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Abstract

Like theoretical physics, theoretical biology is not just mathematical modeling. Instead,
theoretical biology should strive to find suitable first principles to ground the understanding
of biological phenomena and ultimately frame biological experiments and mathematical
models. First principles in physics are expressed in terms of symmetries and the associated
conservations, on the one side, and optimization on the other side. In biology, we argue
instead that a strong notion of variation is fundamental. This notion encompasses new
possibilities and the historicity of biological phenomena. By contrast, the relative regularity
of some aspects of biological organisms, which we call constraints, should be regarded as
the consequence of a mutual stabilization of the parts of organisms. We exemplify several
aspects of this framework with the modeling of allometric relationships. Our change of
perspective leads to reconsider the meaning of measurements and the structure of the space
of description.
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1 Introduction
General theoretical frameworks are scarcely addressed in the study of organisms and their
parts. By contrast, this kind of work originated the theoretical frameworks of physics, which
are the starting point of most investigations in contemporary mathematical physics. Even
in physics, Peter Higgs has emphasized that it would be particularly challenging to perform
his theoretical work today [1]. Thinking at the level of encompassing theoretical frameworks
involves a reorganization of knowledge and of the way we produce knowledge. Without such
reorganizations, knowledge becomes increasingly fragmented by local epistemic innovations and
their constraints that generate increasingly contradictory sub-fields and sub-sub-fields. Current
biology seems to follow this trend. For example, the concept of gene has shattered in many
different local, operational concepts [9, 7].

In this context, the emergence of mathematical modeling in biology is both a chance and
a peril for biological knowledge. The peril is an amplification of this trend of fragmentation.
Mathematical modeling is not performed by biologists themselves but is performed by mathe-
maticians, computer scientists or physicists. Their works bring new concepts in biology, but these
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tools and theoretical frameworks were not designed to accommodate the specificities of biology,
and the scientists involved are not always knowledgeable of these specificities. For example, we
have reviewed the hypothesis used to model the behavior of cells in models of morphogenesis,
and these hypotheses were for a large part contradictory [18]. At the same time, interdisciplinary
approaches to biology are also a chance for biological knowledge. For example, thinking in terms
of systems is a way to overcome the linear approach of causality which dominates traditional
molecular biology [21]. However, biology is neither physics nor dirty or noisy physics. Importing
the ways of thinking of physics and its mathematical objects of choice in biology without working
for a proper theoretical integration would increase the fragmentation of biological knowledge by
multiplying the use of hypotheses inconsistent with each other. Foucault stated that working
means undertaking to think differently [8]. This process takes time and requires constructive
contradictions which are both disrupted by the current organization of scientific institutions and
its management by the competition for survival, criticized by Higgs among many others [1].

In this paper, we will present several theoretical ideas for biology, which are the result of a
transdisciplinary effort towards a theory of organisms. As a preliminary discussion and in order
to avoid possible confusions, we want to emphasize that the authority of physics is often misused
in biology. The interface between physics and biology is instantiated in a variety of ways that
entail a variety of epistemological statuses. Let us develop this point.

Physics in biology can mean a genuine use of a physical theory to understand an aspect of a
biological object. For example, the application of thermodynamic principles shows that organisms
depend on fluxes of matter and energy in order to remain far-from-thermodynamic equilibrium
situations. Similarly, the physical properties of biological molecules are frequently investigated
from a purely physical perspective.

However, the use of physics can have a distinct epistemological meaning: the use of math-
ematical models designed to understand abiotic phenomena in order to understand biological
phenomena when no theoretical principle of physics justifies this transfer. In many cases, it is a
mathematical and conceptual structure that is transferred from the study of one phenomenon
to another. For example, statistical mechanics was designed to study the collective behavior of
large collections of particles and to provide a deeper understanding of thermodynamics. The
mathematical framework of statistical mechanics is used in current biophysics to study flocks
of birds or schools of fishes [4, 19]. We do not intend here to criticize these approaches per se.
However, it stands to reason that they depend on specific hypotheses concerning fishes and birds
since it does not follow from the laws of physics that they should behave like (strange) molecules.
It should be clear that in these cases, the validity of the models inherited from physics depends
on biological hypotheses: hypotheses on birds and fishes, which are elementary objects of the
models. To further illustrate this idea, let us recall that the concept of temperature is the result of
a very long history of conceptualization in physics and is objectivized by a diversity of empirical
and theoretical considerations [5]. In these models, the concept of temperature becomes relevant
in abstracto for systems like flocks of birds, but it does not capitalize on the work performed in
physics beyond its purely formal role in statistical mechanics.

Last but not least, the use of Physics in biology can mean the use of the physical method to
understand natural phenomena, which is characterized by its use of mathematics. For example,
the mathematical approach of population genetics neither builds on physical laws nor use pre-
existing models of physics; however, scientists in this field strive to follow the same epistemology.

Even though each of these approaches has its merits and successes, we dare to think that they
should be embedded in a more profound theoretical framework based on genuinely biological
principles. As far as existing mathematical models are concerned, our perspective can be compared
to one of the early quantum physicists who imported classical potentials in an entirely new
epistemological, theoretical and mathematical framework. In the case of biology, we think that it
is not possible to elude the issues raised by the historicity of living phenomena that is implied by
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the theory of evolution. We think that we also have to accommodate the interdependencies that
characterize organized objects such as cells and organisms and that are shaped over historical
and ontogenetic times. Last, the behavior of cells and organisms requires a specific analysis. We
will give an overview of the concepts which follow from the analysis of these ideas, and illustrate
some of them with a mathematical schema for allometric relations in biology.

2 Towards a theoretical biology
In order to address how we should theorize in biology, it is beneficial to take a step back and start
with basic ideas. Biological objects are far from thermodynamic equilibrium, and their existence
is precarious. They present a remarkable diversity in the way they sustain their existence, and
their diversification is an intrinsic component of the continuing, collective ability of biological
objects to endure. Organisms reproduce, which means that they generate other organisms that
are similar but display differences in their shapes and the way they live. Transformism, the core of
the theory of evolution, posits that the diversity of current life forms is the outcome of this process
of reproduction with variation starting from simple life forms (reproduction with modification in
the language of Darwin [6]).

Biological phenomena are often projected on a physics worldview where understanding an
object means describing its state in a mathematical phase space endowed with a dynamical or
structural equation, often justified by a principle of optimization. From this perspective, biological
objects would be complex objects in a high-dimensional space. However, this perspective has
little practical value in everyday biology and does not build on the available theoretical concepts,
that is to say, the theory of evolution and other rationals that we will develop below. It expands
speculatively on something that we do not have, that is to say, a sound theoretical definition of a
fixed phase space endowed with justified rules describing state changes.

When describing experiments, biologists cannot scan the complete organization of each
organism — it is doubtful that this notion has a genuine meaning without a generic description
of the way organisms sustain their existence. Even if such an operation would be possible for one
organism, its sibling, even its twin, would be somewhat different in the way it is organized.

In order to build on the structure of the theory of evolution, systematists have designed a
framework, called the phylogenetic method that enables them to classify living beings by their
estimated genealogical origin, that is to say, their past [12]. This method implies that every time a
scientific work uses a name defined by systematics, for example, the name ”mouse” (Mus musculus),
this scientific work logically depends on a historical epistemology [15].

The use of a historical epistemology has the remarkable property of being able to accommodate
the variations of biological objects; however strong they may be. Being a tetrapod does not imply
that an animal would have four limbs, it merely implies that an animal descends from the last
common ancestor of a group of organisms, that animals of this group are more closely related to
each other than to other life forms, and that this group is called tetrapods. Having this shared
ancestor goes with the idea that two tetrapods share many traits, and more precisely have many
organizational similarities. It does not imply, however, that there would be a trait shared by all
tetrapods. For every trait, there is always the possibility that a lineage would lose it or transform it.
For example, tetrapods do not necessarily have four limbs as exemplified by snakes. The reference
point to define a biological group is the theoretical, last common ancestor of this group and not
the theoretical description of a phenotype. Elements of a group do not necessarily share a trait or
fixed set of traits. For example, it is perfectly acceptable to have a group with characters 𝑎1, ..., 𝑎𝑛
and 𝑛 species 𝑆𝑘 with characters (𝑎𝑖)𝑖≠𝑘. In this case, all these species are clearly related since they
have much in common, but at the same time, there is no single character that is shared by all the
species.

Of course, the use of historical epistemology is not restricted to systematics. In biological
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practice, controlled, reproducing pools of organisms and cells are established and maintained
to facilitate the use of objects having a recent shared past. Here, again, concrete objects are
described by their past. The description and the control of this past include the context in which
they live. This methodology leads to define strains, sub-strains, and sub-sub-strain in order to
accommodate the never stopping variations of biological objects and their continuous production
of a history, even in highly constrained conditions [15].

Historical reasoning is a way to accommodate biological variations in a conceptually accurate
manner. It is also a method to have control on the similarity between biological objects. For
example, two mice are more similar overall, than a mouse is similar to a rat ... or a pine tree.
However, part of the anatomical structure of a single goat specimen is sometimes closer to another
species than to goats: following the principle of variation such control is never qualitatively
perfect [31]. Nevertheless, control of the genealogical proximity of objects is the principal manner
by which the similarity of objects is established in experiments, but sometimes at the cost of
observing features that may be idiosyncratic to a specific strain or cell line. This situation leads to
compromises between working with similar objects and the generality of the results [3].

These considerations lead to assuming that, in biology, variation and historicity come first
[17]. This assumption implies a departure from the theoretical and epistemological structure
of physical theories. In physics, invariants and invariant-preserving transformations come first,
they correspond to “laws of nature”, or in modern terms, to theoretical principles [28, 2]. In
physics, the changes of natural phenomena are understood as changes of states in mathematical
spaces following rules that are structured by this encompassing invariance. In biology, instead, we
posited a principle of variation stating that the changes of biological objects can require changes
of mathematical structure to describe them. When we assume that variation and historicity come
first, the question of stability or at least local invariance requires a renewed theoretical analysis.
However, the principle of variation does not imply that biological phenomena are pure chaos (in
the philosophical sense).

Biological objects display regularities, but the nature of their regularities is more labile than
physical regularities, and they require a specific concept and epistemology. We have proposed to
call them constraints [26]. Since variation and historicity come first, constraints come second.
Biological constraints emerge historically as a result of variations and may change or even
disappear with time. There is a fundamental contingency in the constraints which shape a given
life-form. At the same time, the capacity of a constraint to last over time is not granted a priori
by the general framework. A lasting constraint requires an explanation.

There are at least two kinds of such explanations which are considered fundamental in biology
even though they are not habitually interpreted as such. The first is the principle of natural
selection. As pointed out by Guillaume Lecointre, the first epistemological role of natural
selection is to be a principle of conservation as illustrated by the subtitle of the Origin of Species:
“the preservation of favored races in the struggle for life” (we emphasize) [6]. For example, why is
the genetic code stable at the level of ribosomes? The main reason, we argue, is that its changes
lead to the complete randomization of the protein produced with respect to their historical
functions so that the resulting cells or organisms are not viable. However, it is a conceptual
mistake to postulate that there would be an invariant mapping from DNA sequences to proteins
— this mistake is presumably inherited from physical reasoning, provided that the author of
this hypothesis, Francis Crick, is a physicist by training. Many variations occurred that changed
the production of proteins. The specificity of the genetic code in ribosomes is that its alteration
entails too many changes to be viable.

The second kind of explanation for the stability of a constraint takes place at the level of a
given organism or cell. In organized objects, constraints mutually maintain each other, which
has led us to formulate the principle of organization [20]. This idea stems from a long tradition
in theoretical biology. For example, the concept of autopoiesis posits that living beings are
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composed of a network of parts which regenerate its parts [29]. Rosen developed a similar
rationale with a different formalism, based on category theory [22]. As the last example, starting
from a thermodynamic perspective, Kauffman developed the idea that living beings depend on
cycles between work and constraints, where work produces constraints and constraints shape
work [11]. This kind of ideas is mobilized to provide a theoretical structure to systems biology
[32]. In the concept of closure of constraints, a constraint act on a process which stabilizes or
regenerate another constraint and so on till a circularity appears, so that constraints which are
part of an organization collectively stabilize each other [16].

Last, cell theory is an enduring concept of biology. Cell theory states that organisms are
made of cells and that omnis cellula e cellula, that is to say, all cells come from another cell by the
process of proliferation. However, cell theory is insufficient to specify the causal structure required
to understand cellular behaviors. To specify this causal structure, we can use the same kind of
reasoning than in classical mechanics when defining inertia. What happens to an object when
nothing is done to it? Should cells be considered as spontaneously quiescent so that stimulations
would be required for them to move or proliferate, or should cells be considered as spontaneously
moving and proliferating so that quiescence would be the result of constraints? In line with
the theory of evolution, we follow the second hypothesis and posit that the default state of cells
is proliferation with variation and motility [25, 27]. This principle originates from a similar
question that the principle of inertia; however, it has very different epistemological and theoretical
ramifications. The principle of inertia describes the conservation of the momentum of an isolated
system. By contrast, the agentivity underlying the default state of cells describes a situation of
non-conservation. Nevertheless, this approach enabled us to develop a mathematical model of
epithelial morphogenesis in tissue culture [18].

In this setting, possible general definitions of biological objects need to be compatible with
the primacy of historicity. For example, we posit that the principle of organization is valid, but the
structure of biological organizations changed in diverse ways in evolution, with the appearance of
multi-cellular organisms and insect colonies, for example. Viruses can also be analyzed in this
manner: even though part of their life cycle is not organized, they depend on cells and their
organization to reproduce and persist.

In the second part of this article, we focus on a specific method of investigation in biology.
We show that assuming that variation and historicity come first epistemologically leads to a
renewed perspective on this method and especially on the description space that underlies it.

3 A mathematical schema for biological allometry
In physics and biology, it is common practice to investigate how a variable of interest changes
with the size of a system. In physics, this leads to the distinction between intensive and extensive
quantities, with more complex situations being possible. In biology, the size is typically the mass
of the organisms studied, and this approach is called allometry. For example, biologists studied
how metabolism changes with the mass of mammals. Here, the metabolism is measured by
oxygen consumption rate, that is to say, respiration. Allometric relations take the form of a scaling
law 𝑏 = 𝑏0𝑚𝛼. There have been heated debates on the value of 𝛼 or even the existence of such
a mathematical relation [23, 24, 14]. It follows from our general discussion above that such a
”law”, if valid enough, is theoretically the results of a combination of shared constraints. As a
result, this relation can be infringed or transformed. Empirically, 𝛼 is different depending on
the definitions of organisms’ activity leading to distinct experimental and theoretical definitions
of the metabolism. 𝛼 is also impacted by the various features which appeared in evolution and
impact the metabolism.

Let us take a mathematical step back. The functional equation 1 means that scaling the mass
leads to scaling the variable represented by 𝑏 = 𝑓(𝑚). In other words, a large animal would be an
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enlarged small animal and vice versa. The animals of different sizes are assumed to be symmetric,
but the symmetry is not trivial so that discovering it would have a deep biological meaning.

𝑓(𝜆𝑚) = 𝑔(𝜆)𝑓(𝑚) (1)

Solving this functional equation is usually performed with the assumption that the function
𝑓 is continuous. This assumption leads to ∃𝛼, ∀𝑚, 𝑓(𝑚) = 𝑓(1)𝑚𝛼, which is the usual scaling
relation. This relation is too rigid to capture accurately biological phenomena since it describes a
situation where constraints would be fixed, and this contradicts our concept of constraints.

However let us drop the assumption of continuity. Then, equation 1 only entails that for all 𝑚0
inℝ∗+ there exists 𝛼𝑚0 such that for all 𝑞 inℚ,𝑓(𝑚𝑞

0) = 𝑓(1)𝑔(𝑚0)
𝑞𝛼𝑚0 . To discuss this situation, it

is simpler to transform the multiplicative structure into an additive structure. Equation 1 becomes:

𝐹(𝑀 + 𝑁) = 𝐺(𝑀) + 𝐹(𝑁) (2)

Then, the solutions are affine functions on ℝ as a ℚ-affine space. Since we are using ℚ-linearity,
we use the standard notation 𝑥ℚ = {𝑥𝑞|𝑞 ∈ ℚ}, which is a vectorial ℚ-line, and also 𝑦+𝑥ℚ which
is an affine ℚ-line.

The use of this mathematical object is not usual in natural sciences. We will show that it
illustrates several distinctive characteristics of biology.

To make the meaning of this framework explicit, let us exhibit the quantity playing the role
of 𝛼 in this framework. We propose to define the physical form corresponding to a change of
mass, in order to clarify the biological and experimental meaning of such a transformation.

𝑀0 → 𝑀0 + 𝑞𝑀1 = 𝑀 (3)
𝐵(𝑀0) → 𝐵(𝑀0 + 𝑞𝑀1) = 𝐵(𝑀0) + 𝑞𝐵(𝑀1) (4)

= 𝐵(𝑀0) + (𝑀0 + 𝑞𝑀1 −𝑀0)
𝐵(𝑀1)
𝑀1

(5)

= 𝐵(𝑀0) − 𝑀0
𝐵(𝑀1)
𝑀1

+𝑀
𝐵(𝑀1)
𝑀1

(6)

= 𝐴(𝑀0,𝑀1) + 𝑀
𝐵(𝑀1)
𝑀1

(7)

Thus, the allometric exponent 𝛼 is given by 𝛼 = 𝐵(𝑀1)/𝑀1. We should emphasize again that
this equation is only valid for 𝑀 of the forms 𝑀 = 𝑀0+𝑞𝑀1, with 𝑞 ∈ ℚ. We call the equational
form of equation 7 the physical form of the equation because it relates two physically measurable
quantities, provided that the transformation remains in the same ℚ-line. In the multiplicative
perspective associated with scaling laws, it corresponds to 𝑏(𝑚) = 𝑎(𝑀0,𝑀1)𝑚𝐵(𝑀1)/𝑀1 = 𝑎𝑚𝛼.

Then, the usual allometric relation for the metabolism of mammals corresponds to the
following for 𝑞 ∈ ℚ [23]:

𝑀0 → 𝑀0 + 𝑞𝑀1 = 𝑀 (8)

𝐵(𝑀0) → 𝐵(𝑀0 + 𝑞𝑀1) = 𝐴(𝑀0,𝑀1) + 𝑀
𝐵(𝑀1)
𝑀1

with
𝐵(𝑀1)
𝑀1

≈ 0.75 (9)

This relation corresponds to the allometric relation 𝑏 ≈ 𝑏0𝑚0.75, and is shown by measuring
mammals in a very specific state, the basal state, where organisms perform no specific activity,
that is to say, organisms are in an undisturbed, non-sleeping, post-absorptive state and in a
thermoneutral environment.
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However, this relation changes if we consider another definition of metabolism. For example,
the maximum level of sustainable exercise leads empirically to [30]:

𝑀′
0 → 𝑀′

0 + 𝑞𝑀′
1 = 𝑀′ (10)

𝐵(𝑀′
0) → 𝐵(𝑀′

0 + 𝑞𝑀′
1) = 𝐴(𝑀′

0,𝑀′
1) + 𝑀′𝐵(𝑀

′
1)

𝑀′
1

with
𝐵(𝑀′

1)
𝑀′

1
≈ 0.87 (11)

Equations 9 and 11 are compatible if 𝑀1/𝑀′
1 ∉ ℚ. Different allometric relationships can

fit into this framework without contradiction. For example, the same reasoning may be used
to accommodate rodents which have a lower scaling exponent than mammals overall [24]. In
this framework, the changes of mass described by equations 8 and 10 correspond respectively to
the basal metabolic rate and maximum metabolic rate; therefore, they have a different biological
meaning. Similarly, the different exponent in the case of rodents corresponds to differences in the
organization of this group and the corresponding way their mass is related to their metabolism.
Dropping the continuity hypothesis on 𝐵 enables to accommodate the lability of biological objects
and the open-ended diversity of scaling relationships which stems from evolutionary novelties
and ontogenetic diversity.

Going from one mass to another is no longer a continuous function. What would be the
meaning of the corresponding concept of mass? To discuss it, let us consider what measurement
entails in this framework. Measurement has two basic dimensions:

A metric or physical dimension: this dimension is associated with the classical concept of phys-
ical measurement. This measurement, performed with a weighing machine, entails that a
mass is in a given interval of confidence. This measurement is adequate for the properties
of inertia and gravitation because they are continuous in appropriate conditions.
However, the discontinuous nature of 𝐵 implies that the physical measurement is not
sufficient to describe a biological change of mass.

An algebraic or properly biological dimension: this dimension describes the specific meaning
associated with a change of mass, depending on the objects studied and the experimental
protocol used. An increase in mass can have a diversity of biological meaning. For example,
at the level of an individual, changes of mass can be due to development, obesity, pregnancy
or an increase of muscle mass. At the level of species, changes of mass can be the increase
of the average size of organisms, with or without qualitative change of organization such
as the hypertrophy of the brain in humans or the appearance of scales in pangolins.
This dimension of measurement determines the dominant direction 𝑀ℚ in the measure-
ment setup (for example, interspecific allometry of the basal metabolic rate among mam-
mals). This algebraic component cannot be obtained by the physical measurement alone
because ∀𝑥, 𝑥ℚ is dense in ℝ. It is determined by the biological definition of a change of
mass with respect to the metabolism. Here, we emphasize biological meaning as central to
measurement, in line with previous works [10, 15].

What is the mass of an organism in this framework? From the physical perspective, we can
measure its value with arbitrarily high precision. From a biological perspective, this does not
provide any information on the algebraic value of this mass, whose meaning only appears when
comparing at least two biological masses. The biological, algebraic aspect of the mass is labile and
may change depending on the measurement performed while remaining in the confidence interval
provided by the physical measurement. This definition implies that the mass of an organism is
not an entirely well-defined property that would be an invariant of an object. Again, even though
this idea is unusual, it is biologically meaningful since we are discussing masses inasmuch as they
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are involved in the metabolism, and this mass depends on the organization and the activity of the
considered organisms. To describe the properties of biological measurement on theoretical bases,
a more general framework is required [15].

Now, let us look more precisely at the possible symmetry changes, which are changes of
constraints. Taking a limit, lim𝑛→∞ 𝑞𝑛𝑀1 = 𝑀′

1 ∉ 𝑀1ℚ, leads to a symmetry change by
generating a change of the algebraic nature of the transformation. We can distinguish three
different situations:

1. Biologically, the degree of freedom 𝑀1ℚ is valid, but the transformations in 𝑀′
1ℚ are

not. This leads to masses of the form 𝑀′
1 + 𝑞𝑀1. Under these conditions, the allometric

exponents associated with 𝑀1 remain the same, but the class of objects is different. For
example, we consider birds instead of mammals [13]. The physical forms are 𝑏(𝑚) = 𝑎𝑚𝛼

and 𝑓(𝑚) = 𝑎′𝑚𝛼. It is a change of classes of objects, but both are invariants for the same
symmetry.

2. The degree of freedom 𝑀′
1ℚ is valid, but 𝑀1ℚ is no longer a valid degree of freedom.

This situation leads to possible masses of the form 𝑞𝑀′
1. Then, we can identify a new

allometric exponent, leading to the physical form 𝑏𝑚𝛽. This situation describes a more
radical organizational or measurement change, for example, observing the maximum
metabolic rate instead of the basal metabolic rate. It is a complete change of symmetry.

3. Both degrees of freedom are valid, leading to masses 𝑞1𝑀1 + 𝑞′1𝑀′
1. We can write the

physical form as 𝑎 �𝑚𝜌 �
𝛼
𝜌𝛽. For example, when considering obesity, 𝑞′1𝑀′

1 parameterizes
the corresponding organizational change, while 𝑞1𝑀1 correspond to interspecific allometry.
In physical form, 𝑚

𝜌 would be the health weight and 𝜌 is the corresponding overweight
ratio. If we assume that overweight does not influence basal metabolic rate, for example,
we obtain 𝛽 = 0. Note that even in this simple case, the result is not trivial since 𝜌 becomes
relevant with exponent −𝛼.

In summary, we have defined a framework where measurement has an algebraic dimension
and a metrical dimension. The metrical aspect is sufficient to determine what happens provided
that the algebraic component is preserved. Such a controlled transformation precisely corresponds,
in the log-log space, to a translation along a ℚ-line, 𝑀1ℚ. This translation leads to a power
law, so it describes a scale symmetry. This transformation leads to an exponent that can be
empirically evaluated, provided that the algebraic structure can be (approximately) followed
experimentally (for example, the basal heart rate among mammals). When following another
ℚ-line, say 𝑀2ℚ, another exponent can be found, for example, by the experimental constitution
of another symmetry (the maximum metabolic rate, say). A pointwise shift can also occur, which
does not allow to specify a corresponding exponent. In these cases, there is no empirical degree
of freedom associated with the transformation, and no exponent can be pulled out. Nevertheless,
such a shift can be associated with a specific biological phenomenon, for example, a change of
phylogenetic class (e.g., mammals and birds).

The function 𝐵 cannot be defined explicitly by a finite number of empirical results because the
dimension of ℝ as a ℚ-vector space is not finite. From a biological perspective, this restriction
means that there is an inherent and irreducible limitation to our knowledge of the possible
symmetry changes that biological systems can undergo (here, among allometric symmetries). Only
a finite number of biologically relevant transformations can be known empirically. The function
𝐵 is only partially defined explicitly, and evolution (and ontogenesis) can require the definition
of new symmetry changes, corresponding to new observables. This framework instantiates our
principle of variation, even though it is limited to changes among scaling symmetries.
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In this framework, the neighborhood defined by a physical measurement includes a diversity
of algebraic possibilities — actually all of them. It follows that experimentalists and theoreticians
should take great care of the biological meaning of the changes in mass studied. Otherwise,
no conclusion may be derived. The lability of biological objects requires specific precautions to
interpret measured quantities.

4 Conclusion
In this article, we have sketched an epistemological and theoretical framework where regularities
enabling us to perform mathematical modeling have a role, but this role is very different from
the one in physics. We have illustrated some aspects of this role with a mathematical schema.
Our analysis starts with allometric relations interpreted as ”laws of physics” and biologicize this
framework by accommodating the variations stemming from history.

By dropping the hypothesis of continuity of allometric relations, the space mass ×Metabolism
shatters and is transformed from a two-dimensional space to an infinite dimensional space.
However, unlike spaces of infinite dimension in physics, these dimensions are neither equivalent
nor,more generally, subsumed by generic descriptions. They represent genuine novelties stemming
from the historical nature of biological phenomena and whose meaning and consequences cannot
be pre-stated theoretically.

In this framework measuring a mass as a new meaning because the biological meaning
of a change of mass is diverse, and diversifies over time as a result of the ability of biological
objects to produce a history. Our mathematical schema is restricted to situations verifying simple
scale symmetries; however, a far more general conceptual framework can be designed [15], and
hopefully developed mathematically.
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