Chapitre D'ouvrage Année : 2018

Big Data and Biological Knowledge

Résumé

Some authors assert that the analysis of huge databases could replace the scientific method. On the contrary, we argue that the best way to make these new technologies bear fruits is to frame them with theories concerning the phenomena of interest. Such theories hint to the observable that should be taken into account and the mathematical structures that may link them. In biology, we argue that the community urgently needs an overarching theory of organisms that would provide a precise framework to understand lifecycles. Among other benefits, such a theory should make explicit what we can and cannot predict in principle.
Fichier principal
Vignette du fichier
bigdata_final_web_0.pdf (220.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02398776 , version 1 (08-12-2019)

Identifiants

  • HAL Id : hal-02398776 , version 1

Citer

Maël Montévil, Giuseppe Longo. Big Data and Biological Knowledge. CNR Edizioni. Prediction and Contingency in Biosciences, pp.133-144, 2018. ⟨hal-02398776⟩
100 Consultations
103 Téléchargements

Partager

More