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Abstract

Mathematical modeling is a very powerful tool to understand natural
phenomena. Such a tool carries its own assumptions and should always be
used critically. In this chapter we highlight the key ingredients and steps
of modeling and focus on their biological interpretation. In particular,
we discuss the role of theoretical principles in writing models. We also
highlight the meaning and interpretation of equations. The main aim of
this chapter is to facilitate the interaction between biologists and mathe-
matical modelers. We focus on the case of cell proliferation and motility
in the context of multicellular organisms.

Keywords: mathematical modeling, proliferation, theory, equations, param-
eters

1 Introduction
Mathematical modeling may serve many purposes such as performing quanti-
tative predictions or making sense of a situation where reciprocal interactions
are beyond informal analyses. For example, describing the properties of the
diferent ionic channels of a neuron individually is not sufficient to understand
how their combination entails the formation of action potentials. We need a
mathematical analysis such as the one performed by the Hodgkin-Huxley model
to gain such an understanding [1]. In this sense, mathematical modeling is re-
quired at some point in order to understand many biological phenomena. Let
us emphasize that the perspective of modelers is usually different than the one
of many experimentalists, especially in molecular biology. The latter field tends
to emphasize the contribution of individual parts, but traditional reductionism
[2] involves both the analysis of parts and the theoretical composition of parts
to understand the whole, usually by means of mathematical analysis. Without
the latter move, it is never clear whether the parts analyzed individually are
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sufficient to explain how the phenomenon under study comes to be or whether
key processes are missing.

We want to emphasize the difference between mathematical models on the
one side and theories on the other side. Of course modelization belongs to
the broad category of theoretical work by contrast with experimental work.
However, in this text, we will refer to theory in the precise sense of a broad
conceptual framework such as evolutionary theory. Evolutionary theory has
been initially formulated without explicit mathematics. Evolutionary theory
has actually led to different categories of mathematical analyses such as popu-
lation genetics or phyllogenetic analysis which are very different mathematically.
Theoretical frameworks typically guide modelization and contributes to justify
mathematical models.

Mathematical modeling raises several difficulties in the study of organisms.
The first one is that most biologists do not have the mathematical or physical

background to assess the meaning and the validity of models. The division of
labor in interdisciplinary projects is an efficient way to work but it should at
least be completed by an understanding of the principles at play in every part
of the work. Otherwise, the coherence of the knowledge that result from this
work is not ensured.

The second difficulty is intrinsic. Living objects have theoretical specificities
that make mathematical modeling difficult or at least limit its meaning. These
specificities are at least of two kinds.

• Current organisms are the result of an evolutive and developmental his-
tory which means that many contingent events are deeply inscribed in the
organization of living being. By contrast the aim of mathematical model-
ing is usually to make explicit the necessity of an outcome. For more on
this issue, see [3].

• The study of a part X of an organism is not completely meaningful by
itself. Instead, the inscription of this part inside the organism and in
particular the role that this part plays is a mandatory object of study
to assess the biological relevance of the properties of X that are under
study. As such, the modelization of X per se is insufficient and requires a
supplementary discussion [4].

The third difficulty is that there are no well established theoretical principles
to frame model writing in physiology or developmental biology [5]. In partic-
ular, cells are elementary objects since the cell theory states that there is no
living things without cells. However, cells have complex organizations them-
selves. Modeling their behavior (note 1) is therefore challenging and requires
appropriate theoretical assumptions to ensure that this modeling has a robust
biological meaning.

A theoretical way to organize the mathematical modeling of cell behaviors
is to propose a default state, that is to say to make explicit a state of reference
that takes place without the need of particular constraints, input or signal. We
think that proliferation with variation and motility should be used as a default
state [6,7]. Under this assumption, cells spontaneously proliferate. By con-
trast, quiescence should be explained by constraints explicitly limiting or even
preventing cell proliferation. The same reasoning applies mutadis mutandis to

2



motility. This assumption has been used to model mammary gland morphogen-
esis and helps to systematize the mathematical analysis of cellular populations
[8].

In this chapter we will focus on model writing. Our aim is not to emphasize
the technical aspects of mathematical analysis. Instead, this text aims to help
biologists to understand modelization in order to better interact with modelers.
Reciprocally, we also highlight theoretical specificities of biology which may be
of help to modelers. Of course, the usual way to divide chapters in this book
series is not entirely appropriate for the topic of our chapter. We still kept this
structure and follow it in a metaphorical sense. In materials, we are describing
key conceptual and mathematical ingredients of models. In methods, we will
focus on the writing and analysis of models per se.

2 Materials

2.1 Parameters and states
2.1.1 Parameters

Parameters are quantities that play a role in the system but which are not signif-
icantly impacted by the system’s behavior at the time scale of the phenomenon
under study. From an experimentalist’s point of view, there are two kinds of pa-
rameters. Some parameters correspond to a quantity that is explicitly set by the
experimenter such as the temperature, the size of a plate or the concentration of
a relevant compound in the media. Other parameters correspond to properties
of parts under study, such as the speed of a chemical reaction, the elasticity of
collagen or the division rate τ of a cell without constraints. Changing the value
of these parameters require to change the part in question, see also note 2.

Identifying relevant parameters has actually two different meaning:

• Parameters that will be used explicitly in the model are parameters whose
value is required to deduce the behavior of the system. The dynamics of
the system depends explicitly on the value of these parameters. A fortiori,
parameters that correspond to different treatments leading to a response
will fall under this category. Note that the importance of some parameters
usually appear in other steps of modeling.

• Theoretical parameters correspond to parameters that we know are rele-
vant and even mandatory for the process to take place but that we can
keep implicit in our model. For example, the concentration of oxygen in
the media is usually not made explicit in a model of an in vitro experi-
ment even though it is relevant for the very survival of the cells studied.
Of course, there is usually a cornucopia of this sort of parameters, for
example the many components of the serum.

2.1.2 State space

The state of an object describes its situation at a given time. The state is
composed of one or several quantities, see note 3. By contrast with parameters,
the notion of state is restricted to those aspects of the system which will change
as a result of explicit causes or randomness intrinsic to the system described.
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The usual approach, inherited from physics, is to propose a set of possible states
that does not change during the dynamics. Then the changes of the system will
be changes of states while staying among these possible states. For example, we
can describe a cell population in a very simple manner by the number of cells
n(t). Then, the state space is all the possible values for n, that is to say the
positive integers.

Usually, the changes of state depend on the state of the system which means
that the state has a causal power, which can be either direct or indirect. A
direct causal power is illustrated by n which is the number of cells that are
actively proliferating in the example above and thus trigger the changes in n.
An indirect causal power corresponds, for example, to the position of a cell
provided that some positions are too crowded for cells to proliferate.

2.1.3 Parameter versus state

Deciding whether a given quantity should be described as a parameter or as an
element of the state space is a theoretical decision that is sometimes difficult,
see also note 4. The heart of the matter is to analyze the role of this quantity
but it also depends on the modeling aims.

• Does this quantity change in a quantitatively significant way at the time
scale of the phenomenon of interest? If no it should be a parameter. If
yes:

• Are the changes of this quantity required to observe the phenomenon one
wants to explain? If yes, it should be a part of the state space. If no:

• Do we want to perform precise quantitative predictions? If yes, then the
quantity should be a part of the state space and a parameter otherwise.

In the following, we will call “description space” the combination of the state
space and parameters.

2.2 Equations
Equations are often seen as intimidating by experimental biologists. Our aim
here and in the following subsection is to help demystify them. In the modeling
process, equations are the final explicitation of how changes occur and causes
act in a model. As a result understanding them is of paramount importance to
understand the assumptions of a model.

The basic rule of modeling is extremely simple. Parameters do not require
equations since they are set externally. However, the value of states are unspec-
ified. As a result, equations are required to describe how states change. More
precisely, modelers require an equation for each quantity describing the state.
Quantities of the state space are degrees of freedom, and these degrees of free-
dom have to be “removed” by equations for the model to perform predictions.
These equations need to be independent in the sense that they need to capture
different aspects of the system: copying twice the same equation obviously does
not constrain the states. Equations typically come in two kinds:

• Equations that relate different quantities of the state space. For example,
if we have n the total number of cells and two possible cell types with cell
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counts n1 and n2, then we will always have n = n1 + n2. As a result, it
is sufficient to describe how two of these variables change in order obtain
the third one.

• Equations that describe a change of state as a function of the state.
These equations typically take two different forms, depending on the rep-
resentation of time which may be either continuous or discrete, see note
5. In continuous time, modelers use differential equations, for example
dn/dt = n/τ . This equation means that the change of n (dn) during
a short time (dt) is equal to ndt/τ . This change follows from cell pro-
liferation and we will expand on this equation in the next section. In
discrete time, n (t+ ∆t)− n (t) is the change of state which relates to the
current state by n (t+ ∆t)− n (t) = n (t) ∆t/τ . Alternatively and equiv-
alently, the future state can be written as a function of the current state:
n (t+ ∆t) = n (t) ∆t/τ + n (t). Defining a dynamics requires at least one
such equation to bind together the different time points, that is to say to
bind causes and their effects.

2.3 Invariants and symmetries
We have discussed the role of equations, now let us expand on their structure.
Let us start with the equation mentioned above: dn/dt = n/τ . What is the
meaning of such an equation? This equation states that the change of n, dn/dt,
is proportional to n. 1) In conformity, with the cell theory, there is no spon-
taneous generation. There is no migration from outside the system described,
which is an assumption proper to a given situation. The only source of cells is
then cell proliferation. 2) Every cell divides at a given rate, independently. As
a conclusion, the appearance of new cells is proportional to the number of cells
which are dividing unconstrained, that is to say n. A cell needs a duration of
τ to generate two cells (that is to say increase the cell count by one) which is
exemplified by the fact that for n = 1, dn/dt = 1/τ .

Alternatively, this equation is equivalent to dn/dt×1/n = 1/τ , and the latter
relation shows that the equation is equivalent to the existence of an invariant
quantity: dn/dt × 1/n which is equal to 1/τ for all values of n. Doubling n
thus requires to double dn/dt. In this sense, the joint transformation dn/dt→
2dn/dt and n → 2n is a symmetry, that is to say a transformation that leaves
invariant a key aspect of the system. This transformation leads from one time
point to another. Discussing symmetries of equations is a method to show
their meaning. Here, in a sense, the size of the population does not matter.
Symmetries can also be multi-scale, for example fractal analysis is based on a
symmetry between the different scales that is very fruitful in biology [9,10].

Probabilities may also be analyzed on the basis of symmetries. Randomness
may be defined as unpredictability in a given theoretical frame and is more
general than probabilities. To define probabilities, two steps have to be per-
formed. The modeler needs to define a space of possibilities and then to define
the probabilities of these possibilities. The most meaningful way to do the latter
is to figure out possibilities that are equivalent, that is to say symmetric. For
example, in a homogeneous environment, all directions are equivalent and thus
would be assigned the same probabilities. A cell, in this situation, would have
the same chance to choose any of these directions assuming that the cell’s orga-
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nization is not already oriented in space, see also note 6. In physics, a common
assumption is to consider that states which have the same energy have the same
probabilities.

Now there are several ways to write equations, independently of their deter-
ministic or stochastic nature:

• Symmetry based writing is exemplified by the model of exponential growth
above. In this case, the equation has a genuine meaning. Of course the
model conveys approximations which are not always valid, but the terms
of the equation are biologically meaningful. This also ensure that all
mathematical outputs of the model may be interpreted biologically.

• Equations may also be based on a mathematical reasoning which provides
a legitimacy to their form but restricts their biological interpretations. For
example, many mathematical functions may be approximated around 0 by
the sum ax + bx2 + .... As a result, a usual way to model a population
which constraints itself is the following

dn/dt = n/τ − n2/kτ

dn/dt = n/τ (1− n/k)

where k is the maximum of the population. Le us remark that we have
written the equation in two different forms, we come back on this in note
7. The solution of this equation is the classical logistic function.

Note however that this equation has symmetries which are dubious from
a biological viewpoint: the way the population takes off is identical to the
way it saturates because the logistic equation has a center of symmetry,
A in figure, see also [11].

Figure 1: The logistic function. This function is often used to model a
growth with constraints leading to a saturation. However, this function
possess a center of symmetry, A, which implies that the initial exponential
growth is exactly equivalent to the way the growth saturates. This is
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biologically problematic: there is an initial lag phase and the saturation
trigger causes that are not significant in the initial growth leading for
example to cell death [12].

• The last way to write equations is called heuristic. The idea is to use
functions that mimic quantitatively and to some extent qualitatively the
phenomenon under study. Of course this method is less meaningful that
the others but it is often required when the knowledge of the underlying
phenomenon is not sufficient.

2.4 Theoretical principles
Theoretical principles are powerful tools to write equations that convey biolog-
ical meaning. Let us provide a few examples.

• Cell theory implies that cells come from the proliferation of other cells and
excludes spontaneous generation.

• Classical mechanics aims to understand movements in space. The accel-
eration of an object requires that a mechanical force is exerted on this
object. Note that the principle of reaction states that if A exerts a force
on B, then B exerts the same force with opposite direction on A. There-
fore, there is an equivalence between “A exerts a force” and “a force is
exerted on A” from the point of view of classical mechanics. The difficulty
lies in the forces exerted by cells as cells can consume free energy to exert
many kinds of forces. Cells are neither an elastic nor a bag of water, they
possess agency which leads us to the next point.

• As explained in introduction, the reference to a default state helps to write
equations that pertain to cellular behaviors. There are many aspects that
contribute to cellular proliferation and motility. The writing of an equation
such as the logistic model is not about all these factors and should not be
interpreted as such. Instead, it assumes proliferation on the one side and
one or several factors that constrain proliferation on the other side.

3 Methods

3.1 Model writing
Model writing may have different levels of precision and ambition. Models can be
a proof of concept, that is to say the genuine proof that some hypotheses explain
a given behavior or even proofs of the theoretical possibility of a behavior.
Proof of concept do not include a complete proof that the natural phenomenon
genuinely behave like the model. On the opposite end of the spectrum, models
may aim at quantitative predictions. Usually, it is good practice to start from
a crude model and after that to go for more detailed and quantitative analyses
depending on the experimental possibilities.

We will now provide a short walkthrough for writing an initial model:

• Specify the aims of the model. Models cannot answer all questions at
once, and it is crucial to be clear on the aim of a model before attempting
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to write it. Of course, these aims may be adjusted afterwards. The scope
of the model should also depend on the experimental methods that link it
to reality.

• Analyze the level of description that is mandatory for the model to explain
the target phenomenon. Usually, the simplest the description is the better.
When cells do not constrain each other, describing cells by their count
n is sufficient. By contrast, if cells constrain each other, for example
if they are in organized 3d structures it can be necessary to take into
account the position of each individual cell which leads to a list of positions
~x1, ~x2, ~x3, .... Note that in this case the state space is far larger than before,
see note 8. A fortiori, it is necessary to represent space to understand
morphogenesis. Note that the notion of level of description is different
from the notion of scale. A level of description pertains to qualitative
aspects such as the individual cell, the tissue, the organ, the organism,
etc. By contrast, a scale is defined by a quantity.

• List the theoretical principles that are relevant to the phenomenon. These
principles can be properly biological and pertain to cell theory, the notion
of default state, biological organization or evolution. Physico-chemical
principles may also be useful such as mechanics or the balance of chemical
reactions.

• List the relevant states and parameters. These quantities are the ones
that are expected to play a causal role that pertains to the aim of the
model. This list will probably not be definitive, and will be adjusted
in further steps. In all cases, we cannot emphasize enough that aiming
for exhaustivity is the modeler’s worst enemy. Biologists need to take
many factors into account when designing an experimental protocol, it is
a mistake to try to model all of these factors.

• The crucial step is to propose mathematical relations between states and
their changes. We have described in sections 2.2 and 2.3 what kinds of
relation can be used. Usually these relations will involve supplementary
parameters whose relevance was not obvious initially. Let us emphasize
here that the key to robust models is to base it on sufficiently solid grounds.
A model where all relations are heuristic will probably not be robust. As
such, figuring out the robust and meaningful relations that can be used is
crucial.

• The last step is to analyze the consequences of the model. We describe
this step with more details below. What matters here is that the models
may work as intended, in which case it may be refined by adding further
details. The model may also lead to unrealistic consequences and not
lead to the expected results. In these latter cases, the issue may lie in
the formulation of the relations above, in the choice of the variables or in
oversimplifications. In all cases the model requires a revision.

Writing a model is similar to the chess game in that the anticipation of all
these steps from the beginning helps. The steps that we have described are all
required but a central aspect of modeling is to gain a precise intuition of what
determines the system’s behavior. Once this intuition is gained, it guides the
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specification of the model at all step. Reciprocally, these steps help to gain such
an intuition.

3.2 Model analysis
In this section, we will not cover all the main ways to analyze model since this
subject is far too vast and depends on the mathematical structures used in the
models. Instead, we will focus on the outcome of model analyses.

3.2.1 Analytic methods

Analytic methods consist in the mathematical analysis of a model. They should
always be preferred to simulations when the model is tractable, even at the cost
of using simplifying hypotheses.

• Asymptotic reasoning is a fundamental method to study models. The
underlying idea is that models are always a bit complicated. To make sense
of them, we can look at the dynamics after enough time which simplifies
the outcome. For example, the outcome of the logistic function discussed
above will always be an equilibrium point, where the population is at
a maximum. Mathematically, “enough” time means infinite time, hence
the term asymptotic. In practice “infinite” means “large in comparison
with the characteristic times of the dynamics”, which may not be long
from a human point of view. For example, a typical culture of bacteria
reaches a maximum after less than day. Asymptotic behaviors may be
more complicated such as oscillations or strange attractors.

• Steady states analysis. In fairly complex situations, for example when
both space and time are involved, a usual approach is to analyze states
that are sustained over time. For example, in the analysis of epithelial
morphogenesis, it is possible to consider how the shape of a duct is sus-
tained over time.

• Stability analysis. A very common analytic method is to find equibria,
that is to say situations where the changes stop (dx/dt = 0 for all state
variable x). For example, dn/dt = n/τ (1− n/k) has two equilibria for
n = k and n = 0. Stability analysis look at the consequences of equation
near an equilibrium point. Near the equilibrium value ne, n = ne + ∆n
where ∆n is considered to be small. ∆n small means that ∆n dominates
∆n2 and all other powers of ∆n, see also note 9. The reason for that is
simple: if ∆n = 0.1, ∆n2 = 0.01...

Near 0, n = 0 + ∆n and dn/dt'∆n/τ . The small variation ∆n leads to a
positive dn/dt therefore this variation is amplified and this equilibrium is
not stable. We should not forget the biology here. For a population of cells
or animals of a given large size, a small variation is possible. However,
a small variation from a population of size 0 is only possible through
migration because spontaneous generation does not happen. Nevertheless
this analysis shows that a small population, close to n=0, should not
collapse but instead will expand.

Near k, let us write n = k + ∆n
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dn/dt = (k + ∆n) /τ (1− (k + ∆n) /k) = (k + ∆n) /τ (−1∆n/k)

dn/dt = −∆nτ −∆n2/τk'−∆nτ

In this case, the small variation ∆n leads to a negative feedback, therefore
the equilibrium is stable.

• Special cases. In some situations, qualitatively remarkable behaviors ap-
pear for specific values of the parameters. Studying these cases is interest-
ing per se, even though the odds for parameters to have specific value are
slim without an explicit reason for this paramter to be set at this value.
However, in biology the value of some parameters are the result of biolog-
ical evolution and specific value can become relevant when the associated
qualitative behavior is biologically meaningful [13,14].

• Parameter rewriting. One of the major practical advantages of analytical
methods is to prove the relevance of parameters that are key to understand
the behavior of a system. These “new” parameters are usually combina-
tions of the initial parameters. We have implicitly done this operation in
section 2.3. Instead of writing an + bn2 we have written n/τ − n2/kτ .
The point here is to introduce τ the characteristic time for a cell division
and k which is the maximum size of the population. By contrast, a and
especially b are less meaningful. These key parameters and their meaning
are an outcome of models and at the same time should be the target of
precise experiments to explore the validity of models.

3.2.2 Numerical methods – simulations

Simulations have a major strength and a major weakness. Their strength lies
in their ability to handle complicated situations that are not tractable analyti-
cally. Their weakness is that each simulation run provides a particular trajec-
tory which cannot a priori be assumed to be representative of the dynamical
possibilities of the model.

In this sense, the outcome of simulations may be compared to empirical re-
sults, except that simulation are transparent: it is possible to track all variables
of interest over time. Of course, the outcome of simulations is artificial and only
as good as the initial model.

Last, there is almost always a loss when going from a mathematical model
to a computer simulation. Computer simulation are always about discrete ob-
jects and deterministic functions. Randomness and continua are always ap-
proximated in simulations and mathematical care is required to ensure that the
qualitative features of simulations are feature of the mathematical model and
not artifacts of the transposition of the model into a computer program. A
subfield of mathematics, numerical analysis, is devoted to this issue.

3.2.3 Results

We want to emphasize two points to conclude this section.
First, it is not sufficient for a model to provide the qualitative or even quan-

titative behavior expected for this model to be correct. The validation of a
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model is based on the validation of a process and of the way this process takes
place. As a result, it is necessary to explore the predictions of the model to
verify them experimentally. All outcomes that we have described in 3.2.1 may
be used to do so on top of a direct verification of the assumptions of the model
themselves. Of course, it is never possible to verify everything experimentally,
therefore the focus should be on aspects that are unlikely except in the light of
the model.

Second, modeling focuses on a specific part and a specific process. How-
ever, this part and this process take place in an organism. Their physiological
meaning, or possible lack thereof, should be analyzed. We are developing a
framework to perform this kind of analysis [15,4] but it can also be performed
informally by looking at the consequences of the part considered for the rest of
the organism.

4 Notes
1. In biology, behavior usually has an ethological meaning and evolution

refers to the theory evolution. In the mathematical context, these words
have a broader meaning. They both typically refer to the properties of
dynamics. For example, the behavior of a population without constrain is
exponential growth.

2. Parameters that play a role in an equation are defined in two different
ways. They are defined by their role in the equation and by their bi-
ological interpretation. For example, the division rate τ corresponds to
the division rate of the cells without the constraint that is represented by
k. τ may also embed constant constraints on cell proliferation, for exam-
ple chemical constraints from the serum or the temperature. Thus, τ is
what physicists call an effective parameter it carries implicitly constraints
beyond the explicit constraints of the model.

3. A state may be composed of several quantities, let’s say k, n, m. It is
possible to write the state by the three quantities independently or to
join them in one vector X=(k,n,m). The two viewpoints are of course
equivalent but they lead to different mathematical methods and ways to
see the problem. The second viewpoint shows that it is always valid to
consider that the state is a single mathematical object and not just a
plurality of quantities.

4. The notion of organization in the sense of a specific interdependence be-
tween parts [4] implies that most parameters are a consequence of others
parts, at other time scales. As a result, modeling a given quantity as a
parameter is only valid for some time scales, and is acceptable when these
time scales are the ones at which the process modeled takes place.

5. The choice between a model based on discrete or on continuous time is
base on several criteria. For example, if the proliferation of cells is synchro-
nized, there is a discrete nature of the phenomenon that strongly suggests
to represent the dynamics in discrete time. In this case the discrete time
corresponds to an objective aspect of the phenomenon. On the opposite,
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when cells divide at all times in the population, a representation in con-
tinuous time is more adequate. In order to perform simulations, time may
still be discretized but the status of the discrete structure is then different
than in the first case: discretization is then arbitrary and serves the pur-
pose of approximating the continuum. To distinguish the two situations,
a simple question should be asked. What is the meaning of the time dif-
ference between two time points. In the first case, this time difference has
a biological meaning, in the second it is arbitrary and just small enough
for the approximation to be acceptable.

6. Probabilities over continuous possibilities are somewhat subtle. Let us
show why: let us say that all directions are equivalent, thus all angles in the
interval [0,360[ are equivalent. They are equivalent, so their probabilities
are all the same value p. However, there is an infinite number of possible
angles, so the sum of all the probabilities of all possibilities would be
infinite. Over the continuum, probabilities are assigned to sets and in
particular to intervals, not individual possibilities.

7. There are many equivalent ways to write a mathematical term. The choice
of a specific way to write a term conveys meaning and corresponds to
an interpretation of this term. For example, in the text, we transformed
dn/dt = n/τ−n2/kτ because this expression has little biological meaning.
By contrast, dn/dt = n (1− n/k) /τ implies that when n/k is very small by
comparison with 1, cells are not constraining each other. On the opposite,
when n = k there is no proliferation. The consequence of cells constraining
each other can be interpreted as a proportion 1− n/k of cells proliferating
and a proportion n/k of cells not proliferating. Now, there is another
way to write the same term which is: dn/dt = n/ (τ/ (1− n/k)). Here,
the division time becomes τ/(1 − n/k) and the more cells there are, the
longer the division time becomes. This division time becomes infinite when
n = k which means that cells are quiescent. These two interpretations are
biologically different. In the first interpretation, a proportion of cells are
completely constrained while the other proliferate freely. In the second,
all cells are impacted equally. Nevertheless, the initial term is compatible
with both interpretations and they hhave the same consequences at this
level of analysis.

8. The number of quantities that form the state space is called its dimension.
The dimension of the phase space is a crucial matter for its mathematical
analysis. Basically, low dimensions such as 3 or below are more tractable
and easier to represent. High dimensions may also be tractable if many
dimensions play equivalent roles (even in infinite dimension). A large
number of heterogeneous quantities (10 or 20) is complicated to analyze
even with computer simulations because this situation is associated with
many possibilities for the initial conditions and for the parameters making
it difficult to “probe” the different qualitative possibilities of the model.

9. It is very common in modeling to use the words “small” and “large”. A
small (resp. large) quantity is a quantity that is assumed to be small
(resp. large) enough so that a given approximation can be performed. For
example, a large time in the context of the logistic equation means that
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the population is approximately at the maximum k. Similarly, infinite
and large are very close notions in most practical cases. For example, a
very large capacity k leads to dn/dt = n/τ (1− n/k)'n/τ which is an
exponential growth as long as n is far smaller than k.
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