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Mechanical strain and stress play a major role in biological processes such as wound healing or morphogen-
esis. To assess this role quantitatively, fixed or live images of tissues are acquired at a cellular precision in large
fields of views. To exploit these data, large numbers of cells have to be analyzed to extract cell shape anisotropy
and cell size. Most frequently, this is performed through detailed individual cell contour determination, using so-
called segmentation computer programs, complemented if necessary by manual detection and error corrections.
However, a coarse-grained and faster technique can be recommended in at least three situations: first, when
detailed information on individual cell contours is not required; for instance, in studies which require only
coarse-grained average information on cell anisotropy. Second, as an exploratory step to determine whether
full segmentation can be potentially useful. Third, when segmentation is too difficult, for instance due to poor
image quality or too large a cell number. We developed a user-friendly, Fourier-transform-based image analysis
pipeline. It is fast (typically 104 cells per minute with a current laptop computer) and suitable for time, space,
or ensemble averages. We validate it on one set of artificial images and on two sets of fully segmented images,
one from a Drosophila pupa and the other from a chicken embryo; the pipeline results are robust. Perspectives
include in vitro tissues, nonbiological cellular patterns such as foams and xyz stacks.

DOI: 10.1103/PhysRevE.99.062401

I. INTRODUCTION

During important physiological processes such as wound
healing, morphogenesis, or metastasis, cells deform, migrate,
exchange neighbors, divide, and die. A proper mechanical
description of such a complex active system requires the
characterization of cell size, cell shape, and changes thereof
[1]. Fluorescent labeling of cell contours and progress in
microscopy have led to the acquisition of large tissue images
with high signal-to-noise ratio. Determination of individual
cell contours have allowed the application of mechanical
approaches based on quantitative data analysis of cell packing
within epithelial tissues [2–4]; the development of quantita-
tive modeling of tissue structure [5–7]; and even the linking
of cell-level changes to morphogenetic movements [8–11].
While these studies were bidimensional, three-dimensional
studies are becoming increasingly common [12–14].

These studies have been performed successfully by using
detailed determination of cell contours, also called “cell seg-
mentation,” either manual, automatic, or a combination of
both. Segmentation programs are available in an increasing
number (see Refs. [11,12,15] and references therein). Figure 1
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presents an example of such segmentation, in which the dorsal
thorax of a fruit fly (Drosophila) is imaged at the pupal stage,
i.e., during its metamorphosis from larva to adult. For each
cell, the inertia matrix (see Appendix A) is computed and
represented as an ellipse which fits the cell contour. It is
completely defined by three parameters: its major and minor
axis length (Lmaj, Lmin) and the orientation θ of its major axis
with respect to the x axis. The inertia matrix can be averaged
on any given region, yielding an average inertia matrix and
thus an ellipse characterizing the average cell size and shape
in this region. The cell area is characterized by πLmajLmin.

The ratio Lmaj/Lmin and the angle θ characterize the
anisotropic part of the cell shape and are expressed by the
anisotropic part of the inertia matrix. Interestingly, it is shown
with image analysis by using force inference on detailed cell
contours [10] that the anisotropic part of the inertia matrix
correlates strongly with the anisotropic part of the stress at
cell-cell junctions [Fig. 1(c)]. This last result is in agreement
with a recent theoretical prediction [16] (under the assump-
tion that cell-cell junctions and sizes are homogeneous in
the tissue) and suggests that shape measurements could be
used as a proxy to estimate stress (with exceptions recently
documented in some extreme cases; see Ref. [17]). Moreover,
the inertia matrix also correlates strongly with the texture
tensor (see Appendix A, Fig. 8) that is used to statistically
define the strain [18]. This reinforces the interest of cell
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FIG. 1. Cell segmentation reveals a correlation between cell shape and elastic stress anisotropies. (a) Whole segmented image of the
Drosophila dorsal thorax during its metamorphosis. Head is on the right of the image and abdomen on the left. Scale bar is 50 μm. (b) Subimage
in original gray levels, scale bar is 10 μm. Cells are transfected to label the membrane with a fluorescent marker (green fluorescent protein,
GFP), imaged by using an inverted confocal spinning disk microscope, and segmented by using a home-made software followed by automatic
and manual rounds of correction [10]. In panel (b), the inertia matrix of each cell is superimposed as an ellipse. (c) Diagonal component
(green) and off-diagonal component (red) of the cell-cell junction tension contribution to stress S, representing elastic stress anisotropy, versus
the corresponding anisotropic (diagonal and off-diagonal) component of the inertia matrix I , representing cell shape anisotropy. Correlation
coefficients are respectively 0.97 and 0.96, slopes are respectively 0.6 and 0.67. Tensors built with data from Ref. [10], here plotted after
adimensionalization by the isotropic part of the respective tensor. To compute each of the 14 112 points, tensors of individual cells are computed
before being averaged in Eulerian grids of 40 × 40 μm2 with 50% overlap. Then a sliding average is performed on 2 h (24 frames) time
windows with a one hour overlap. Boxes at the pattern boundary which are filled at less than 30% by cells are excluded from the fit.

shape measurements as an approximative but fast and simple
alternative to stress measurements. Since stress is defined as
a coarse-grained quantity over a tissue region, average shape
measurements should suffice without the need for detailed
individual cell shape segmentation.

There are cases where a segmentation-free method of cell
shape determination is potentially useful. For instance, a fast
exploration of cell shape variation in time and space could
help determine its role in a given biological question, before
undertaking the detailed segmentation. Or, it could partially
replace segmentation in cases where the image quality makes
it difficult to segment with reasonable effort and sufficient
precision: low or variable contrast, low signal-to-noise ratio,
interrupted cell edges, large variability of cell sizes, variety of
cell types or very contorted cell shapes. Even when the image
can be segmented, the cell number can be much too large to
enable segmentation within a reasonable amount of time.

Different techniques have been probed to quantify a pattern
anisotropy without segmentation, such as the Hough trans-
form [19], Radon transform [20], or Leray transform [21].
Fiber pattern anisotropy has been the subject of particular
attention [22]. Fourier transforms (Fig. 2) (FTs) have al-
ready been used to determine the anisotropy of fibrous-like
intracellular myosin distribution [23]. Fourier, Hilbert, and
wavelet analysis are common in image analysis, with com-
parable performances when tested on common benchmarks
[24,25]. One of the advantages of Fourier transform, beyond
its simplicity, is that its amplitude (as opposed to its phase)
is insensitive to small displacements of images; hence the

Fourier amplitude measured on successive images, images
from different regions, or images from different experiments
can be averaged [23].

Here, we implement a Fourier-transform-based pipeline
which, in addition to all the above classical applications for
pattern anisotropy quantifications, has specific advantages for
the quantification of cellular patterns. It can determine the
coarse-grained cell shape anisotropy in subregions of the
whole image, resulting in cell shape anisotropy and orienta-
tion maps. Whenever the image quality is sufficient, it can
determine the cell size, too. Note that it extracts the anisotropy
and size of the averaged cell shape over a subregion (not
the average of many individual cell anisotropies and sizes).
Whenever it is known, or it can be reasonably assumed, that
in the rest state the cell shape is isotropic, the cell shape
anisotropy in the current state measures the cell strain deviator
(see Appendix A); similarly, if the cell size in the rest state
is known, the current cell size measures the cell strain trace.
These two measurements are fundamental for determining the
mechanical state of the tissue. We validate the pipeline with
two already segmented images, in a Drosophila pupa and in a
chicken embryo, and discuss its advantages.

II. PIPELINE

The Fourier transform (FT) of an ordered periodic pattern
has peaks [Figs. 2(a)–2(c)]; the peak positions and intensities
reveal the spatial periods and orientations present in the
image. On the other hand, the FT of a disordered anisotropic
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FIG. 2. Fourier transform examples. (a) Points arranged in a spatially periodic array. Blue and red bars highlight some periods. (b) Fourier
spectrum of panel (a) with Gaussian blur of standard deviation 0.6. (c) Same as panel (b) after selecting a proportion p of the image pixels
which are the brightest, with p = 7 × 10−6. The two principal directions are visible. (d) Anisotropic myosin distribution in a chicken embryo
during morphogenesis, courtesy of C. J. Weijer. (e) Fourier spectrum of panel (d) with Gaussian blur of standard deviation 0.6. (f) Same as
panel (e) after selecting a proportion p of the image pixels which are the brightest, with p = 10−3. In panels (b), (c), (e), (f), “8×” signifies
that the spectra are zoomed eight times.

pattern (such as fibers) is a single broad peak centered on
zero frequency [Figs. 2(d)–2(f)]; the distribution width reveals
the range of length scales present in the image, and the
distribution anisotropy reveals the fiber anisotropy.

An epithelial tissue pattern [Fig. 3(a)] is aperiodic and usu-
ally lies between these extremes. The analysis is performed
on overlapping subimages [Figs. 3(a) and 3(b)]. The window
size is chosen as a trade-off between the signal-to-noise ratio
and the spatial resolution required to answer the question
under consideration. The Fourier transform uses a periodic
image, but in practice opposite borders of a window are
different. This causes artifacts—such as a cross on the FT
spectra—that are avoided by a periodic plus smooth image
decomposition [26]. The FT phase provides information on
the cell junction positions within each subimage, which is not
of interest here. We keep only the FT amplitude. In Fourier
space, we represent the FT power spectrum density, with the
zero frequency at the center [Fig. 3(c)]. We perform a time
average over successive images; their number is chosen as a
trade-off between the signal-to-noise ratio and time resolution
required to answer the question under consideration. When
the experiment is repeated, we average the FT spectrum of the
different available samples (“ensemble average”); as opposed
to space and time averages, ensemble averaging has only
advantages in terms of signal-to-noise ratio.

The resulting power spectrum density is smoothed with
a Gaussian blur [Fig. 3(d)]. Low spatial frequencies, corre-
sponding to length scales much larger than a cell size, are
removed [Fig. 3(e)]. The FT anisotropy reflects the pattern
anisotropy; the FT itself is a blurred ring [Figs. 3(c)–3(e)],
more or less resolved depending on the initial image quality
and cell area variance. This enables the two following possi-
bilities for the analysis of cell anisotropy.

The first method, called the “FT ellipse ring fit,” also
yields access to cell size. It applies to a cellular pattern with
disordered cell-cell junction orientation, a small variance in
area and a good image contrast, then the FT is a well-resolved
elliptic ring which can be fit by an ellipse [Fig. 3(f)]. Its axis
sizes in Fourier space are (μmaj, μmin). They yield, back in
real space, the ellipse axis sizes which describe the average
cell properties within the subimage [Fig. 3(g)]: Lmaj = 2m

μmin
,

Lmin = 2m
μmaj

; here m is the size of the FT image in pixels. To
ensure the link with the real absolute size, Lmaj and Lmin have
to be multiplied by the pixel size. The angle between the x
axis and major axis is θ in real space and θ + π/2 in Fourier
space.

The second method, called the “FT inertia matrix,” is more
general because it applies even if the FT ellipse ring is ill-
resolved, as in Fig. 2(f). From Fig. 3(e), we keep a percentile

062401-3



M. DURANDE et al. PHYSICAL REVIEW E 99, 062401 (2019)

FIG. 3. Fourier-transform-based pipeline. (a) Whole segmented image in original gray levels, same data as Figs. 1(a) and 1(b) [10]. Boxes
are examples of subwindows, showing their overlap. (b) Image in a subwindow, (c) its power spectrum density, (d) same after a Gaussian
blur of standard deviation 1.2, (e) same after suppression of low frequencies (dark zone in the center). (f) An ellipse is fit to the ring; its axis
orientations and lengths (μmin, μmaj ) in Fourier space define an ellipse with the same axis orientations and inverse axis lengths in real space. (g)
In real space, the ellipse size corresponds to the average cell size. (h) Thresholding the image, filling the ellipse, and measuring its FT inertia
matrix determines the pattern anisotropy, quantified by the ratio of ellipse axes λmin/λmaj in the Fourier space, and the direction θ of the ellipse
axes. Returning to the real space (i), the pattern anisotropy is determined: its magnitude is represented by the bar size, and its direction is the
direction of the bar. For panels (c)–(f) and (h), the white scale bar is 0.1 μm−1, for panels (b), (g), and (i), the black scale bar is 10 μm, for
panel (i), the red scale bar is 10% of elongation.

p of the image pixels which are the brightest (hereafter called
“proportion” for short), to threshold the spectrum. A morpho-
logical closing is then performed to remove the gaps between
points [Fig. 3(h)]. The resulting binarized pattern defines a
filled ellipse with a correct aspect ratio. Then, the inertia
matrix (see Appendix A) of the filled ellipse is computed
and yields a major (λmaj) and minor axis (λmin). Returning
to the real space, the ellipse axes Lmaj = 2m

λmin
and Lmin = 2m

λmaj

define anisotropy. Again, the angles of eigenvectors, θ and
θ + π/2, are the same in Fourier and real spaces. Note that
here Lmin and Lmaj have no meaning in terms of absolute cell
size, because they are entirely dependent on the proportion
parameter. However, they reflect the pattern anisotropy, as we
will now discuss.

There are several families of acceptable definitions of
internal strain [27]. Among them, one contains an infinity
of acceptable definitions that are functions of Lmaj, Lmin [28].
We choose the “true” strain that was first introduced in the
engineering field to describe large strains [29]. By using the
true strain formalism the anisotropic part of the cell strain is

defined as a matrix with the same eigenvectors as the FT and
with eigenvalues ± 1

2 ln Lmaj

Lmin
(see Appendix A). The absolute

value of this amplitude (or its linearized approximations, if
the strain is small; see Appendix A) is used as a measure
of anisotropy, which we represent as a bar in the direction
θ [Fig. 3(i)]. The results are sensitive to the proportion p of
pixels kept for thresholding. However, a reasonable range of
values of p allows for a robust determination of anisotropies
(see Appendix B).

Altogether, the parameters which must be adjusted for both
methods are window size and overlap, time average, Gaussian
blur size, low cutoff for spatial frequencies; in addition, for FT
ellipse ring fit: number of fit points; and for FT inertia matrix:
proportion for thresholding, dilation-erosion size. The code
is available on Github [30]. It is user friendly and optimized
to reduce the time it takes to manually adjust the parameters,
typically five minutes at the beginning and one minute when
the user is trained. Once these parameters are adjusted for a
first image, they can be reused for all similar images of the
same series.
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FIG. 4. Precision on cell size determination. (a) Example of an artificial cellular pattern. Window size 128 pixels, at least 8 pixels between
seeds, packing fraction 0.5, N = 80 cells, Npix = 158 pixels per cell in average. (b) Relative error on the cell size: �L

L in percentage, where L
is the average radius of the cells in the image vs number N of cells in the image and average number Npix of pixels per cells. Data from 1260
images (126 series of 10 repeats). Each square is an average with a minimum of 10 images. (c) Blue is relative error vs N for all images, i.e.,
averaged on Npix. Red is best fit by a N−1/2 law, with a prefactor of 0.83.

III. RESULTS

A. Precision on cell size determination

To test the precision on cell size determination, we first run
the pipeline on a set of artificial cellular patterns.

Each image is created on a square of side Lpix pixels
by sequentially placing N seeds at random points, with a
minimum distance between them. Their Voronoi diagram is
created, and the cell-cell junctions are thickened to reach
a prescribed packing fraction [Fig. 4(a)]. We measure the
number of pixels per cell and the average cell size on the
pattern. We then apply our pipeline and compute its error in
cell size determination. This test is repeated on a series of ten
images with the same parameters (minimum distance between
seeds, and packing fraction). Then the parameters are varied
to generate a set of 126 different series.

Since we measure the cell size L from a peak in the FT, we
expect the peak position in Fourier space to be around 1/L.
The precision in peak position determination is of the order
of one pixel in Fourier space, i.e., 1

L
√

N
back in real space.

The relative error on L is thus of order N−1/2, independently
of the number of pixels per cell, Npix. This is consistent with
the results of our tests, where the value of Npix has no effect
as soon as it is larger than 20 [Fig. 4(b)] and the value of
�L/L is of the order of 0.83N−1/2 [Figs. 4(b) and 4(c)]. Note
that it would be possible to increase the resolution by padding
the image—adding zeros around the picture [31]. This simple
process allows the pixel size in Fourier space to be changed,
and thus gives access to different ranges of frequency: it can
improve the Fourier transform resolution and allow a subpixel
accuracy to be reached back in real space. It is not used in the
present article nor in the online code.

B. Validation of cell size and anisotropy determination

To validate the cell size and anisotropy determination
methods, we run the pipeline on an image [Fig. 3(a)] whose
segmentation [Fig. 1(a)] quality makes it a gold standard [10].
The FT calculation has been performed in Matlab on a OSX
with an Intel Core i7 processor at 2.2 GHz clock frequency. It
takes about 60 seconds for the computation of the anisotropy

part alone with the inertia matrix method, about 40 seconds
for the computation of the size alone with the ellipse ring fit
method.

The cell anisotropy measurements using FT inertia matrix
methods correlate with the segmentation measurements,
qualitatively [Figs. 5(a) and 5(b)] and quantitatively
[Figs. 5(c) and 5(d)] in amplitude and orientation. The
cell size and anisotropy (amplitude and orientation)
measurements using the FT ellipse ring fit correlate well
with the segmentation measurements, qualitatively [Figs. 5(e)
and 5(f)] and quantitatively [Figs. 5(c) and 5(g)]. As expected,
the anisotropy orientation measurement is better when the
anisotropy amplitude is larger; at small anisotropies the FT
ellipse ring fit performs better than the FT inertia matrix
[Fig. 5(c)].

C. Measurements on a large dataset

We now test the FT analysis on a case where the cell num-
ber is particularly large. Data come from chicken morpho-
genesis, or more precisely from a study of cell flows during
primitive streak formation, estimating the relative contribu-
tions of cell shape changes and cell neighbor rearrangements
[32]. Each image contains hundreds of thousands of cells
[Fig. 6(a)]. Altogether, taking into account wild-type and mu-
tant conditions, hundreds of movies have been acquired, each
with hundreds of images, resulting in several billion cells. The
image quality and contrast are good enough for segmentation,
but the cell number is too large and segmentation has been
performed only on a subset of images.

Most boxes display clearly isotropic cell shapes [Fig. 6(b)],
as quantitatively confirmed by their anisotropy [Fig. 6(c)].
However, several boxes contain cells clearly displaying a
shape anisotropy [Fig. 6(d)], as again quantitatively confirmed
[Fig. 6(e)]. These anisotropic cells are all located in a band,
perpendicular to the anteroposterior (AP) axis, the so-called
sickle region undergoing an extension. The measurement
which is sought here is the position and width of this extension
region. This does not require segmentation, and FT analysis
seems appropriate.

062401-5



M. DURANDE et al. PHYSICAL REVIEW E 99, 062401 (2019)

FIG. 5. Test of cell anisotropy and size measurements. (a) Map of cell anisotropies on the image in Fig. 1(a). There are 1221 boxes of
128 × 128 pixels with a 50% overlap. Blue bars are from segmentation; data of Fig. 1(a). Red bars are from FT analysis computed with
the inertia matrix. (b) Close-up of a region of panel (a). (c) Anisotropy measurements using FT ellipse fit ring (black) and FT inertia matrix
(red) vs measurements using segmentation. Each point corresponds to a box. The slopes of the fit are 1.02 (R = 0.84) for FT ellipse fit ring
and 0.94 (R = 0.65) for FT inertia matrix. (d) Histogram of the difference between angles from FT with the inertia matrix method and from
segmentation. The color codes for the anisotropy amplitude A. (e) Map of cell ellipses, representing cell sizes and anisotropies. Blue shows
results from segmentation; data of Fig. 1(a). Red shows results from FT ellipse ring fit method, plotted as ellipses in real space. Scale bar is
50 μm. (f) Close-up of a region of panel (e). (g) Major axis (red) and minor axis (orange) measurements using FT ellipse fit vs measurements
using segmentation. Each point corresponds to a box; the slope of the fit is 0.83 (R = 0.79).

Taking advantage of the expected band structure, we av-
erage the FT spectrum [Fig. 6(f)] over boxes in a rectangle
perpendicular to the AP axis, strongly improving the signal-
to-noise ratio [Fig. 6(g)]: the ellipse ring becomes visible. We
have the choice between both methods and choose here the

FT inertia matrix, more robust than the FT ellipse ring fit
to variations in image quality and contrast and sufficient to
answer the questions under consideration. By thresholding,
calculating the inertia matrix, and diagonalizing it, we mea-
sure the anisotropy of the average FT (not the average of FT
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FIG. 6. Large cell number anisotropy measurements. (a) Light sheet microscopy image of a chicken embryo at cellular resolution [32].
Scale bar is 200 μm. The field of view contains on the order of 105 cells. The anteroposterior (AP) axis is horizontal, with the anterior on the
left, posterior on the right. The two framed squares are 200 × 200 pixels (∼100 cells). (b), (c) Close-up of yellow framed square in panel (a),
and corresponding anisotropy measured by FT inertia matrix at several positions. (d), (e) Same as panels (b) and (c) for green framed square in
panel (a), in the sickle region. For panels (b) and (d), the scale bar is 20 μm; for panels (c) and (e), the scale bar is 10 % elongation. (f) Left: raw
Fourier spectrum of the green framed square in A. Right: Same after removing small spatial frequencies and adapting the color scale. White
scale bar is 10−1μm−1. (g) Same as panel (f), averaged over the whole blue framed rectangle in panel (a), perpendicular to the AP axis. (h)
Anisotropy vs position along the AP axis. Averages are performed perpendicularly to the AP axis, as in panel (g), and the anisotropy computed
after averaging. Red shows measurements using segmentation; blue shows measurements using FT inertia matrix; lines are Gaussian fits to the
region between 4500 and 6300 pixels from left border. (i) Measurements using FT inertia matrix vs measurements using segmentation. Dashed
line is linear fit the same data as in (h) (in red), slope 1.02 (R = 0.89).
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FIG. 7. Strain: isotropic and anisotropic contributions. Under a purely isotropic deformation, or growth (positive or negative), (a) a disk
of radius L0 transforms into (b) a disk of radius L1. Under a purely anisotropic deformation, or convergence-extension, (b) a disk of radius
L1 transforms into (c) an ellipse of major axis Lmaj, in direction θ , and minor axis Lmin, in the perpendicular direction, with area conservation
expressed by LmajLmin = L2

1 .

anisotropy). The calculation has been performed on an OSX
with an Intel Core i7 processor at 2.2 GHz clock frequency. It
takes three minutes in Matlab to compute the anisotropy part
alone with the inertia matrix method.

FT provides the whole profile of anisotropy along the x
axis; it clearly reveals the existence and estimates the position
and width of the band, in good qualitative agreement with
the segmentation [Fig. 6(h)]. Quantitatively, for boxes with
anisotropy at least equal to 0.08, the agreement between FT
and segmentation results is very good [Figs. 6(h) and 6(i)]:
for data obtained with segmentation, the Gaussian fit peak
position is at 5500 ± 11 μm and its standard deviation is
σ = 358 ± 23 μm, while for the FT inertia matrix data, the
peak position is at 5450 ± 10 μm and σ = 377 ± 20 μm.

IV. CONCLUSION

In summary, we present a Fourier-transform-based anal-
ysis pipeline to measure the coarse-grained field of pattern
anisotropies. It applies in particular to fixed or live, fluorescent
and phase contrast images of epithelial tissues, in which it
characterizes the coarse-grained cell anisotropy. One variant,
the “inertia matrix” method, applies even when the image
quality is low. The other variant, the “ellipse ring” method,
yields also the coarse-grained cell size, and performs better at
small anisotropies.

After a user-friendly manual tuning of a few parameters,
it can automatically handle tens of thousands of cells per
minute. We successfully validated it against segmentation-
based measurements. It is robust against defects in image
contrast, heterogeneities in cell sizes and orientations, choice
of parameters. It is adequate to improve the signal-to-noise
ratio using space, time and/or ensemble averages; the latter
are averages over samples and do not deteriorate the time or
space resolution.

Possible applications include ordered tissues, real-time
analysis of live movies, in vitro tissues, nonliving cellular
materials such as liquid foams; extensions of applications
could include xyz stacks of tridimensional tissues. Moreover,
assuming that in the rest state the coarse-grained cell shape is
isotropic, the pipeline can also yield access to the cell strain

deviator, a mechanical measure important to characterize a
tissue, as shown in a companion paper [33].
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APPENDIX A: MATRICES USED IN THE TEXT

We introduce here three types of 2 × 2 matrices, also called
rank-2 tensors: the inertia matrix, the FT inertia matrix, and
the cell strain.

The inertia matrix of a binarized pattern is defined by

I =
(〈xx〉 〈xy〉

〈xy〉 〈yy〉
)

. (A1)

Here x and y are coordinates with the origin at the pattern
barycenter, 〈x〉 = 〈y〉 = 0. The brackets indicate an average
over the coordinates within the pattern (if the pattern were in
gray levels instead of being binarized, the average would be
weighted by the gray levels). The four terms which appear in
I are the coordinate covariances.

The Fourier transform inertia matrix has the same defini-
tion, Eq. (A1), but it operates in the Fourier space. Here x
and y are coordinates in the space of spatial frequencies, again
with the origin at the pattern barycenter, 〈x〉 = 〈y〉 = 0.

The cell strain has isotropic and anisotropic contributions
(Fig. 7):

εc = 1
2 Tr(εc)I2 + εdev

c , (A2)

where I2 is the identity matrix in two dimensions and Tr is the
trace.

Consider a circle of radius � (Fig. 7) and apply a
small variation of its length d�. Its relative extension is
d�/� = d (ln �). Integrating this infinitesimal extension be-
tween the initial and final states yields the expression for
strain [34], which for the isotropic part is written [Figs. 7(a)
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FIG. 8. Texture tensor versus inertia matrix. Data presented here
are from the same dataset as Fig. 1. Diagonal component (green)
and off-diagonal component (red) of the texture tensor M as defined
in Ref. [18] versus the corresponding anisotropic (diagonal and off-
diagonal) component of the inertia matrix I , representing cell shape
anisotropy. Slopes are 0.88 and 0.96, correlations coefficients are
0.99 and 0.98, respectively. Tensors built with data from Ref. [10],
here plotted after adimensionalization by the isotropic part of the
respective tensor. To compute each of the 14 112 points, tensors of
individual cells are computed and then averaged in Eulerian grids of
40 × 40 μm2 with 50% overlap. Then a sliding average is performed
on 2 h (24 frames) of time with a one hour overlap. Boxes at the
pattern boundary which are filled at less than 30% by cells are
excluded from the fit.

and 7(b)]

1

2
Tr(εc)I2 = ln (L1/L0)

2

(
1 0
0 1

)
, (A3)

and for the anisotropic part, after diagonalization along axes
of directions θ and θ + π/2 [Figs. 7(b) and 7(c)]:

εdev
c =

(
ln

( Lmaj

L1

)
0

0 ln
( Lmin

L1

)
)

=
( ln (Lmaj/Lmin )

2 0

0 − ln (Lmaj/Lmin )
2

)
, (A4)

where L1 = √
LmajLmin. The cell strain deviator amplitude is

1
2 ln Lmaj

Lmin
, and the cell strain deviator orientation is θ . The cell

strain deviator can be inferred from the pattern anisotropy,
without requiring any information about the current cell size
L1 or its rest state value L0; the above derivation only assumes
that the rest state is isotropic. Note that this definition of the
strain is called the “true” strain, or Hencky strain [29]. When

FIG. 9. Robustness of the inertia matrix method quality versus
choice of parameter: correlation coefficient versus “proportion” pa-
rameter (see text), for the Drosophila pupa data set. The correlation
slope is color coded. The method quality is optimal when the
correlation coefficient is high and the slope close to 1. The red arrow
represents the parameter range which can reasonably be used for this
data set.

the cell strain deviator amplitude is much smaller than unity,
one can alternatively use any approximation equivalent at first
order, such as 1

2 ( Lmaj

Lmin
− 1), for instance when using the linear

approximation to the true strain, or 1
4 (

L2
maj

L2
min

− 1), when using
quadratic tensors attached to the matter: inertia matrix, defined
in Eq. (A1), or texture tensor, defined in Ref. [18]. We have
also checked that the inertia matrix and the texture tensor
statistically yield equivalent information (Fig. 8).

APPENDIX B: ROBUSTNESS OF INERTIA
MATRIX METHOD

Figure 9 investigates the robustness of the inertia matrix
method quality versus the choice of the main parameter, the
manually selected proportion p of bright pixels used when
thresholding the Fourier transform [Fig. 3(h)]. Using the
Drosophila pupa dataset, for each value of the proportion we
compare the inertia matrix method results with the segmen-
tation analysis considered as a gold standard, by performing
a linear regression on data with anisotropy larger than 0.08.
The method quality is considered as optimal when the linear
regression has a slope close to 1 and its correlation coefficient
is high. We find an optimum for a proportion around 2 × 10−2

and a large parameter range around this value where the
method quality is robust (red arrow).
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