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Abstract— This paper presents a comparison between
Mixed strategist dynamics (MSD) and a generalized
evolutionary game dynamics known as Intersection Es-
cort Evolutionary Dynamics (IEED). Through illustrative
examples, it will be shown that IEED exhibits a compu-
tational advantage over MSD especially for high order
and non-homogeneous constraints for the variables of the
problem under study.

I. INTRODUCTION

Evolutionary game theory (EGT) models interactions
between portions of a population which try to maximize
their wellness. Wellness is considered as the payoff ob-
tained for using a certain combination of strategies. Por-
tions of the population with strategies giving higher than
average payoff will expand quicker and the proportion of
these portions will tend to grow. [1]. In Reference [2], the
advantages of using EGT in engineering applications are
presented. Its application in several engineering examples
such as smart lighting and optimal economic dispatch in
micro-grids has been presented. Another approach has
been used for distributed optimization in [3], for wireless
networks in [4], and for load management of electric
vehicle fleets in [5], [6]. EGT is used in [7] for automating
node clustering and nominations of cluster heads, in order
to achieve cluster stability in Vehicular Ad hoc Networks,
and to analyze advanced persistent threats against cloud
storage in [8]. In [9], EGT has been employed to ana-
lyze strategic choice between two competing alternatives
having their own business case in employing upward con-
sumption flexibility to alleviate problems caused by wind
generation and renewable energy support schemes.

Replicator dynamics (RD) is a simple model of a bio-
logical evolutionary process. This model assumes the in-
crease/evolution of a proportion of the population, hosting
a replicator, at a certain rate related to this fraction of
the hosting population and to the difference between of
the hosts’ fitness and the mean fitness [10], [1]. These

dynamics is modelled as a system ordinary differential
equations. As mentioned by [11], in RD a mixed strategy is
a population state and each component of this mixed strat-
egy represents a population share of individuals using a
corresponding pure strategy. RD has been successfully ap-
plied as a tool to solve NP-hard combinatorial optimization
problems [10], [12]. By replacing some terms in RD sys-
tem with incentive functions, as proposed in [13], several
models of evolutionary dynamics can be generated. These
results are used in [14] to get a natural generalization of
evolutionary stable states and a suitable version of relative
entropy that can be used as a Lyapunov function to prove
stability. In [6], generalized evolutionary dynamics for
limited hosting capacities have been employed. It is called
Intersection Escort Evolutionary Dynamics (IEED) and it
is an extension to Escort Evolutionary Dynamics of [15].
These dynamics describes the evolution of portions of a
population followingK different pure strategies according
to the benefit they provide. It was originally employed for
a distributed optimization application for electric vehicle
fleet charging management. In order to apply the desirable
features of RD for a general resource allocation problem,
a different extension of RD has to be introduced. Here,
populations will follow mixed strategies instead of pure
strategies and this are known as Mixed strategist dynamics
(MSD) [1].

In this present paper, a comparison between MSD and
IEED will be given. After an introduction of MSD in
section II, with an illustrative example using Rock-Paper-
Scissors game, IEED will be presented in section III.
A detailed example is given in section IV in order to
compare these two dynamics. The paper ends with some
conclusions in section V.

II. MIXED STRATEGIST DYNAMICS

In this section, Mixed Strategist Dynamics (MSD) as
described in [1], [16] will be introduced. The MSD rep-
resents the evolution of portions of a population follow-



ing M different Mixed Strategies (MSs). These MSs are
defined from K original pure strategies, according to the
benefit they provide. The continuous time MSD can then
be described by,

ẏm = ym(gm(y)− ḡ(y)), (1)

where g(·) = [g1(·), · · · , gm(·), · · · , gM(·)]T defines the
payoff landscape for pure strategies, and ḡ(y) represents
the mean payoff for the population. If a matrix C gath-
ering predefined mixed strategies as column vectors cm
is defined, then the elements ck,m of the column vector
cm are the coefficients in a convex linear combination
of pure strategies, i.e., ck,m ≥ 0,

∑
k ck,m = 1. If y

represents the population distribution per mixed strategies,
the corresponding distribution per pure strategies x can
then be written by,

x = Cy. (2)

With this notation, let us focus on the original payoff
landscape f(·) = [f1(·), · · · , fk(·), · · · , fK(·)]T defined
for pure strategies. The argument of this payoff landscape
is the distribution per pure strategies x. The payoff ob-
tained for a portion of a population using a mixed strategy
cm is determined by the expected value associated to the
mixed strategy and the payoff associated to the population
distribution, i.e., gm = cT

mf(x). In other words, the
relation between payoff landscapes f(·) and g(·) is given
by,

g(y) = CTf(x) = CTf(Cy). (3)

f(·) defines the payoff landscape for pure strategies, and
ḡ(y) represents de mean payoff for the population. This
leads to an equivalence in the definitions of mean payoffs
using both landscapes f(·) and g(·), i.e.,

f̄(x) = xTf(x) = yTCTf(Cy) = yTg(y) = ḡ(y)

Moreover, the MSD can be defined in terms of the
original payoff landscape f(·) as,

ẏm = ym((CTf(Cy))m − ḡ(y)). (4)

Given that eq.(1) sets a lower barrier on zero to ym, y
will always lie within the simplex ∆M = {y ∈ RM :
ym ≥ 0,

∑
m ym = 1}. Consequently, x will also always

lie within the simplex ∆K = {x ∈ RK : xk ≥
0,
∑

k xk = 1}. Furthermore, considering the definition
of MSs in C, the population distribution x will always lie
in a subset ΘM ∈ ∆K defined by the following convex
hull,

ΘM =
{
x = Cy ∈ RK : ym ≥ 0,

∑
m ym = 1

}
.

Taking advantage of this, it is possible to confine the
trajectories of the population state vector x to a reduced
subset of ∆K and introduce hosting capacity limitations
for pure strategies.
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Fig. 1. Simplex ∆3 in R3. Vertices of convex sets Θ6 and
Θ3 represent mixed strategies cm. In blue, trajectory when
the set of MSs is exactly the set of pure strategies.
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Fig. 2. Simplex ∆3 in R3. Vertices of convex sets Θ6 and
Θ3 represent mixed strategies cm. In orange, trajectories for
the RPS game with different sets of MSs.

A. Example with the Rock-Paper-Scissors game
Let us take a look on the following classic Rock-

Paper-Scissors example [1]. The payoff landscape for pure
strategies is described by,

f(x) =

 0 −a b
b 0 −a
−a b 0

x,
where a, b > 0. This game has a global attractor on x̂ =
[1/3, 1/3, 1/3]T for a < b.

Let us define three subsets ΘM represented by three
different sets of MSs, containing the same global attractor.
Trajectories followed by the MSD for each set of MSs,
are presented on Figs. 1-3. The dark blue trajectory results
when the set of MSs is identical to the set of pure strate-
gies, i.e., C = I the identity. The orange portrait shows
the resulting trajectory for a set of 6 MSs located in pairs at
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Fig. 3. Simplex ∆3 in R3. Vertices of convex sets Θ6 and
Θ3 represent mixed strategies cm. In green, trajectories for
the RPS game with different sets of MSs.

each of the three boundaries of the simplex, as it is shown.
The third trajectory, in green, results when C is defined
by 3 MSs placed inside the simplex. Both sets of MSs are
given in,

CΘ6 =

0.55 0.45 0 0 0.45 0.55
0.45 0.55 0.55 0.45 0 0

0 0 0.45 0.55 0.55 0.45


(5)

CΘ3 =

 0.9 0.05 0.1
0.05 0.675 0.25
0.05 0.275 0.65

 .
The initial distribution in the three cases is x =

[0.1, 0.45, 0.45]T. For the subset Θ3, this initial distri-
bution corresponds to a distribution per mixed strategies
given by y(0) = [0.0304, 0.4848, 0.4848]. For the subset
Θ6, it corresponds to an initial distribution per mixed
strategies y(0) = [0.05, 0.05, 0.4, 0.4, 0.05, 0.05].

In this present paper, the most interesting case is rep-
resented by the subset Θ6. In this case, a limited hosting
capacity of 55% of the population per pure strategy is
represented. In other words, the population is still playing
a Rock-Paper-Scissors game but the MSs definition has
introduced a constraint in the number of individuals that
can use each of the original pure strategies.

Keeping these definitions in mind, the following section
describes the Intersection Escort Evolutionary Dynamics
(IEED) previously introduced in [6] and its role in the
representation of limited hosting capacities.

III. INTERSECTION ESCORT EVOLUTIONARY
DYNAMICS

Intersection escort evolutionary dynamics (IEED) has
the particular property that it can be employed to describe
the intersection of two simplices representing lower and

upper boundaries as it will be demonstrated in this section.
The continuous time IEED can be described by,

ẋk = αkβk(fk(x)− f̄αβ(x)), (6)

where f(·) = [f1(·), · · · , fk(·), · · · , fK(·)]T defines the
payoff landscape for pure strategies, and f̄αβ(x) represents
the weighted average payoff for the population depending
on values of functions αk and βk. These functions depend
on the population distribution x, and the boundaries or, in
this case, the hosting capacities for each pure strategy.

For reference purposes let us call the product φk =
αkβk the Escort function to match with the original def-
inition of [15]. Using the normalized vector of escort
functions,

φ̂ =
1∑

k αkβk
[α1β1, · · · , αkβk, · · · , αKβK ]T, (7)

the weighted average payoff for the population f̄αβ(x) is
computed as the expected value,

f̄αβ(x) = φ̂Tf(x). (8)

A. Definition of functions αk and βk

Let us consider the scenario where the hosting capaci-
ties for each pure strategy are defined by a subset ΨK of
the simplex ∆K defined by,

ΨK =
{
x ∈ RK : xlok ≤ xk ≤ x

up
k ,

∑
k xk = 1

}
, (9)

where xlok and xupk are the corresponding upper and lower
boundaries of the hosting capacity for each portion xk
of the normalized population. This definition can be re-
written as the intersection ΨK = ∆K

lo ∩ ∆K
up of two

simplices defined by,

∆K
lo =

{
x ∈ RK : xk ≥ xlok ,

∑
k xk = 1

}
, (10)

∆K
up =

{
x ∈ RK : xk ≤ xupk ,

∑
k xk = 1

}
, (11)

Following a similar principle as in Sect. II, these sim-
plices can also be expressed as the following convex hulls,

∆K
lo =

{
x = Cloβ : β ∈ RK , βk ≥ 0,

∑
k βk = 1

}
,

(12)

∆K
up =

{
x = Cupα : α ∈ RK , αk ≥ 0,

∑
k αk = 1

}
,

(13)

where the column vectors of matrices Clo and Cup are
the vertices of the simplices ∆K

lo and ∆K
up respectively.

Column vectors of these matrices are two separate sets of
vectors that form two bases for RK . In fact, if the lower
boundaries are all zeros, Clo becomes the identity, i.e.,
the standard basis for RK , and ∆K

lo becomes the standard
simplex.

As it can be inferred, matrices Clo and Cup must be
somehow related to upper and lower boundaries. In fact,



finding these matrices is a simple procedure, and even if it
is not necessary to find them explicitly for the IEED. They
are illustrated for the definition of functions αk and βk. Let
us consider square matrices Xlo and Xup defined with the
boundaries as,

Xlo =


xlo1 xlo1 · · · xlo1

...
...

...
xlok xlok · · · xlok

...
...

...
xloK xloK · · · xloK

 (14)

Xup =


xup1 xup1 · · · xup1

...
...

...
xupk xupk · · · xupk

...
...

...
xupK xupK · · · xupK

 , (15)

and scalars σlo and σup also defined with the boundaries
as,

σlo = 1−
∑

k x
lo
k , σup = 1−

∑
k x

lo
k . (16)

With these matrices, vertices of the upper and lower
simplices can be found with the following expressions,

Clo = Xlo − σloI, Cup = Xup − σupI, (17)

where I is the identity matrix. From the convex hull
definitions of the upper and lower simplices, let us recall
that x = Cloβ, and x = Cupα. Hence,

β = C−1
lo x =

1

σlo
(I−Xlo)x, (18)

α = C−1
upx =

1

σup
(I−Xup)x. (19)

Having in mind that the population distribution x lies
in the hyper-plane

∑
k xk = 1, these expressions can be

further simplified to the following functions of xk,

βk =
1

σlo
(xk − xlok ), (20)

αk =
1

σup
(xk − xupk ), (21)

which are the expressions that define the escort functions
in the IEED. Functions βk and αk provide direct informa-
tion of xk approaching xlok or xupk respectively. Multiple el-
ements should be highlighted from these definitions. First,
It can be noticed that scalar σlo is always positive, while
scalar σup is always negative. If these conditions are not
fulfilled, this means that boundaries are too restrictive and
constraints are not feasible. To illustrate this, let us take a
look on eqs.(16) and assume a positive σup. Consequently∑

k x
up
k < 1 which means that upper constraints are too

low to allow
∑

k xk to be the unity. A similar reasoning
applies for a negative σlo and

∑
k x

lo
k > 1.

On the other hand, a consequence of σlo > 0, and
σup < 0, is that βk is monotonically increasing while
αk is monotonically decreasing. Moreover, βk = 0 when
xk = xlok , and αk = 0 when xk = xupk . This imposes
two barriers on the dynamics as described by eq. (6). It is
also useful to notice that βk = 1 when xk = σlo + xlok ,
and αk = 1 when xk = σup + xupk . These last cases
represent the vertices k of the lower and upper simplices
respectively.

A final important fact to notice is that, if boundaries are
feasible, the escort function represented by the product of
functions αk and βk is always positive for all k.

B. Stability
In the definitions of [15], escort functions were imposed

to be positive and monotonically increasing. However, for
the IEED functions αk and βk were demonstrated to be
positive, but one of them decreases as the other increases.
As a result, the product is not monotonically increasing but
is still positive. Authors of [17] proved the stability of the
escort evolutionary dynamics with positive monotonically
increasing escort functions. Even if it is out of the scope
of this paper, it is possible to prove that the following
divergence-like function,

L(x) =
K∑
k=1

σupσlo
xupk − xlok

{
(x̂k − xupk ) log

(
x̂k − xupk
xk − xupk

)
(22)

− (x̂k − xlok ) log

(
x̂k − xlok
xk − xlok

)}
,

is a Lyapunov function for the IEED, with equilibrium
state x̂.

C. Example with the Rock-Paper-Scissors game
Let us take a look again on the Rock-Paper-Scissors

example from Sect. III. This time the hosting capacities
will be assumed to be bounded up and down for each of
the pure strategies. Let us consider x ∈ ∆3

lo = {x1 ≥
0.05, x2 ≥ 0.1, x3 ≥ 0.075, x1 + x2 + x3 = 1}. Given
these lower constraints, the resulting matrix Clo computed
with (17) is,

Clo = Xlo + σloI =

 0.05 0.05 0.05
0.1 0.1 0.1

0.075 0.075 0.075


+0.775

1 0 0
0 1 0
0 0 1


=

0.825 0.05 0.05
0.1 0.875 0.1

0.075 0.075 0.85

 ,



while βk functions are,

β1 =
x1 − 0.05

0.775
, β2 =

x2 − 0.1

0.775
, β3 =

x3 − 0.075

0.775
.

As it was explained, columns of Clo are the vertices
of the simplex ∆K

lo . Let us take a look now on upper
boundaries on each dimension defined by x ∈ ∆3

up =
{x1 ≤ 0.4, x2 ≤ 0.5, x3 ≤ 0.75, x1 + x2 + x3 = 1}.
Given these constraints, the resulting Cup matrix is,

Cup = Xup + σupI =

 0.4 0.4 0.4
0.5 0.5 0.5
0.75 0.75 0.75

 (23)

−0.65

1 0 0
0 1 0
0 0 1


=

−0.25 0.4 0.4
0.5 −0.15 0.5
0.75 0.75 0.1

 ,
while αk functions are,

α1 =
−x1 + 0.4

0.65
, α2 =

−x2 + 0.5

0.65
, α3 =

−x3 + 0.75

0.65
.

Again, the columns of Cup are the vertices of the simplex
∆3
up as it was explained before. With these expressions in

mind, the resulting escort functions are,

φ1 =
(x1 − 0.05)(0.4− x1)

0.50375
, φ2 =

(x2 − 0.1)(0.5− x2)

0.50375
,

φ3 =
(x3 − 0.075)(0.75− x3)

0.50375
,

which are positive valued for points in the intersection x ∈
∆3
lo ∩∆3

up. If {φ1, φ2, φ3} are positive, then it is true that
{α1, α2, α3, β1, β2, β3} are positive as well. Given that the
ED guarantees {x1 + x2 + x3 = 1}, then,

α1 + α2 + α3 =
−x1 + 0.75− x2 + 0.4− x3 + 0.5

0.65
= 1,

β1 + β2 + β3 =
x1 − 0.075 + x2 + 0.05 + x3 − 0.1

0.875
= 1,

which are consequently always satisfied as well. Then,
any trajectory followed by the IEED with escort functions
{φ1, φ2, φ3}, satisfies both sets {α1, α2, α3 ≥ 0, α1 +
α2 + α3 = 1} and {β1, β2, β3 ≥ 0, β1 + β2 + β3 =
1}. Consequently, all the escort functions also have upper
limits at {α1, α2, α3, β1, β2, β3 ≤ 1} and the intersections

among the following intervals are fulfilled,

0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, 0 ≤ α3 ≤ 1,

0 ≤ −x1 + 0.4

0.65
≤ 1,

0 ≤ −x2 + 0.5

0.65
≤ 1, 0 ≤ −x3 + 0.75

0.65
≤ 1,

−0.25 ≤ x2 ≤ 0.4, − 0.15 ≤ x3 ≤ 0.5,

0.1 ≤ x1 ≤ 0.75,

0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1, 0 ≤ β3 ≤ 1,

0 ≤ x1 − 0.05

0.775
≤ 1, 0 ≤ x2 − 0.1

0.775
≤ 1,

0 ≤ x3 − 0.075

0.775
≤ 1,

0.05 ≤ x1 ≤ 0.825,

0.1 ≤ x2 ≤ 0.875, 0.075 ≤ x3 ≤ 0.85.

Fig. 4. Simplices ∆3, ∆3
lo, and ∆3

up in R3. In green, trajec-
tory in the intersection of the upper and lower simplices. In
this example a = 1 and b = 2.

With the standard simplex as reference, the upper and
lower simplices are plotted on Fig. 4 for this example. It
is possible to see the portrait of a trajectory arriving to
the global attractor, while boundaries are being respected
during the whole evolution.

IV. AN EXAMPLE OF COMPARISON BETWEEN
MSD AND IEED

In order to compare the MSD and the IEED, let us
consider the example of Figs. 5-6. In this case, the pay-
off landscape is defined as the euclidean gradient of the
potential function F (x) = −(x1 − 13/20)2 − (x2 −



Fig. 5. Example of comparison between MSD and IEED.
The intersection between the standard simplex ∆4 and a
simplex of upper constraints ∆4

up, both in R4, is shown.
Representation for the MSD approach: 12 vertices (12 mixed
strategies) define the convex hull of the intersection.

Fig. 6. Example of comparison between MSD and IEED.
The intersection between the standard simplex ∆4 and a
simplex of upper constraints ∆4

up, both in R4, is shown. For
the IEED approach: the intersection is represented without
knowledge of its vertices.

40/20)2 − (x3 − 17/20)2 − (x4 − 18/20)2, for x ∈ R4.
This potential function has an unconstrained maximum

at x̂+ = [13/20, 40/20, 17/20, 18/20]T, and if it is
constrained to points x ∈ Θ12 = {0 ≤ x1, x2, x3, x4 ≤
0.6, x1 +x2 +x3 +x4 = 1}, then the feasible maximum
is x̂ = [0, 0.6, 0.175, 0.225]T.

The feasible region in this case is defined by upper and
lower constraints on each of the four variables, and it can
represented by the vertices of the intersection set between
the standard simplex (defined by lower constraints) ∆4 =
{x1, x2, x3, x4 ≥ 0, x1 + x2 + x3 + x4 = 1}, and the
simplex of upper constraints ∆4

up = {x1, x2, x3, x4 ≤
0.6, x1 +x2 +x3 +x4 = 1}. Given that these constraints
are homogeneous (i.e., they are shared by all the variables),
the vertices of the intersection can be easily found as all the
possible permutations of the vector c1 = [0.6, 0.4, 0, 0]T,
which are listed as the columns of the following matrix,

CΘ12 =



0.6 0.4 0 0
0.6 0 0.4 0
0.6 0 0 0.4
0.4 0.6 0 0

0 0.6 0.4 0
0 0.6 0 0.4

0.4 0 0.6 0
0 0.4 0.6 0
0 0 0.6 0.4

0.4 0 0 0.6
0 0.4 0 0.6
0 0 0.4 0.6



T

These column vectors are the mixed strategies employed
by the MSD. Fig. 5 shows a representation of the simplex
∆4, and the intersection Θ12 along with the corresponding
defining vertices. ∆4 can be represented in R3 since the
hyper-plane {x1 + x2 + x3 + x4 = 1} is a 3-dimensional
subspace of R4 and the simplex is a portion of this sub-
space. Furthermore, four different trajectories followed by
the MSD, arriving to the equilibrium state, are presented.
The resulting final distributions assign 43.76% of the pop-
ulation to mixed strategy c5, and the 56.24% left, to mixed
strategy c6, which results in the previously mentioned lo-
cal feasible equilibrium state x̂ = [0, 0.6, 0.175, 0.225]T.

On the other hand, Fig. 6 shows the same example,
but applying the proposed IEED instead. In this case, the
escort functions assigned to each of the four variables are
equal to,

φk = αkβk =
(xk − 0.6)

−1.4

(xk − 0)

1
=
xk(0.6− xk)

1.4
,



Fig. 7. An example of simplices ∆4
up, and ∆4

lo, both in R4.
Example of intersection subset defined by 10 vertices.

and the resulting matrix Cup computed with (17) is,

Cup = Xup + σupI =

0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6



− 1.4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=

−0.8 0.6 0.6 0.6
0.6 −0.8 0.6 0.6
0.6 0.6 − 0.8 0.6
0.6 0.6 0.6 −0.8

 .
Matrix Clo = I since ∆4

lo is the standard simplex ∆4 (it
can be verified applying eq. (17) as well). Column vectors
of Cup are the vertices of the simplex ∆4

up represented in
Fig. 6. Finding these vertices is a much simpler procedure
than listing the 12 permutations that define the vertices
of the intersection for the MSD approach. Moreover, in
the IEED approach, finding Cup is not needed (it is
only needed for purposes of graphical representation),
because the IEED only employs the parameters of the
escort functions (i.e. the constraining limits, xlok , xupk ,
σup, and σlo). Fig. 6 also shows four different trajectories
starting from the same initial distributions than the case
with MSD, and arriving to the same equilibrium state x̂ =
[0, 0.6, 0.175, 0.225]T. Both approaches produce different
trajectories inside the feasible region, but the equilibrium
state is asymptotically reached by both of them.

Fig. 8. An example of simplices ∆4
up, and ∆4

lo, both in R4.
Example of intersection subset defined by 9 vertices.

Although this example is useful to observe that IEED
exhibits a certain computational advantage over MSD,
the important drawback of MSD in the representation of
hosting capacities lies in the problem of finding all the
vertices of the intersection. This is specially problematic
when the number of dimensions is increased, and when
the constraints are not homogeneous for all the variables.
In fact, the number of vertices of the intersection can
be much larger than K and enumerating all of them is
a combinatorial problem, hard to solve computationally
[18].

For instance, two examples of upper and lower con-
straints are presented in Figs. 7-8, both with four trajecto-
ries followed with the IEED and the corresponding escort
functions. Fig. 7 shows the case where the feasible region
is defined by the intersection between ∆4

lo = {x1 ≥
0.1, x2 ≥ 0, x3 ≥ 0.2, x4 ≥ 0.2, x1 + x2 + x3 +
x4 = 1}, and ∆4

up = {x1 ≤ 0.6, x2 ≤ 0.3, x3 ≤
0.6, x4 ≤ 0.5, x1 + x2 + x3 + x4 = 1}. In this case, the
intersection has 10 vertices and the feasible equilibrium
state is x̂ = [0.1, 0.3, 0.275, 0.325]T. On the other hand,
Fig. 8 shows the case where the feasible region is defined
by the intersection between ∆4

lo = {x1 ≥ 0.2, x2 ≥
0.1, x3 ≥ 0, x4 ≥ 0.1, x1 + x2 + x3 + x4 = 1},
and ∆4

up = {x1 ≤ 0.3, x2 ≤ 0.4, x3 ≤ 0.5, x4 ≤
0.3, x1 + x2 + x3 + x4 = 1}. In this final example,
the intersection has 9 vertices and the feasible equilibrium
state is x̂ = [0.2, 0.4, 0.175, 0.225]T. As it can be ob-
served, the number of vertices of the intersection is not
easily predictable and this also imposes a problem for the
enumeration strategy [18].



V. CONCLUSIONS

In this paper, a detailed comparison through illustrative
examples between MSD and IEED has been given. A main
drawback of MSD in representing hosting capacities lies
in the difficulty of finding all the vertices of the inter-
section. As it has been observed, IEED shows a certain
computational advantage over MSD where the intersection
is represented without knowledge of its vertices.
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