the framework
of the restricted three-body problem. Several stable planar and
three-dimensional coorbital configurations or modes are known to
exist (Morais & Namouni 2013, 2016). Simulations of retrograde
asteroids radially and adiabatically drifting towards Jupiter’s orbit
showed that when retrograde motion is almost coplanar, capture
occurs in the coorbital mode that corresponds to Ka‘epaoka‘awela’s
current orbit (Morais & Namouni 2016; Namouni & Morais 2018a).

� E-mail: helena.morais@unesp.br

If motion is exactly coplanar, capture occurs in a distinct coorbital
mode (Morais & Namouni 2016; Namouni & Morais 2018a). In
order to understand such differences and characterize the path that
Ka‘epaoka‘awela followed in its capture by Jupiter, we aim to
identify the periodic orbits (POs) of retrograde coorbital motion
in the three-body problem.

The importance of POs in the study of a dynamical system
has been recognized since the seminal work of Poincaré. Stable
POs are surrounded by islands of regular (quasi-periodic) motion,
whereas chaos appears at the location of unstable POs (Had-
jedemetriou 2006). In the N-body problem, POs are the solutions
such that the relative distances between the bodies repeat over
a period T (Henon 1974). They form continuous families and
may be classified as (linearly) stable or unstable (Henon 1974;
Hadjedemetriou 2006). In the circular restricted three-body problem
(CR3BP) with a dominant central mass, these families may be
resonant or non-resonant. The former correspond to commensura-
bilities between the orbital frequencies, whereas the latter corre-
spond to circular solutions of the unperturbed (two-body) problem
(Hadjedemetriou 2006).

In this article, we report on our search of POs in the CR3BP with
a mass ratio μ = 10−3. In Section 2, we explain how we compute the
families of POs and study their stability. In Section 3, we describe
the families that exist in the 2D configuration and the bifurcations
from planar families to the 3D configuration. In Section 4, we
discuss how these results explain the differences observed in the
2D and 3D capture simulations. The conclusions of this study are
presented in Section 5.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/3/3799/5587006 by C
N

R
S - ISTO

 user on 22 M
ay 2023

http://orcid.org/0000-0001-5333-2736
http://orcid.org/0000-0002-0246-3303
mailto:helena.morais@rc.unesp.br


3800 M. H. M. Morais and F. Namouni

2 C O M P U TATION O F PERIODIC O RBITS

From the periodicity theorem of Roy & Ovenden (1955), symmetric
periodic orbits (SPOs) in the N-body problem must fullfil two mirror
configurations. In the CR3BP the possible mirror configurations are:
(a) perpendicular intersection of the (x, z) plane; (b) perpendicular
intersection of the x-axis. The SPOs may be classified according
to the combinations of mirror configurations: (a)–(a); (b)–(b); (a)–
(b) (Zagouras & Markellos 1977). Planar SPOs intersect the x-axis
perpendicularly at times T/2 and T (Hadjedemetriou 2006).

Morais & Namouni (2013) showed that planar POs associated
with the retrograde 1/1 resonance are symmetric and have multiplic-
ity 2, i.e. they intersect the surface of section y = 0, perpendicularly
(ẋ = 0) and with the same sign for ẏ, at t = T/2 and t = T. We use
the following standard algorithm to find planar POs:

(i) A guess initial condition (x0, 0, 0, ẏ0) is followed until the
second intersection with the surface of section occurs within |y| <

ε0 at time T.
(ii) If |ẋ| < ε then the initial conditions correspond to a PO with

period T. A new search is started varying x0 or ẏ0. Otherwise, a
differential correction is applied to x0 or ẏ0 and the procedure is
repeated.

The variational equations have the general solution ¯ξ (t) =
�(t)ξ̄ (0) where ξ̄ (t) is the phase-space displacement vector at
time t and �(t) is the six-dimensional state transition matrix. The
eigenvalues of �(T) indicate if the PO with period T is linearly
stable or unstable. Due to the symplectic property of the equations
of motion these eigenvalues appear as reciprocal pairs λiλ

∗
i = 1 (i =

1, 2, 3) and they may be real or complex conjugate. The periodicity
condition implies that one pair of eigenvalues is λ1 = λ∗

1 = 1. The
PO is linearly stable if the remaining pairs of eigenvalues are
complex conjugate on the unit circle and unstable otherwise with
instability increasing with the largest eigenvalue’s absolute value
(Hadjedemetriou 2006).

For planar motion, the state transition matrix, �2(t), is four-
dimensional. The horizontal stability index is k2 = λ2 + λ∗

2, where
λ2 and λ∗

2 are the non-trivial eigenvalues of �2(T). Stable planar
POs have −2 < k2 < 2. Change of stability occurs when |k2| = 2
(or λ2 = λ∗

2 = ±1), which is often associated with bifurcation of a
new family of POs.

The variational equations for displacements out of the plane and
in the plane of motion are decoupled when z = ż = 0 (Hénon
1973) hence the evolution of ξ̄z(t) = (dz, dż) is described by a
two-dimensional state transition matrix, �3(t). The vertical stability
index is k3 = λ3 + λ∗

3 where λ3 and λ∗
3 are the eigenvalues of �3(T).

Motion around stable 2D POs is maintained when there are small
deviations out of the plane only if the vertical stability index −2 < k3

< 2. When this stability index reaches the critical value 2 (vertical
critical orbit or vco) a bifurcation into a new family of 3D POs
with the same multiplicity may occur (Hénon 1973; Ichtiaroglou &
Michalodimitrakis 1980).

To find 3D SPOs that bifurcate from vcos we follow a procedure
similar to Zagouras & Markellos (1977):

(i) Initial conditions corresponding to mirror configurations: (a):
(x0, 0, z0, 0, ẏ0, 0); or (b): (x0, 0, 0, 0, ẏ0, ż0); are followed until the
second intersection with the surface of section occurs within |y| <

ε0 at time T.
(ii) If |ẋ| < ε and |ż| < ε (a) or |ẋ| < ε and |z| < ε (b) then

the initial conditions correspond to a PO with period T and a new
search is started. Otherwise, a differential correction is applied to

two components of the initial condition vector and the procedure is
repeated.

For 3D motion, the pairs of eigenvalues λi, λ
∗
i (i = 2, 3) of �(T)

are the roots of the characteristic polynomial λ4 + αλ3 + βλ2 +
αλ + 1 with α = 2 − Tr(�(T)), 2β = α2 + 2 − Tr(�(T)2) (Bray &
Goudas 1967). They are complex conjugate on the unit circle (linear
stability) if δ = (α2 − 4(β − 2)) > 0 and|p| = |(α + √

δ)|/2 < 2,
|q| = |(α − √

δ)|/2 < 2 (Zagouras & Markellos 1977). Change of
stability with possible bifurcation into a new family of POs occurs
when pairs of eigenvalues coallesce on the real axis while complex
instability occurs when they collaesce on the unit circle and then
move away from it (Heggie 1985).

The numerical integration of the CR3BP equations of motion
and associated variational equations were done using the Bulirsch–
Stoer algorithm with per step accuracy 10−13. Distance and time
were scaled by Jupiter’s semimajor axis and orbital period. The
computations for an individual test particle were stopped when the
distance to a massive body was within its physical radius (taken
equal to the Sun’s and Jupiter’s radius). They were also stopped
when the heliocentric distance exceeded 3 times Jupiter’s semimajor
axis.

The thresholds for deciding if an orbit is periodic were chosen so
that the differential correction procedure converges for each specific
type of PO. We used ε0 = 10−11 and ε = 10−10 to find planar and 3D
POs. In general, lower (sometimes unfeasible) values are necessary
to follow unstable families, as expected due to the exponential
divergence of solutions close to unstable POs. To monitor the POs
computations, we checked that |�(T)|= 1 with at least 11 significant
digits. Stability and bifurcation points were further checked by
explicitly computing the eigenvalues of �(T). Unstable critical
motion (near the transition to stability) was confirmed by computing
the chaos indicator MEGNO (Cincotta & Giordano 2006).

3 TH E 2 D FA M I L I E S A N D B I F U R C AT I O N S
I N TO 3 D

Morais & Namouni (2013) showed that the relevant resonant
argument for planar retrograde coorbitals in the CR3BP is φ∗ = λ

− λp − 2ω where λ and ω are the test particle’s mean longitude and
argument of pericentre, respectively, and λp is the mean longitude
of the planet. There are three types of retrograde coorbitals: mode
1 which corresponds to libration of φ∗ around 0 and occurs at
a wide range of eccentricities; modes 2 and 3 which correspond
to libration of φ∗ around 180◦ and occur, respectively, at small
eccentricity (mode 3) and large eccentricity (mode 2). These modes
are retrieved in a 2D model for retrograde coorbital resonance based
on the averaged Hamiltonian (Huang et al. 2018).

3.1 Planar SPOs

We show how the families of SPOs associated with mode 1 (Fig. 1)
and modes 2 and 3 (Fig. 2) evolve with the Jacobi constant, C.

Mode 1 resonant POs are horizontally stable when C > −1.2256
and vertically stable when C > −1.0507 (a < 1.0380, e > 0.1125).
The family ends by collision with the star when e ≈ 1.

Inner nearly circular non-resonant POs are stable if C > −0.8429
(a < 0.9265). At C = −0.9562 (a = 0.9801) there is a bifurcation
into a stable inner resonant PO. This family is stable up to C =
−0.8643 (a = 0.9864, e = 0.3208: inner mode 3) and stable again
from C = −0.3349 (a = 0.9976, e = 0.7411: mode 2). Therefore,
mode 2 and inner mode 3 resonant POs form a single family which
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Periodic orbits of 1/1 retrograde resonance 3801

Figure 1. Family of SPOs corresponding to retrograde mode 1 with respect to the Jacobi constant, C. Top panel: 2D (black) and 3D (grey) stability indexes.
Low panel: semimajor axis a and eccentricity e [horizontally stable (red) and unstable (orange)].

is always vertically stable. The family ends by collision with the
star when e ≈ 1.

Outer nearly circular non-resonant POs are vertically unstable
when −1.0395 > C > −1.1499 (1.0218 < a < 1.0804). At C =
−1.0387 (a = 1.0215) there is a bifurcation into a pair of stable
(outer mode 3) and unstable POs. Outer mode 3 resonant POs are
stable up to C = −0.9553 (a = 1.0151, e = 0.2636).

3.2 Bifurcations into 3D

Morais & Namouni (2013) and Morais & Namouni (2016) showed
that in the 3D coorbital problem the relevant resonant angles are
φ = λ − λp and φ∗ = λ − λp − 2ω. The 3D retrograde coorbital
modes correspond to: φ librating around 180◦ (mode 4); φ∗ librating
around 0 (mode 1) or 180◦ (modes 2 and 3).

Planar retrograde modes 1 and 2 are horizontally and vertically
stable when C > −1.0507 and C > −0.3349, respectively, hence
the associated POs are surrounded by quasi-POs in the 3D problem.
In particular, quasi-periodic mode 1 and mode 2 orbits may extend
down to inclinations i = 90◦ and i = 120◦, respectively (Morais &
Namouni 2016).

The vertical critical orbits (vcos) occur: on mode 1 family at C =
−1.0507 (Fig. 1); on the outer circular family at C = −1.1499 and
C = −1.0395 (Fig. 2). At the vcos there are bifurcations into new
families of 3D POs which we show in Fig. 3. The mode 2, mode 3

outer and inner families have no vcos as the vertical stability index,
k3 < 2.

At C = −1.1499 there is a bifurcation of a nearly circular 2D
outer PO into a stable 3D resonant PO on configuration (b) which
corresponds to mode 4 (libration centre φ = 180◦). This family
reaches critical stability at C = −1.0321 when i ≈ 173◦. Fig. 4
shows a PO at this point on the family. Initially, φ = 180◦ with
ω circulating fast similarly to mode 4 stable branch (Fig. 4: left).
The peaks in a and e occur twice per period, at the encounters
with the planet. After t = 8 × 103, chaotic diffusion is obvious
(MEGNO increases linearly with time) and from t = 1.8 × 104

there are transitions between libration around ω = 90◦, 270◦ at
small e when φ = 180◦ and circulation around the Kozai centres
ω = 0, 180◦ with eccentricity oscillations up to e = 0.14 (Fig. 4:
right) when φ circulates. The Kozai circles around ω = 0, 180◦ raise
the eccentricity and shift the libration centre to φ∗ = 0.

At C = −1.0507 there is a bifurcation of planar mode 1 into a 3D
PO on configuration (a). This family is unstable but nearly critical.
It has a v-shape with lower / upper branches corresponding the
intersection with the surface of section at the apocentric / pericentric
encounters (Fig. 6: left). There is a bifurcation at C = −1.0321
coinciding with the bifurcation on the mode 4 family. Fig. 5 shows
a PO at this bifurcation point. Initially, φ = 180◦ with ω circulating
fast (Fig. 5: left). After t = 7 × 103, chaotic diffusion is again
obvious (Fig. 5: right) with the same qualitative behaviour observed
in Fig. 4.
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3802 M. H. M. Morais and F. Namouni

Figure 2. Family of SPOs corresponding to the outer and inner circular families and retrograde modes 2 and 3 with respect to the Jacobi constant, C. Top
panel: 2D (black) and 3D (grey) stability indexes. Low panel: semimajor axis a and eccentricity e [horizontally stable (red) and unstable (orange)].

A shift of t = 0.25 between the time series in Figs 4 and 5 (left)
causes overlap of orbital elements. Further inspection shows that
they correspond to the same PO of symmetry type (a)–(b) at different
intersections with the surface of section (Fig. 6: right). Hence, the 3D
families bifurcating from the vcos at C =−1.1499 and C =−1.0507
join at C = −1.0321 generating a single unstable circular family
which could be continued to i ≈ 8◦ and a = 0.999. Since instability
on this family increases sharply with decreasing inclination the
differential correction scheme stops converging preventing further
continuation. We suspect that termination occurs at the Lagrangian
point L3 when i = 0 which is further supported by the shape of the
last computed PO in the rotating frame.

At C =−1.0395, near the end of the stable branch of the 2D nearly
circular outer family, there is a bifurcation into an unstable 3D PO
on configuration (a). This 3D family corresponds to an unstable
fixed point of the coorbital resonance Hamiltonian (φ = 0 and φ� =
180◦). It could be continued to i ≈ 88◦, e ≈ 0.80, and a = 1.001 at
which point the family is approaching critical stability. However, the
long integration of the initial conditions that approximate the last
computed PO shows that the eccentricity increases sharply towards
unity around t = 5 × 103 thus leading to collision with the star. The
proximity of the collision singularity prevents further continuation
of the family.

4 C O O R B I TA L C A P T U R E I N 2 D A N D 3 D
CASES

In the planar problem, outer orbits slowly approaching the planet
follow the nearly circular non-resonant family which bifurcates into
a resonant SPO at C = −1.0387 when a = 1.0215 (outer mode 3).
Capture into outer mode 3 occurs with probability 1 in agreement
with Namouni & Morais (2018a) but the family becomes unstable
at C = −0.9553 when a = 1.0151 and e = 0.2636.

However, Fig. 3 shows that the behaviour in the (real) 3D problem
at infinitesimal deviations from the plane is radically different. The
nearly circular non-resonant family is vertically unstable between
−1.0395 > C > −1.1499. The vco at C = −1.1499 (a = 1.0804)
bifurcates into a resonant mode 4 stable 3D family. Hence, outer
circular orbits slowly approaching the planet still follow initially the
non-resonant family which bifurcates into the 3D mode 4 family.
The inclination then decreases and at i ≈ 173◦ mode 4 family
becomes unstable. At this point, mode 4 family connects with the
critical 3D family which bifurcates from the vco at C = −1.0507
(a = 1.0380, e = 0.1125) on the stable branch of the mode 1
planar family. Chaotic transition between the Kozai centres located
at ω = 90◦, 270◦ and the separatrices around ω = 0, 180◦ are
accompanied by eccentricity oscillations up to 0.14 and a shift of
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Periodic orbits of 1/1 retrograde resonance 3803

Figure 3. Families of 3D POs bifurcating from the vcos at C = −1.1499 and C = −1.0395 on the outer nearly circular family and C = −1.0507 on the planar
mode 1 family. These vcos are labelled 1, 2, and 3, respectively. Top panel: inclination i. Mid-panel: eccentricity e. Low panel: semimajor axis a. The families
are coloured blue (grey) when stable (unstable). The 2D stable families from which the 3D families bifurcate are coloured red.

the libration centre towards φ∗ = 0. Exit of this chaotic region due
to a slow decrease in semimajor axis allows permanent capture into
a quasi-periodic mode 1 orbit, in agreement with the simulations by
Morais & Namouni (2016), Namouni & Morais (2018a).

Inner circular orbits slowly approaching the planet near the plane
become horizontally unstable at C = −0.8429 when a = 0.9265.
Therefore, the inner mode 3 resonant family cannot be reached
(Morais & Namouni 2016). The resonant family starts at C =
−0.9562 (a = 0.9801: inner mode 3), becomes horizontally unstable

at C = −0.8643 (a = 0.9864, e = 0.3208) and is stable again when
C > −0.3349 (a > 0.9976, e > 0.7411: mode 2). There are no vcos
on the inner families.

5 C O N C L U S I O N

We showed how the families of POs for the planar retrograde
coorbital problem and their bifurcations into 3D explain the radical
differences seen in our capture simulations, namely why 2D orbits
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3804 M. H. M. Morais and F. Namouni

Figure 4. Evolution of PO at the critical point (C = −1.0321) on the 3D mode 4 family. From top to bottom panels: semimajor axis/MEGNO; eccentricity,
cosine of inclination, argument of pericentre ω (black) and longitude of ascending node � (grey); resonant angles φ (black) and φ∗ (grey).

Figure 5. Evolution of PO at the critical point (C = −1.0321) on the 3D family which bifurcates from the vco on the planar mode 1 family. Same panels as
Fig. 4.

are captured into mode 3 while 3D orbits are captured into mode
1 (Morais & Namouni 2016). In the planar problem, outer circular
orbits slowly drifting towards the planet follow the non-resonant
family which bifurcates into a resonant mode 3 family at C =
−1.0387 (a = 1.0215). This family becomes unstable at C =
−0.9553 (a = 1.0151, e = 0.2636). However, in the (real) 3D
problem, mode 3 orbits are never reached. The nearly circular 2D
family becomes vertically unstable (vco) at C = −1.1499 when a =

1.0804 where a bifurcation into a 3D resonant family corresponding
to mode 4 (φ = 180◦) occurs. This family becomes unstable when
i ≈ 173◦ as it connects with a 3D family bifurcating from the
vco on mode 1 (φ∗ = 0). Chaotic transitions between the libration
centres φ = 180◦ and φ∗ = 0 are associated with motion in the
vicinity of Kozai separatrices. As the semimajor axis decreases due
to dissipation there is capture on a mode 1 inclined quasi-PO, similar
to that of Ka‘epaoka‘awela.
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Periodic orbits of 1/1 retrograde resonance 3805

Figure 6. POs in rotating frame: (left) mode 1 vco has encounters and intersections with the surface of section at pericentre or apocentre; (right) 3D bifurcation
at C = −1.0321 (mirror configurations a and b are shifted by t = 0.25).

Our results explain why mode 1 is the likely end state for objects
on retrograde outer circular orbits slowly drifting towards the planet.
If the planet migrated inwards, retrograde inner nearly circular orbits
become horizontally unstable at C = −0.8427 when a = 0.9265
hence capture into inner mode 3 is not possible. However, eccentric
inner retrograde orbits could be captured directly into mode 2 if
the relative semimajor axis evolved in discrete steps. Similarly,
eccentric outer orbits may be captured directly into mode 1. This
could occur e.g. if the semimajor axis evolves stochastically due to
planetary close approaches (Carusi, Valsecchi & Greenberg 1990).
In the early Solar system the latter mechanism (outer eccentric
capture) is more likely to occur than the former (inner eccentric
capture) and this could explain how Ka‘epaoka‘awela arrived at the
current location.

Analytical and numerical results obtained in 2D models are often
thought to be valid when the motion is almost coplanar. Here,
we showed that such extrapolation is not valid for the retrograde
coorbital problem. This is due to the vertical instability of the nearly
circular 2D family of POs. A similar mechanism has been reported
for the 2/1 and 3/1 prograde resonances in the planetary (non-
restricted) three-body problem (Voyatzis, Antoniadou & Tsiganis
2014).

Searches for 3D POs typically show that families end by collision
with one of the massive bodies or otherwise exist over the entire
inclination range 0 ≤ i ≤ 180◦ (Kotoulas & Voyatzis 2005;
Antoniadou & Libert 2019). Here, we computed the families that
originate at the vcos of the planar retrograde coorbital problem.
The family corresponding to an unstable fixed point of the coorbital
Hamiltonian (φ = 0, φ� = 180◦) could be continued until it becomes
a nearly polar orbit in the vicinity of an instability that leads to
collision with the star. The unstable doubly symmetric circular
family corresponding to the libration centre φ = 180◦ seems to
end at the collinear Lagrangian point L3. However, as this family
becomes increasingly unstable as the inclination approaches zero
its exact termination could not be ascertained.
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