Gold(III) -Allyl Complexes
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The key importance of Pd(II) -allyl complexes in organometallic chemistry (Tsuji-Trost reaction) prompted us to explore gold(III) -allyl complexes, which have remained so far elusive species. The (P,C)Au(III)(allyl) and (methallyl) complexes 3 and 3' were readily prepared and isolated as thermally and air-stable solids. Spectroscopic and crystallographic analyses combined with detailed DFT calculations support tight quasi-symmetric  3 -coordination of the allyl moiety. The -allyl gold(III) complexes are activated towards nucleophilic additions, as substantiated with β-diketo enolates.

The last decade has witnessed spectacular progress in gold(III) chemistry. The variety of well-defined gold(III) complexes has been significantly expanded. [START_REF] Kumar | [END_REF] Their unique luminescence and biological properties open exciting perspectives in material science and medicine. [2,3] Applications in catalysis are also developing rapidly, [4] including towards asymmetric transformations. [START_REF] Cui | For asymmetric catalysis with well-defined gold(III) complexes[END_REF] In addition, numerous studies have been performed to improve our basic knowledge of gold(III) complexes from both structure and reactivity viewpoints. [6] Most noticeable in this respect are the -complexes resulting from side-on coordination of unsaturated hydrocarbons to gold(III) (Figure 1). [7,8] The field was pioneered by Bochmann and Tilset in 2013 who independently reported the first -alkene gold(III) complexes A. [9] It was not until 2017 that gold(III) complexes featuring -coordinated alkynes and arenes B [10] and C [11] were unambiguously authenticated. It is worth noting that gold(III) -complexes are relevant to important reactivity paths: outer-sphere nucleophilic addition / migratory insertion for alkenes and alkynes, and C-H activation (auration) for arenes.

One missing class of gold(III) -complexes in this picture are the -allyl complexes, which are key species in organometallic chemistry, in particular within the frame of the Pd-catalyzed Tsuji-Trost reaction. [12] Indeed, very little is known so far about gold(III)-allyl complexes D. A few -allyl species have been described, [13,[START_REF] Hashmi | I) complexes[END_REF] while, to the best of our knowledge, precedents for side-on coordination of an allyl moiety to gold(III) are limited to [(-allyl)AuMe2]. The latter complex was not directly observed, but based on mass spectrometry studies in the gas phase, it was proposed to form upon reaction of dimethyl aurate (AuMe2) -with allyl iodide and its  3 -structure was inferred computationally. [15] We have shown in previous studies that (P,C) cyclometallated gold(III) complexes are readily accessible by chelationassisted oxidative addition of peri-halogeno naphthylphosphines [16] and enable to access new gold(III) species, including  and  complexes. [11a,17] The (P,C) cyclometallated gold(III) complexes also possess rich reactivity [18] and display high catalytic activity in the hydroarylation of alkynes. [4e] In this work, we envisioned to prepare and study gold(III)-allyl complexes taking advantage of the stability imparted by the (P,C) chelate. As disclosed hereafter, thermally and air-stable species were readily obtained and fully characterized. Their  3 -structure was thoroughly analysed by experimental and theoretical means, and some reactivity studies have been performed.

Complex 2 was prepared by Mg to Au transmetallation (Scheme 1). [19] Addition of a stoichiometric amount of allylmagnesium bromide to the (P,C) cyclometallated gold(III) precursor 1 rapidly and cleanly afforded 2 which was isolated as a stable yellowish solid in 98% yield. The structure of 2 was deduced from high-resolution mass spectrometry (HRMS) and multinuclear NMR spectroscopy.  1 coordination of the allyl is apparent from the 1 H and 13 C NMR signals of the Au-CH2 group ( 1 H 3.2 ppm and  13 C 48.2 ppm) and from the vinylic signals observed for the pendant CH=CH2 moiety. The NMR pattern of the allyl group in 2 is very similar to those met in the few known Au(III) species. [13] Complex 2 is obtained as a single stereoisomer, with the allyl chain in trans position to phosphorus. This is apparent from the large JPC coupling constant (98.9 Hz) of the Au-CH2 group and consistent with the electronic dissymmetry of the (P,C) ligand. [11a,17,18] Complex 2 was then reacted with AgSbF6 to abstract the iodine ligand and release a coordination site at gold for the double bond of the allyl group. According to 31 P NMR spectroscopy, this lead instantaneously to a single new species. After removal of the silver salts upon filtration over Celite, complex 3 was isolated in quantitative yield as a white stable powder (no sign of decomposition detected after 6 weeks upon storage under air). Complex 3 was characterized by HRMS, elemental analysis and multinuclear NMR spectroscopy. The 31 P NMR signal appears at  88.1 ppm, deshielded by 17 ppm compared to that of 2. Most significant is the deshielding and splitting of the Au-CH2 signal (from a unique signal in [START_REF] Kumar | [END_REF] H NMR at  ~ 3.2 ppm for 2 to two distinct signals at  4.33 and 5.11 ppm for 3) and the equalization of the 13 C chemical shifts of the two CH2 groups (from  48.2/110.2 ppm for 2, to  83.3/76.3 ppm for 3). The JPC coupling constant of the CH2 group trans to phosphorus significantly decreases (from 98.9 to 31.8 Hz). All these data are diagnostic of an  3 -allyl type structure (see Figure 2).

The related methallyl complexes 2' and 3' were prepared similarly using 2-methylallyl magnesium chloride (Scheme 1). [19] The NMR features of 3' very much resemble those of 3. In particular,  3 -coordination of the methallyl group to gold is apparent from the 13 C NMR signals of the two terminal CH2 units, that both resonate as doublets at  ~ 80 ppm (83.24 ppm, JPC = 34.2 Hz and 74.90 ppm, JPC = 2.9 Hz).

The dynamics of -allyl complexes has attracted much attention and plays a key role in their reactivity (especially when regioselectivity and stereoselectivity come into play). [12] The possibility of the -allyl moiety bonded to Au(III) in complex 3 to rotate and/or shift from  3 to  1 coordination was investigated by variable temperature NMR spectroscopy. No significant change was detected in the temperature range -70 to +110°C, indicating rigid coordination and the absence of fluxional behaviour (Figure S13). [19] Scheme 1. Synthesis of the neutral -allyl and cationic -allyl gold(III) complexes 2 ( ' ) and 3 ( ' ) . 12), Au-C2 2.226( 8), Au-C3 2.275( 9), C1-C2 1.422( 14), C2-C3 1.386( 12), (3') Au-C1 2.169( 5), Au-C2 2.238( 5), Au-C3 2.240( 5), C1-C2 1.406( 8), C2-C3 1.400( 8), C2-C5 1.512 (8).

Crystals of 3 and 3' suitable for X-ray diffraction analysis were grown from dichloromethane solutions (Figure 3). [19,[START_REF]allyl moiety co-exist in the solid state (up and down). For sake of clarity, only one is discussed[END_REF] Complexes 3 and 3' adopt separate ion-pair structures with no significant intermolecular Au•••Au contacts (shortest distance > 7 Å). The gold center is in square-planar environment. The allyl fragment is coordinated facially and makes an angle of 56.7-57.2° with the (P,C)Au coordination plane. The metrics for the Au-CH2/Au-CH(Me) (2.169-2.275 Å) and H2C-CH(Me) bonds (1.386-1.422 Å) are very comparable to those reported for Pd and Pt -(meth)allyl complexes. [START_REF]allyl complexes. The average value for the Pd-C (resp. Pt-C) bond length is 2.160 Å (resp. 2.250 Å) and the average value for the C-C bond length is 1[END_REF] Of note, the Au-C1 / Au-C3 distances differ by only 0.08 Å and the C1-C2 / C2-C3 bond lengths differ by only 0.04 Å, indicating quasi-symmetric coordination of the -allyl moiety to Au in both complexes 3 and 3'. The structure of the -allyl gold(III) complexes 3 and 3' was analysed computationally. DFT calculations were performed on the actual complexes at the B3PW91/SDD+f(Au),6-31G**(other atoms) level of theory. The optimized geometries reproduce closely those determined crystallographically (Figure S25). [19] The computed NMR data ( 1 H, 13 C chemical shifts, JPC coupling constants) are also in very good agreement with those observed experimentally (Table S2). [19] The potential energy surface of 3 was scrutinized and two local energy minima were located with the allyl group  1coordinated to gold in trans or cis to phosphorus (and a pending CH=CH2 moiety) (Figure 4). They are much less stable than the ground-state  3 structure (by 19.5 and 31.2 kcal/mol, respectively). In line with the non-fluxional behaviour noted upon variable-temperature NMR, the activation barriers computed for  3 to  1 interconversion exceed 27 kcal/mol. [22] The bonding situation of the gold(III) complexes 3 and 3' in their -allyl ground-states was then analysed using the Atoms-In-Molecules (AIM) approach (Figure 5). Bond critical points (BCP) are found between Au and the terminal carbon atoms. The associated electron densities  (0.075 / 0.078 and 0.095 / 0.098 e/bohr 3 ) and delocalization indexes  (0.522 / 0.544 and 0.639 / 0.654) are similar. This is indicative of quasi-symmetry  3 coordination of the allyl group to gold. Consistently, the allyl moiety is highly delocalized, as apparent from the Bader bond indexes for the two CHCH2 moieties (1.244 / 1.211 and 1.347 / 1.306). [23] Some reactivity studies were performed to assess the chemical behavior of the allyl gold(III) complexes and substantiate that -coordination of the allyl moiety to gold mediates nucleophilic addition to it. Having in mind the Pdmediated allylation of β-diketo derivatives (Tsuji-Trost reaction), [12] we selected diethylmalonate 4a as nucleophile (Scheme 2). A control experiment carried out with the neutral Au(III)  1 -allyl complex 2 showed no sign of a reaction after several days at 20°C. [19] In stark contrast, 4a was found to react smoothly with the cationic  3 -allyl Au(III) complex 3 under the same conditions. Within 22 hours, the expected coupling product 5a was obtained in 71% yield (as deduced from comparison of NMR and GC-MS data with those of an authentic sample) along with the (P,C)-bridged dinuclear Au(I) complex 6 (as deduced from independent synthesis and X-ray crystallography). [19] With the enolate of diphenylpropanedione 4b, the reaction proceeds even faster and the coupling product 5b is obtained in near quantitative yield within 4 hours. Similar nucleophilic addition reactions were observed with the methallyl complex 3'. Of note, reaction of the dinuclear Au(I) complex 6 with allyl iodide [24] was found to enable simple and efficient recycling of the (P,C) cyclometallated gold complex. Indeed, the neutral -allyl gold(III) complex 2 was thereby obtained in 92% yield within 3.5 hours at room temperature.

Scheme 2. Reactivity of cationic -allyl gold(III) complexes 3 and 3' with -dicarbonyl carbanions.

In summary, -allyl complexes of gold have been authenticated for the first time in the form of (P,C) cyclometallated thermally and air-stable gold(III) complexes. NMR spectroscopy, X-ray crystallography and DFT calculations substantiate tight quasi-symmetric  3 -coordination of the allyl moiety. Reactions with β-diketo enolates show that side-on coordination to gold(III) activates the allyl moiety towards nucleophilic additions.

Further studies will aim to explore further the reactivity of -allyl gold(III) complexes towards C-as well as heteroatom-and Hbased nucleophiles, to study the reaction mechanism and to draw comparison with related Pd complexes. Better understanding of the structure and chemical behavior of -allyl gold(III) complexes will certainly help in developing gold-catalyzed allylation reactions, which remain very rare so far. [13b,25] 
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 1 Figure 1. Known gold(III) -complexes A-C with alkenes, alkynes and arenes, and targeted gold(III) -allyl complexes D.

Figure 2 .

 2 Figure 2. NMR spectra (selected zones) of the neutral -allyl and cationic -allyl gold(III) complexes 2 and 3 in d8-THF. Top: Allylic zone of the 1 H NMR spectra. Bottom: 13 C NMR spectra, Ca/Cc signals.

Figure 3 .

 3 Figure 3. Molecular structures of the -allyl gold(III) complexes 3 (left) and 3' (right). Thermal ellipsoids drawn at 50% probability, hydrogen atoms, counter anion and disordered atoms are omitted. Selected bond lengths (Å): (3) Au-C1 2.195(12), Au-C2 2.226(8), Au-C3 2.275(9), C1-C2 1.422(14), C2-C3 1.386(12), (3') Au-C1 2.169(5), Au-C2 2.238(5), Au-C3 2.240(5), C1-C2 1.406(8), C2-C3 1.400(8), C2-C5 1.512(8).

Figure 4 .

 4 Figure 4. Potential energy surface computed for the cationic allyl gold(III) complex 3 showing the  3 and  1 forms (G in kcal/mol).

Figure 5 .

 5 Figure 5. Atoms-in-molecules (AIM) molecular graph calculated for the -allyl gold(III) complexes 3 and 3' with relevant bond paths, bond critical points (BCP, green circles), electron densities ( in e/bohr 3 ) and delocalization indices ().
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