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Jean-Christophe Loiseau, Steven L. Brunton, and Bernd R. Noack
9 From the POD-Galerkin method to sparse
manifold models

Abstract:Reduced-ordermodels are essential for the accurate and efficient prediction,
estimation, and control of complex systems. This is especially true in fluid dynamics,
where the fully resolved state space may easily contain millions or billions of degrees
of freedom. Because these systems typically evolve on a low-dimensional attractor,
model reduction is defined by two essential steps: (1) identifying a good state space
for the attractor and (2) identifying the dynamics on this attractor. The leadingmethod
for model reduction in fluids is Galerkin projection of the Navier–Stokes equations
onto a linear subspaceofmodes obtainedviaproper orthogonal decomposition (POD).
However, there are serious challenges in this approach, including truncation errors,
stability issues, difficulty handling transients, and mode deformation with changing
boundaries and operating conditions. Many of these challenges result from the choice
of a linear POD subspace in which to represent the dynamics. In this chapter, we de-
scribe an alternative approach, feature-based manifold modeling (FeMM), in which
the low-dimensional attractor and nonlinear dynamics are characterized from typical
experimental data: time-resolved sensor data and optional nontime-resolved parti-
cle image velocimetry (PIV) snapshots. FeMM consists of three steps: First, the sensor
signals are lifted to a dynamic feature space. Second, we identify a sparse human-
interpretable nonlinear dynamical system for the feature state based on the sparse
identification of nonlinear dynamics (SINDy). Third, if PIV snapshots are available,
a local linear mapping from the feature state to the velocity field is performed to re-
construct the full state of the system. We demonstrate this approach, and compare
with POD-Galerkin modeling, on the incompressible two-dimensional flow around a
circular cylinder. Best practices and perspectives for future research are also included,
along with open-source code for this example.
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9.1 Introduction

Understanding, modeling, and controlling complex fluid flows is a central focus in
many scientific, technological, and industrial applications, including energy (e. g.,
wind, tidal, and combustion), transportation (e. g., planes, trains, and automobiles),
security (e. g., airborne contamination), and medicine (e. g., artificial hearts and ar-
tificial respiration). Improved models of engineering flows have the potential to dra-
matically improve performance in these systems through optimization and control,
resulting in practical gains such as drag reduction, lift increase, andmixing enhance-
ment [38, 21, 98, 85, 25]. Although the Navier–Stokes equations provide a detailed
mathematical model, this representation may be difficult to use for engineering de-
sign, optimization, and control. Instead, they are commonly discretized into a high-
dimensional, nonlinear dynamical system with many degrees of freedom and mul-
tiscale interactions. These equations are nonetheless expensive to simulate, making
themunwieldy for iterative optimization or in-time control. Theymay also obscure the
underlying physics, which often evolves on a low-dimensional attractor [49, 77]. The
various fidelities of model description were described by [115]:white-box describes an
accurate evolution equation based on first principles (e. g., Navier–Stokes discretiza-
tion), gray-box describes a low-dimensional model approximating the full state (e. g.,
proper orthogonal decomposition [POD]-Galerkin models), and black-box describes
input–output models that lack a connection to the full state space (e. g., neural net-
works).

In the following, we outline related reduced-order models as our point of depar-
ture in Section9.1.1 and foreshadowproposed innovations of this study inSection9.1.2.

9.1.1 Related reduced-order models as point of departure

Reduced-order models provide low-dimensional descriptions of the underlying fluid
behavior in a compact and computationally efficient representation. This is illustrated
in Figure 9.1, where, starting from full-state velocity snapshots obtained from direct
numerical simulation, one extracts the leading coherent structures in order to obtain a
low-dimensional representation of the system’s dynamics. There aremany techniques
for reduced-order modeling, ranging from physical reductions to purely data-driven
methods, and nearly everything in between. POD [100, 14, 49] provides a low-rank
modal decomposition of fluid flow field data, extracting the most energetic modes.
It is then possible to Galerkin project the Navier–Stokes equations onto these modes,
resulting in an approximate, low-dimensionalmodel in terms ofmode coefficients [78,
28]. POD-Galerkinmodels arewidely used, as they are interpretable, gray-boxmodels,
and it is straightforward to reconstruct the high-dimensional flow field from the low-
dimensional model via POD modes. The first pioneering example of [4] featured wall
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Figure 9.1: Illustration of reduced-order modeling. Starting from a direct numerical simulation of
the Navier–Stokes equations (left), the dominant spatio-temporal coherent structures are extracted
from a set of velocity snapshots (center). The temporal evolution of these structures then provides a
simplified representation of the system’s dynamics (right) amenable to modeling.

turbulence, almost three decades ago. Subsequent POD models have been developed
for the transitional boundary layer [83], the mixing layer [111, 114], the cylinder wake
[33, 42], and the Ahmed body wake [80], to name only a few.

POD-Galerkin modeling is challenging for changing domains [18], changing
boundary conditions [45], and slow deformation of the modal basis [5]. Standard
Galerkin projection can also be expected to suffer from stability issues [82, 90, 29],
although including energy-preserving constraintsmay improve the long-time stability
and performance of nonlinear models [7, 31]. POD-Galerkin models tend to be valid
for a narrow range of operating conditions, near those of the data set used to gen-
erate the POD modes. Transients also pose a challenge to POD modeling. Refs. [77]
and [106] demonstrate the ability of a low-dimensional model to reproduce nonlinear
transients of the von Kármán vortex shedding past a two-dimensional cylinder, pro-
vided the projection basis includes a shift mode quantifying the distortion between
the linearly unstable base flow and marginally stable mean flow. These techniques
have been extended to include the effect of wall actuation [45, 81].

In addition to the physics-informed Galerkin projection, data-driven modeling
approaches are prevalent in fluid dynamics [21, 85]. For example, dynamic mode
decomposition (DMD) [50, 86, 55], the eigensystem realization algorithm (ERA) [51],
Koopman analysis [72, 73, 109, 116], cluster-based reduced-order models [53], NAR-
MAXmodels [15, 95, 120, 44], and network analysis [76] have all been used to identify
dynamical systems models from fluids data, without relying on prior knowledge of
the underlying Navier–Stokes equations. DMD models are readily obtained directly
from data, and they provide interpretability in terms of flow structures, but the re-
sulting models are linear, and the connection to nonlinear systems is tenuous unless
DMD is enriched with nonlinear functions of the data [116, 55]. Neural networks have
long been used for flow modeling and control [74, 122, 56, 54], and recently deep
neural networks have been used for Reynolds-averaged turbulence modeling [59].
However, many machine learning methods may be prone to overfitting, have limited
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interpretability, and make it difficult to incorporate known physical constraints. Par-
simony has thus become an overarching goal when using machine learning to model
nonlinear dynamics. In the seminal work of [16] and [91] governing dynamics and
conservation laws are discovered using genetic programming along with a Pareto
analysis to balance model accuracy and complexity, preventing overfitting.

Recently, [22] introduced the sparse identification of nonlinear dynamics (SINDy),
which identifies parsimonious nonlinear models from data. SINDy follows the prin-
ciple of Ockham’s razor, resting on the assumption that there are only a few impor-
tant terms that govern the dynamics of a system, so that the equations are sparse
in the space of possible functions. Sparse regression is then used to efficiently de-
termine the fewest terms in the dynamics required to accurately represent the data,
preventing overfitting. Because SINDy is based on linear algebra (i. e., the nonlin-
ear dynamics are represented as a linear combination of candidate nonlinear func-
tions), the method is readily extended to incorporate known physical constraints [61].
In general, it is possible to obtain nonlinear models using genetic programming or
SINDy on POD or DMD mode coefficients, which make these methods gray box, hav-
ing a transformation from themodel back to the high-dimensional, interpretable state
space. However, models developed on POD/DMD mode coefficients may still suffer
from fundamental challenges of traditional POD-Galerkin models, such as captur-
ing changing boundary conditions, moving geometry, and varying operating condi-
tion.

9.1.2 Contribution of this work

In this work, we introduce a new gray-box modeling procedure that yields inter-
pretable nonlinear models from measurement data. The method is applied to the
well-investigated two-dimensional transient flow past a circular cylinder with slow
change of the base flow and varying coherent structures [105]. In particular, we de-
velop sparse interpretable nonlinear models only from the temporal amplitudes a1(t)
and a2(t) of the leading vortex shedding POD modes, hereafter denoted as our fea-
tures. Second, a sparse dynamical model is identified in this feature space. For the
following step, full-state measurement data are assumed to be available. Combining
the nonlinear correlations existing between the various POD modes with techniques
from Grassmann manifold interpolation enables us to obtain highly accurate esti-
mates of the flow field both in the vicinity of the linearly unstable base flow and the
marginally stable flow. This mapping provides significantlymore accurate flow recon-
struction, as compared to a POD-Galerkin model of the same order. To summarize,
the resulting gray-box modeling procedure has the following beneficial features: (i) it
captures nonlinear physics, (ii) it is based on a simple, noninvasive computational
algorithm, (iii) the resulting model is interpretable in terms of nonlinear interaction
physics and generalized modes (optional with full-state data), and (iv) modeling
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feature vectors is more robust to mode deformation, moving geometry, and varying
operating condition.

The chapter is organized as follows: Section 9.2 provides an overview of the flow
configuration considered in this work, namely, the incompressible, two-dimensional
flow past a circular cylinder at Re = 100. Based on velocity snapshots obtained from
direct numerical simulations, twodifferent reduced-ordermodeling strategies are pre-
sented in Sections 9.3 and9.4. First, Section 9.3 introduces the canonical POD-Galerkin
reduced-order model and discusses its main limitations. Then, Section 9.4 presents a
highly accurate low-order model identified using recent advances in machine learn-
ing. Finally, Sections 9.5 and 9.6 summarize our key findings, highlight some connec-
tions with previous works, and provide the reader with good practices and possible
future directions to extend this work.

This contribution closely relates to three chapters of Volumes 1 and 2 of this hand-
book. Starting point is the POD-Galerkin method [12, Chapter 2]. A transient cylin-
der wake illustrates the benefits from manifold interpolation [124, Chapter 7]: A two-
dimensional manifold is more accurate than a POD expansion with 50 modes. The
resulting dynamical system on this manifold is significantly simplified by SINDy [12,
Chapter 7].

9.2 Benchmark configuration and dynamics

The flow configuration considered is the canonical two-dimensional incompressible
viscous flowpast a circular cylinder at Re = 100, based on the free-streamvelocityU∞,
the cylinder diameter D, and the kinematic viscosity ν. This Reynolds number is well
above the critical Reynolds number (Rec = 48) for the onset of the two-dimensional
vortex shedding [118, 104, 94] and below the critical Reynolds number (Rec = 188) for
the onset of three-dimensional instabilities [119, 8, 117]. Its dynamics are governed by
the incompressible Navier-Stokes equations

𝜕u
𝜕t
+ ∇ ⋅ (u ⊗ u) = −∇p + 1

Re
∇2u,

∇ ⋅ u = 0,
(9.1)

where u = (u, v)T and p are the velocity and pressure fields, respectively. The center of
the cylinder has been chosen as the origin of the reference frame x = (x, y), where x
denotes the streamwise coordinate and y denotes the spanwise coordinate. This study
considers the same computational domain as in [77, 61, 63], extending from x = −5 to
x = 15 in the streamwise direction and from y = −5 to y = 5 in the spanwise direction.
A uniform velocity profile is prescribed at the inflow, a classical stress-free bound-
ary condition is used at the outflow, and free-slip boundary conditions are used on
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the lateral boundaries of the computational domain. The open-source spectral ele-
ment solver Nek5000 [41] is used to solve the equations with a third-order accurate
temporal integration. For the sake of reproducibility, all of the files required to rerun
the simulations presented in this work are freely available at the following address:
https://www.github.com/loiseaujc along with an illustrative Jupyter Notebook.

9.2.1 Direct numerical simulation

Figure 9.2 depicts the evolutionof the lift coefficientCL as a functionof time. This direct
numerical simulation (DNS) has been initialized with

u(x,0) = ub + ϵℜ(û)(x),

where ub is the linearly unstable base flow and ℜ(û)(x) is the real part of the linearly
unstable eigenmode normalized such that its amplitude is equal to unity (see Section
9.2.2 for more details). The parameter ϵ, fixing the initial amplitude of the perturba-
tion, was set such that the initial energy of the perturbation is of the order 10−6.

Figure 9.2: Time series of the instantaneous lift coefficient CL(t), from the linearly unstable base
flow to the marginally stable mean flow, obtained by direct numerical simulation. The black dashed
line depicts the exponential growth predicted by linear stability analysis while the gray shaded
region highlights the window over which flow snapshots have been collected for the POD analysis
presented in Section 9.3.

Three different phases are clearly visible in the time evolution of CL(t), namely, a pe-
riod of exponential growth for 0 ≤ t ≤ 60, the onset of nonlinear saturation for
60 ≤ t ≤ 100, and finally the constant amplitude quasi-harmonic oscillatory regime
for t ≥ 100 characteristic of the von Kármán vortex street. The nonlinear saturation
mechanism is briefly described hereafter. The nonlinear interaction of the instabil-
ity mode with itself produces Reynolds stresses that distort the underlying base flow
which, in turn,modifies the shape of the instabilitymode. This distortion also induces
a frequency shift, the flow oscillating at a frequency almost 30% larger in its final sat-
urated state compared to that predicted by linear stability analysis of the base flow.
This process continues until an equilibrium is achieved, balancing the influence of
the perturbation’s Reynolds stresses onto the instantaneous mean flow and the feed-
back thismeanflowhas onto the instantaneous growth rate of the perturbation.When
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this equilibrium is reached, the flow is in a marginally stable state [9] and the ampli-
tude of the perturbation no longer grows. For a complete description of this stabilizing
nonlinear feedback mechanism, interested readers are referred to the self-consistent
model presented in [68] or the weakly nonlinear analyses conducted by [96] and [27].

9.2.2 Stability of the steady solution

Given afixedpointub of theNavier–Stokes equations, the dynamics of an infinitesimal
perturbation u evolving in its vicinity are governed by

𝜕u
𝜕t
+ ∇ ⋅ (ub ⊗ u

 + u ⊗ ub) = −∇p + 1
Re
∇2u,

∇ ⋅ u = 0. (9.2)

Introducing the normal mode ansatz u(x, t) = û(x)eλt, this set of equations can be
recast into the following generalized eigenvalue problem:

λ [ℐ 0
0 0
] [

û
p̂
] = [
−∇ ⋅ (ub ⊗ ⋅ + ⋅ ⊗ ub) + 1

Re −∇
∇⋅ 0

] [
û
p̂
] . (9.3)

The linear stability of the base flow ub is then governed by the real part of the eigen-
value λ. In the rest of this work, the linearly unstable flow ub has been obtained us-
ing the selective damping approach [1] while the eigenpairs of the linearized Navier–
Stokes operator have been computed using a time stepper Arnoldi algorithm [37, 6,
60, 62]. Interested readers are referred to [30, 108, 97] for exhaustive reviews about
hydrodynamic instabilities.

The vorticity field of the linearly unstable base flow ub at Re = 100 is depicted
in Figure 9.3a. To the best of our knowledge, this is the only fixed point of the Navier–
Stokes equations known for this flow configuration. Its linear stability has been exten-
sively investigated [43, 96, 68, 27], and it is now well known that the bifurcation oc-
curring at Rec ≃ 48 is a supercritical Andronov–Poincaré–Hopf bifurcation eventually
giving rise to the canonical Bénard–von Kármán vortex street. The vorticity field of the
corresponding unstable eigenmode is shown in Figure 9.3b. This complex–conjugate
pair of eigenmodes is the only unstable pair before the onset of three-dimensionality.

From a dynamical system point of view, one thus concludes that, although our
discretized system is of the order 106 dimensions, the unstable linear subspace of the
fixed point is only two-dimensional, i. e., only two degrees of freedom are required to
describe the evolution of the system within this linear subspace. Let us furthermore
consider the following stable and unstable manifold theorem [46].

Theorem 1. Let E be an open subset ofℝn containing the origin, let f ∈ C1(E), and let ϕt
be the flow of the nonlinear system

da
dt
= f (a).
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Suppose that f (0) = 0 and that the Jacobian matrix L = Df (0) has k eigenvalues with
negative real part and n − k eigenvalues with positive real part. Then, there exists a
k-dimensional manifold W s tangent to the stable subspace Es of the linear system

da
dt
= La

at a0 = 0. Similarly, there exists an (n − k)-dimensional unstable manifold Wu tangent
to the unstable subspace Eu.

This theorem is of crucial importance for the understanding of the reduced-order
model to be discussed in Section 9.4. Indeed, although we will eventually consider
the nonlinear evolution of our 106-dimensional system, wewill see that this evolution
can be described by a very simple dynamical system evolving onto a two-dimensional
parabolic manifold originating from the aforementioned unstable subspace Eu.

9.2.3 Stability of the mean flow

For the flowconfiguration consideredherein, the linearly unstable base flowub(x) and
themeanflow ū(x) computed fromDNSdiffer quite significantly fromone another, no-
tably in the size of the recirculation bubble (see Figures 9.3a and 9.4a). Consequently,
predictions of the spatio-temporal characteristics of the fluctuation obtained by linear
stability analysis of the base flow might be misleading.

Figure 9.3: (a) Vorticity field of the linearly unstable base flow for the two-dimensional cylinder flow
at Re = 100. (b) Real part of the leading unstable mode’s vorticity field. In both figures, blue shaded
contours (solid lines) highlight regions of positive vorticity, while red shaded ones (dashed lines)
highlight those of negative vorticity. In (a), a few streamlines are plotted (light gray) to highlight the
extent of the recirculation bubble. (c) Eigenspectrum of the corresponding linearized Navier–Stokes
operator.
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Figure 9.4: (a) Vorticity field of the marginally stable mean flow for the two-dimensional cylinder
flow at Re = 100. (b) Real part of the marginal mode’s vorticity field. In both figures, blue shaded
contours (solid lines) highlight regions of positive vorticity, while red shaded ones (dashed lines)
highlight those of negative vorticity. In (a), a few streamlines are plotted (light gray) to highlight the
extent of the recirculation bubble. (c) Eigenspectrum of the corresponding linearized Navier–Stokes
operator.

Even though themeanflow ū(x) is not a solution of the stationaryNavier–Stokes equa-
tions, it has now become quite standard nonetheless to linearize the Navier–Stokes
equations in its vicinity as to study its linear stability [9, 110, 11]. The eigenspectrum
of the corresponding linearized Navier–Stokes operator is depicted in Figure 9.4c. As
shown in [9], the leading eigenvalues have a zero real part, indicating that this mean
flow is marginally stable. Moreover, while the frequency predicted by linear stability
analysis of the base flow differs by almost 30% from the one recorded in direct nu-
merical simulation, the one predicted by stability analysis of the mean flow almost is
a perfectmatch. Thismismatch results from the strong distortion induced by the insta-
bility mode as it saturates nonlinearly. Similarly, the eigenmode shown in Figure 9.4b
provides amuch better representation of the spatial characteristics of the fluctuations
observed in DNS. For extensive details and theoretical justifications about mean flow
stability analysis, interested readers are referred to [65, 9, 96, 68, 69, 110, 71, 11, 70]
and references therein.

9.3 POD-Galerkin projection of the Navier–Stokes
equations

POD [100, 49] provides a low-rank modal decomposition of fluid flow field data, ex-
tracting themost energeticmodes. It is then possible to project theNavier–Stokes onto
the span of these POD modes, resulting in an approximate low-dimensional model
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governing the evolution of the mode coefficients. POD-Galerkin models are widely
used as they are interpretable gray-boxmodels and it is straightforward to reconstruct
the high-dimensional state vector of the original system from the low-dimensional
model via the POD modes. The first pioneering example of [4] featured wall turbu-
lence, over three decades ago. Subsequent POD models have been developed for the
transitional boundary layer [83], the mixing layer [111, 114], the cylinder wake [33, 77,
42], and the Ahmed body wake [80], to name only a few. In the present section, di-
mensionality reduction via POD analysis is first presented in Section 9.3.1. Then, Sec-
tions 9.3.2 to 9.3.5 discuss the derivation of the reduced-order model from the Navier–
Stokes equations and its properties, as well as its accuracy and limitations.

9.3.1 Dimensionality reduction – POD analysis

A large number of systems, including but not limited to fluid flows, are governed by
high-dimensional nonlinear dynamics. Nonetheless, becausemost of these nonlinear
dynamical systems are dissipative by nature, their dynamics are likely to evolve onto a
lower-dimensional attractor characterizedby a fewdominant coherent structures con-
taininga significant portionof the system’s energy [49]. Givenahigh-dimensional data
set, the aim of dimensionality reduction is thus to extract a low-dimensional embed-
ding capturingmost of the variability of the original data. One of themost widely used
techniques for dimensionality reduction is POD. It is also known as principal compo-
nent analysis (PCA) in statistics andmachine learning, as Kosambi–Karhunen–Loève
transform in signal processing, or as empirical orthogonal functions in meteorologi-
cal science, and it is closely related to singular value decomposition (see Figure 9.5).
For the sake of conciseness, the mathematical details of POD will not be discussed
herein. For more details, interested readers are referred to [100] and [14]. Note addi-
tionally that POD is discussed at length in this book series; see for instance Chapters 2
and 12 of Volume 1.

The gray shaded region in Figure 9.2 highlights the window over which snapshots
of the base flow-subtracted fluctuation have been collected for the present POD anal-
ysis at a sampling rate approximately 25 times higher than the circular frequency of
the natural vortex shedding. Figure 9.6a depicts the fraction of the fluctuation’s kinetic
energy captured by each of the first 10 PODmodes alongwith its cumulative sum.Note
that, because we have considered base flow-subtracted fluctuations rather thanmean
flow-subtracted ones, the leading POD mode corresponds to the shift mode [77]. This
mode captures the distortion between the base flow and the mean flow (Figure 9.6b)
and accounts for 46% of the whole kinetic energy in our snapshots data set. Consid-
ering the second and third POD modes, related to the vortex shedding (Figure 9.6c),
97.7%of the total kinetic energy is captured. Finally, less than 1%of the kinetic energy
is discarded if one considers the first five POD modes, and less than 0.1% if the first
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Figure 9.5: Schematic representation of the low-rank approximation of the data matrixQ by means
of singular value decomposition. Each column of Q contains one snapshot obtained from direct nu-
merical simulation. The matrixU contains the space-dependent POD modes ui(x) while V contains
the associated temporal evolutions, with superscript H denoting the Hermitian (i. e., complex conju-
gate transpose) operation. Finally, the diagonal matrix Σ contains the singular values whose square
characterizes the amount of variance explained by the associated singular pairs.

Figure 9.6: (a) Fraction of the total variance (∙) explained by each POD mode and the corresponding
cumulative variance (×). This POD analysis has been performed using base flow-subtracted snap-
shots collected during the gray shaded window in Figure 9.2. The zeroth POD eigenvalue in this plot
is associated to the shift mode uΔ. Figures (b) to (e) depict the vorticity distribution of the shift mode
and the first, third, and fifth POD modes, respectively. Only a subset of the whole computational
domain is depicted.
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seven ones are considered. For the sake of completeness, the vorticity field of selected
POD modes are shown in Figure 9.6b–e.

Figure 9.7 depicts the phase plots of these various POD modes. For Figure 9.7a–c,
only the evolution of the flow once it has reached the limit cycle is shown. It can be
seen that, within the (a1, a2)-plane, the evolution of the flow traces a perfect circle
underlining the periodic nature of the saturated vortex shedding for the Reynolds
number considered. Additionally, the phase plots shown in Figure 9.7 highlight that
the third and fourth POD modes correspond to the second harmonics of the vortex
shedding, while the fifth and sixth modes capture its third harmonics. Finally, Fig-
ure 9.7d shows the whole evolution of the system, from the base flow to the mean
flow, projected onto the (a1, aΔ)-plane. As expected, one recovers the well-known low-
dimensional parabolic manifold [77] characteristic of a large number of wake flows.
It is these dynamics that we wish to capture in Section 9.3.2 using a POD-Galerkin
reduced-order model.

Figure 9.7: Phase plots of various POD modes. For (a), (c), and (d), only the evolution once the flow
has reached the limit cycle is depicted. In (b), the whole evolution is shown, from the linearly unsta-
ble base flow to the marginally stable mean flow.

9.3.2 Reduced-order modeling strategy – Galerkin projection

The POD analysis performed in the previous section has revealed that close to 97.5%
of the base flow subtracted fluctuation’s kinetic energy is captured by considering
only the shift mode and the first pair of POD modes. Starting from this observation,
it thus appears reasonable to approximate the velocity field u(x, t) using the following
Galerkin expansion:

u(x, t) ≃ ub(x) + uΔ(x)aΔ(t) + u1(x)a1(t) + u2(x)a2(t), (9.4)

where ub(x) is the linearly unstable fixed point of the Navier–Stokes equations, while
uΔ(x),u1(x) andu2(x) are the velocity fields associatedwith the shiftmode and thefirst
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two POD modes, respectively. Starting from the Navier–Stokes equations, our goal is
thus to derive a low-dimensional system of nonlinearly coupled ordinary differential
equations governing the evolution of the POD modes’ amplitudes ai(t). Introducing
our Galerkin expansion ansatz into the Navier–Stokes equations and projecting the
latter onto the span of our POD basis (this process is known as Galerkin projection),
we obtain evolution equations for each amplitude ai(t) of the form

dai
dt
=∑

j
Lijaj +∑

j
∑
k
Qijkajak , (9.5)

with i, j, k = Δ, 1, 2. By convention, the coefficient a0 associated to the base flow ub(x)
is set to a0 = 1. In the above equation, the linear term is given by

Lij = ⟨ui

− ∇ ⋅ (ub ⊗ uj + uj ⊗ ub) +

1
Re
∇2uj⟩,

while the quadratic one is

Qijk = −⟨ui
∇ ⋅ (uj ⊗ uk)⟩,

where ⟨a|b⟩ denotes the inner product

⟨a|b⟩ = ∫
Ω

a ⋅ bdΩ.

Note that, as in [77], we did not explicitly account for the pressure term. For the
present case, this omission however hardly changes the prediction of the reduced-
order model. For a detailed discussion about the importance (or insignificance) of the
pressure term in POD-Galerkin projection reduced-order models, interested readers
are referred to [79].

9.3.3 Does the model capture the key physics?

Before discussing whether the reduced-order model derived by POD-Galerkin projec-
tion is accurate or not, let us first investigate whether it captures the key physics of the
problem. In the present case, this would imply that:
1. The reduced-order model has a single fixed point located at a = 0.
2. The unstable subspace Eu of the reduced-order model linearized in the vicinity of

a = 0 is two-dimensional and associated with a complex–conjugate eigenpair.
3. As t →∞, the system eventually evolves toward a structurally stable limit cycle.

Itmust be emphasized that if the reduced-ordermodel fails to complywith anyof these
requirements, then it fails at capturing the key physics of the problem.
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Given the low-dimensionality of the present model, condition 1 can easily be (and
has been) checked by performing an extensive Newton search. As expected, the only
fixed point admitted by our reduced-order model is a = 0. The linearization of our
model in the vicinity of this fixed point is given by

da
dt
= La,

with a = [a1 a2 aΔ]
T and

L =
[[[

[

0.042 −0.986 0
0.959 0.046 0
0 0 −0.047

]]]

]

.

Spectral decomposition of this matrix reveals that its eigenvalues are

Λ = {λ1 = 0.044 + i0.972, λ2 = 0.044 − i0.972, λΔ = −0.047}, (9.6)

while the corresponding set of eigenvectors is

EΛ =
{{{
{{{
{

â1 =
[[[

[

1
−i
0

]]]

]

, â2 =
[[[

[

1
i
0

]]]

]

, âΔ =
[[[

[

0
0
1

]]]

]

}}}
}}}
}

. (9.7)

Looking at these eigenpairs, it is clear that, as for the original Navier–Stokes equa-
tions, the fixed point a = 0 of our POD-Galerkin reduced-order model is linearly un-
stable. Moreover, its unstable subspace Eu is also two-dimensional and associated
with complex–conjugate eigenvalues and eigenvectors corresponding to oscillatory
dynamics in the (a1, a2)-plane while it is stable along the direction corresponding to
the shift mode. Condition 2 is thus also fulfilled.

The last condition that needs to be checked is whether or not the system natu-
rally evolves toward a stable limit cycle as t → ∞. To do so, we integrate in time our
reduced-order model using a fourth-order accurate Runge–Kutta scheme. Figure 9.8
depicts the predicted asymptotic evolution. As can be observed, this reduced-order
model does evolve toward a stable limit cycle, although its amplitude is slightly
larger than the amplitude of the limit cycle obtained from direct numerical sim-
ulation of the Navier–Stokes equations. Our reduced-order model thus fulfills all
three necessary conditions we stated at the beginning of this section and, as such,
captures qualitatively the key physics of the two-dimensional cylinder flow. Conse-
quently, the only question that remains to be answered is the following: How ac-
curate is this reduced-order model? The answer to this question is the subject of
Section 9.3.4.
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Figure 9.8: Comparison of the limit cycles observed in DNS (–) and predicted by the three-POD mode
reduced-order model (orange −−).
9.3.4 How accurate is it?

We have shown in the previous section that a reduced-order model derived from the
Navier–Stokes equations by means of a POD-Galerkin projection procedure qualita-
tively captures the key physics of the problem considered, namely:
Property 1: It has a single fixed point at the origin.
Property 2: This fixed point is linearly unstable and the associated unstable subspace

is two-dimensional.
Property 3: As t → ∞, the reduced-order model predicts that the system naturally

evolves toward a periodic limit cycle.

Let us now try to further characterize the accuracy of said reduced-order model. In
particular, we will focus our attention on two critical aspects:
1. Does it appropriately capture the transient dynamics of the flow as it evolves from

the linearly stable base flow to the marginally stable mean flow?
2. How good are its flow reconstruction capabilities?

As to answer to these questions, the reduced-order model is fed with a random initial
condition having the same initial energy as that used in the direct numerical simula-
tion described in Section 9.2, i. e.,

a(0) = αâ1 + βâ2,

such that ‖a(0)‖22 = 10
−6. Figure 9.9 depicts the evolution of the fluctuation’s kinetic

energy as a function of time obtained from direct numerical simulation and predicted
by our POD-Galerkin reduced-order model. Although our low-order model qualita-
tively captures the transient dynamics of the flow, i. e., a period of exponential growth
followed by nonlinear saturation, it is clear that it largely overestimates the transients
duration. Moreover, as nonlinear saturation occurs, the reduced-order model predicts
an energy overshoot before it saturates at a level higher than that observed in DNS.
These two observations put in the limelight two critical issues of a large number of
reduced-order models derived from the Navier–Stokes equations by a POD-Galerkin
procedure.
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Figure 9.9: Evolution as a function of time of the kinetic energy ℰ(t) of the base flow-subtracted
fluctuation for the DNS and two Galerkin projection reduced-order models using either the first three
or the first nine POD modes.

Let us first consider the problem of the overestimation of the transients duration. This
problem finds its roots in the major difference that exists between the POD modes as-
sociated with the first harmonics of the vortex shedding and the eigenmodes of the
linearized Navier–Stokes operator. Looking at Figure 9.3b and c, it can be seen that
the PODmodes are located further upstream compared to the instability modes. Con-
sequently, while the projection of the linearized Navier–Stokes operator onto the span
of the PODmodes reasonably approximates the dynamics of the system in the vicinity
of the mean flow, it provides a very crude approximation of the dynamics of the sys-
temwhen close to its fixed point, notably in terms of the instability growth rate. This is
a structural problem of POD-Galerkin reduced-order models. Indeed, from a physical
point of view, the instability modes continuously deform into the POD modes as the
amplitude of the fluctuation grows. However, fixing the projection basis a priori using
solely the POD modes prevents the reduced-order model from being able to capture
this mode deformation and the continuous change of dynamics associated with it. As
to alleviate this problem, [77] explicitly included the instability modes into the projec-
tion basis. Although this trick partially solves the problem, it unnecessarily increases
the dimensionality of the reduced-order model.

The second problem of the present low-dimensional model is the energy over-
shoot and the subsequent saturation to a higher level than the one observed in DNS.
This problem arises from the projection of the Navier–Stokes equations onto a finite
number of basis vectors and thus from the chosen truncation of the POD basis. In
the present case, our projection basis consists only of the shift mode (quantifying the
distortion between the base flow and the mean flow) and the POD modes associated
with the first harmonics of the vortex shedding. Because of this choice, the energy
cascade from the large scales to the small scales is truncated early on. As a conse-
quence, the energy extracted by the leading PODmodes from the underlying unstable
base flow cannot be transferred correctly to smaller-scale structures, hence growing
beyond their expected amplitudes and causing the energy overshoot observed in Fig-
ure 9.9. This excess energy is eventually absorbed by the mean flow distortion until
an equilibrium is reached, even though the final kinetic energy of the reduced-order
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model nonetheless saturates at a higher level that the one observed in DNS. A naive
approach to fix this issuewould be to includemore PODmodes in the projection basis.
This is illustrated in Figure 9.9, where the evolution of the kinetic energy predicted by
a reduced-order model derived using a projection basis that includes the POD modes
associatedwith the second, third, and fourth harmonics of the vortex shedding is also
shown. Although increasing the rank of the POD basis from 3 to 9 mitigates the prob-
lem, the energy overshoot still exists. Moreover, including these higher-order modes
in the projection basis also modifies the properties of the linearized dynamics in the
vicinity of the fixed point. In the present case, including the POD modes associated
with the second harmonics of the vortex shedding actually increases the dimension-
ality of the unstable subspaceEu from 2 to 4. In the vicinity of the fixed point, the prop-
erties of the linearized reduced-order model thus become inconsistent with those of
the linearized Navier–Stokes operator.

9.3.5 Limitations of this approach

Although the POD-Galerkin approach to reduced-order modeling has had consider-
able success over the years, it nonetheless suffers from major limitations, even for a
flow configuration as simple as the two-dimensional cylinder flow. For the case con-
sidered herein, four major limitations can be listed:
1. In order to accurately capture the dynamics of the system once on the limit cycle,

the projection basis had to include a relatively large number of modes (i. e., eight)
despite the simplicity of the dynamics, including very low energy modes.

2. The low-dimensional system tends to exhibit an energy overshoot as nonlinear
saturation occurs because of the truncation of the energy cascade. This trunca-
tion of the energy cascade results from the projection of the nonlinear partial dif-
ferential equations onto a finite set of basis vectors.

3. Because of the difference between the linear instability and the POD modes ob-
tained from the limit cycle, the reduced-order model largely overestimates the
transients duration unless the instability modes are explicitly included into the
projection basis.

4. Finally, it can hardly account for the continuous mode deformation taking place
as the flowevolves from the vicinity of the linearly unstable base flow to that of the
marginally stable mean flow. A similar problem arises if one varies the Reynolds
number slowly in time.

Since the generalizedmeanfieldmodel ofNoack et al. [77], various attempts have been
made to limit these shortcomings. For instance, [99] and [113] used eddyviscositymod-
els to account for the added diffusion induced by the truncated modes, while [75] and
[103] used linear interpolation to partially capture the continuous mode deformation.
Recently, [34] have used sparse coding to obtain a nonorthonormal projection basis
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for the turbulent lid-driven cavity flow that nonetheless included some of the small-
scale structures needed for the energy cascade, while [40] combined POD-Galerkin
projection with constrained convex optimization techniques to ensure that the sta-
tistical properties of the POD amplitudes predicted by the reduced-order model were
consistent with those obtained from direct numerical simulations. These works how-
ever still had to include dozens of PODmodes for numerical stability although the dy-
namics of the system are lower-dimensional. Despite all these attempts to increase the
range of validity of the POD-Galerkin projection approach, one must not forget that it
still suffers from one critical limitation that cannot be overcome within this particular
framework: The governing equations of the high-dimensional system (in our case the
Navier–Stokes equations) need to be known before one even tries to perform model
reduction.

9.4 Manifold model

The approachdescribed in the previous section canbeunderstood as a semi-empirical
or partially data-driven approach. Indeed, while on the one hand the projection ba-
sis is obtained via POD of a snapshots data matrix, the Galerkin projection procedure
relies on a priori knowledge of the high-dimensional system’s governing equations.
Let us now consider a fully data-driven model of the flow that leverages the existence
of a low-dimensional nonlinear manifold. Starting from the POD analysis presented
in the previous section, Section 9.4.1 illustrates how one can further reduce the di-
mensionality of the problem by considering the nonlinear correlations existing be-
tween the various POD mode amplitudes. As a second step, a low-dimensional sys-
tem is obtained using recent system identification techniques in Section 9.4.2. Finally,
given that the system under consideration evolves on a low-dimensional manifold,
Section 9.4.5 highlights how one can use Grassmannian manifolds to solve the con-
tinuous mode deformation problem when reconstructing the high-dimensional state
vector of the full-order model, while Section 9.4.6 discusses some of the limitations of
the approach proposed herein.

9.4.1 Looking for nonlinear correlations

PCA (equivalent to POD in mechanical engineering) is one of the most popular di-
mensionality reduction techniques. One of the key reasons for this widespread us-
age is that PCA finds its root in statistics. Moreover, when formulated as a singular
value decomposition, PCA can be understood as an optimal low-rank matrix approx-
imation and can thus leverage highly performing and scalable algorithms to handle
extremely large data sets. Considering only the first few principal components (i. e.,
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the leading left singular vectors of the data matrix), one can define an optimal lin-
ear subspace onto which the data can be orthogonally projected while minimizing
(and quantifying) the amount of information lost in the process. From a statistical
point of view, this orthogonal projection provides linearly uncorrelated features. De-
spite its optimality properties, PCA unfortunately cannot unravel nonlinear correla-
tions in the data and postanalyses are thus required. Accounting for such nonlinear
correlations may however be beneficial to further reduce the dimensionality of the
problem.

Over the years, various alternatives have been proposed to overcome this major
limitation in order to be able to capture nonlinearmanifolds. One can cite for instance
kernel PCA (kPCA) [92], Isomap [107], locally linear embedding (LLE) and its variants
[84, 121, 35], spectral embedding [10], multidimensional scaling (MDS) [17], or all the
variants of autoencoders recently reviewed in [13]. All these techniques are part of a
domain now known asmanifold learning or representation learning. However, for the
particular problem considered herein, the dynamics are sufficiently simple so that we
can assess the existence of nonlinear correlations directly from time series of POD
modes’ amplitudes. From a practical point of view, the existence of a clear pattern in
a phase plot (ai-aj) implies the existence of such nonlinear correlations (see Figure 9.7
for examples).

The POD analysis performed in Section 9.3.1 has revealed that less than 0.1% of
the total kinetic energy in our trainingdata set is discarded ifwe only consider the shift
mode and the first six PODmodes. Given the Fourier-like nature of the PODcoefficients
once the flow evolves on the limit cycle, these can be approximated by

aΔ(t) ≃ ÂΔ,

a1(t) ± ia2(t) ≃ Â1e
±iωt ,

a3(t) ± ia4(t) ≃ Â2e
±i2ωt ,

a5(t) ± ia6(t) ≃ Â3e
±i3ωt ,

where ω is the fundamental frequency of the vortex shedding, ÂΔ is the amplitude
of the shift mode in the saturated stage, and Â1, Â2, and Â3 are the amplitudes of the
first, second, and third pairs of PODmodes, respectively. Guided by physical intuition,
Figure 9.10 summarizes some of the possible triadic interactions arising from the non-
linear convective term ∇ ⋅ (u ⊗ u) of the Navier–Stokes equations. Looking at these
triadic interactions, it thus appears that the dynamics of the shift mode and of the
second pair of POD modes both result from quadratic interactions of the first pair of
POD modes with itself. Similarly, the dynamics of the third pair of POD modes result
from the interaction of the first pair with the second pair of modes. Alternatively, this
last quadratic interaction can also be understood as a cubic interaction of the first pair
with itself. These intuitions are further confirmed by looking at the correlation matrix
depicted in Figure 9.11.
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Figure 9.10: Some of the possible triadic interactions arising from the nonlinear convective term ∇ ⋅(u⊗ u) of the Navier–Stokes equations. These triadic interactions will guide us to determine the form
of nonlinear correlations existing between the amplitudes of the various POD modes considered.

Figure 9.11: Pearson’s ρ correlation coefficient between various monomials of a1 and a2 and the am-
plitude aΔ of the shift mode or the amplitudes a3 to a6 of the higher-order POD modes. Blue denotes
strong positive linear correlation, red denotes strong negative correlation, and white implies no
linear correlation between the two variables considered.

The exact form of these nonlinear correlations can be unraveled by polynomial regres-
sion. Doing so, we obtain the following relationships:

aΔ = 0.41(a
2
1 + a

2
2),

a3 = −0.028(a
2
1 − a

2
2) − 0.13a1a2,

a4 = 0.065(a
2
1 − a

2
2) − 0.056a1a2,

a5 = −0.065a
2
1a2 + 0.022a

3
2 ,

a6 = −0.021a
3
1 + 0.066a

2
2a1.

(9.8)

Figure 9.12 provides a comparison of the evolution of the various POD modes’ ampli-
tudes obtained from DNS and the ones predicted by the nonlinear correlations iden-
tified. As can be observed, these quadratic and cubic correlations accurately capture
the evolution of the higher-order PODmodes aswell as the existence of the paraboloid
manifold. Hence, it is clear that, although POD analysis reveals that seven PODmodes
need to be considered to accurately reconstruct the flow, only two of these modes are
actual degrees of freedom of the system while the rest of them are entirely slaved to
these two. This observation is consistent with the fact that, as shown in Section 9.2,
the unstable subspace of the Navier–Stokes operator linearized in the vicinity of the
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Figure 9.12: Same as Figure 9.7. The evolution of the coefficients a3 and a5 predicted by the non-
linear correlation models is also reported. In (d), only the parabola aΔ = 0.41a21 (i. e., a slice of the
paraboloid manifold in the a2 = 0 plane) is shown.
unstable fixed point is only two-dimensional. The coming section is then devoted to
the identification of the dynamical system governing the dynamics of a1 and a2.

9.4.2 Low-dimensional system identification – SINDy

Advanced regression methods from statistics, such as genetic programming or sparse
regression, are driving new algorithms that identify parsimonious nonlinear dynam-
ics from measurements of complex systems. Bongard and Lipson [16] and Schmidt
and Lipson [91] introduced nonlinear system identification based on genetic program-
ming, which has been used in numerous practical applications in aerospace engineer-
ing, the petroleum industry, and finance. More recently, Brunton et al. [22] have pro-
posed a system identification approach based on sparse regression known as sparse
identification of nonlinear dynamics (SINDy). Following the principle of Ockham’s ra-
zor, SINDy rests on the assumption that there are only a few important terms that gov-
ern the dynamics of a given system so that the equations are sparse in the space of
possible functions. Sparse regression is then used to determine the fewest terms in
a dynamical system required to accurately represent the data. The resulting models
are parsimonious, balancing model complexity with descriptive power while avoid-
ing overfitting and remaining interpretable. For more details about SINDy, interested
readers are referred to Chapter 12 of Volume 1 of the present book series as well as to
the increasing body of literature on the subject [22, 66, 23, 87, 101, 32, 89, 88, 67, 61,
63, 52, 24, 48].

The nonlinear correlation analysis conducted in the previous section has revealed
that the only true degrees of freedom of the system are the POD amplitudes a1 and a2.
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Thus, we now aim to find a nonlinear dynamical system

da1
dt
= f1(a1, a2),

da2
dt
= f2(a1, a2),

(9.9)

where f1 : ℝ2 → ℝ and f2 : ℝ2 → ℝ are two unknown functions to be identified
with SINDy. For the sake of simplicity, we will assume that these two functions are
polynomial functions of a1 and a2. In general, any basis functions may be used in
the SINDy library, although polynomials appear to be a reasonable choice for fluid
systems, based on the quadratic nonlinearity in the Navier–Stokes equations. Given
time series of a1 and a2, we thus define a library of candidate atoms

Θ(a1, a2) = [1 a1 a2 a21 a1a2 a22 a31 a21a2 a1a22 a32]

so that the unknown system can be recast as

da1
dt
= Θ(a1, a2)ξ 1,

da2
dt
= Θ(a1, a2)ξ 2,

(9.10)

where ξ 1 and ξ 2 are the solutions of a sparsity-promoting regression problem. After
some cross-validation, the following system has been identified:

da1
dt
= 0.09a1 − 0.77a2 − 0.016(a

2
1 + a

2
2)a1 − 0.07(a

2
1 + a

2
2)a2,

da2
dt
= 0.8a1 + 0.18a2 + 0.06(a

2
1 + a

2
2)a1 − 0.03(a

2
1 + a

2
2)a2.

(9.11)

As for the POD-Galerkin reduced-order model derived in Section 9.3, let us first inves-
tigate whether the identified model captures the key physics of the problem before
discussing its accuracy.

9.4.3 Does the model capture the key physics?

In order to capture the key physics, the identifiedmodel (9.11) needs to fulfill the same
conditions as those fulfilled by the POD-Galerkin reduced-order model, namely:
Property 1: The model has a single fixed point located at a = 0.
Property 2: The unstable subspace Eu of the model linearized in the vicinity of a = 0

is two-dimensional and associated to a complex–conjugate eigenpair.
Property 3: As t →∞, the system eventually evolves toward a structurally stable limit

cycle.
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Anyone familiar with dynamical system theory might recognize that the model (9.11)
identified with SINDy corresponds to the normal form of a supercritical Andronov–
Poincaré–Hopf bifurcationwhosephaseportrait is depicted inFigure 9.13.As such, the
identifiedmodel fulfills all three conditions at once and thus captures the key physics
of the problem. Identifying such a normal form is consistent with earlier works on the
same flow configuration [102, 94, 123, 77].

Figure 9.13: Phase plane of the low-order model identified using SINDy. The red dot indicates the
linearly unstable fixed point while the red circle highlights the attracting limit cycle.

Before discussing its accuracy, let usmake use of the nonlinear correlations identified
in Section 9.4.1 to recast the present model as

d
dt
[
a1
a2
] = [

0.09(1 − 0.19aΔ) −0.77(1 + 0.09aΔ)

0.8(1 + 0.07aΔ) 0.18(1 − 0.18aΔ)
][

a1
a2
] ,

aΔ = 0.41(a
2
1 + a

2
2).

(9.12)

In this form, the identified model strongly underlines the nonlinear feedback mech-
anism existing between the vortex shedding described by a1 and a2 and the induced
distortion characterized by aΔ. It can moreover be understood as a low-dimensional
counterpart of the self-consistent model proposed by Mantič-Lugo et al. [68] wherein
the “instantaneous” mean flow ū is governed by

∇ ⋅ (ū ⊗ ū) + ∇p̄ − 1
Re
∇2ū = −∇ ⋅ (u ⊗ u),

with u ⊗ u being the fluctuation’s Reynolds stress tensor, while the fluctuation itself
is governed by the Navier–Stokes equations linearized in the vicinity of the “instanta-
neous” mean flow

𝜕u
𝜕t
+ ∇ ⋅ (ū ⊗ u + u ⊗ ū) = −∇p + 1

Re
∇2u.

Comparing these twomodels, it is quite striking that they have a similar structure and
thus both describe the same physics. If one considers an infinitesimal perturbation u,
its Reynolds stresses become negligible and the instantaneousmean flow ū is nothing
but the linearly unstable base flow ub. However, as the amplitude of the fluctuation
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grows, so do its Reynolds stresses, causing the instantaneous mean flow ū to slowly
deviate from the base flow ub. Concurrently, this distortion impacts the dynamics of
the fluctuation through the linearized convective term ∇ ⋅ (ū⊗u +u ⊗ ū). This process
then continues until the distortion ū−ub is such that the instantaneous growth rate of
the fluctuation is zero (i. e., the amplitude of the fluctuation no longer grows), hence
resulting in themarginally stablemeanflow.Using the identifiedmodel, this evolution
of the instantaneous growth rate of the instability as a function of the distortion is
illustrated in Figure 9.14.

Figure 9.14: Evolution of the instantaneous growth rate σ as a function of the distortion aΔ. As the
distortion increases, the flow evolves from the linearly unstable base flow to the marginally stable
mean flow.

9.4.4 How accurate is it?

Let us now assess the accuracy of the identified model compared to direct numeri-
cal simulation. The initial velocity field used in our DNS is first projected onto the
span of the leading POD modes. The corresponding POD coefficients a1(0) and a2(0)
are then used as the initial condition for our reduced-order model. Figure 9.15 pro-
vides a comparison of the trajectory of the system in the phase plane (a1, a2) obtained
from direct numerical simulation (–) and predicted by our reduced-order model (−−).
Surprisingly, an almost perfect agreement is obtained. Note however that this is no
overfitting. Indeed, even though the two trajectories overlap in the (a1, a2)-plane, the
corresponding temporal evolutions slightly differ due to a small underestimation of
the instability growth rate as discussed shortly.

Figure 9.15: Comparison of the evolution of a1 and a2 obtained from direct numerical simulation (–)
and predicted by the identified low-order model (−−).
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Since both the identified model (9.11) and the nonlinear correlations (9.8) are solely
defined in terms of the POD coefficients, it is thus quite straightforward to reconstruct
an estimate of the flow field as done for the POD-Galerkin reduced-order model. Fig-
ure 9.16 depicts the evolution of the base flow-subtracted fluctuation’s kinetic energy
as a function of time observed in direct numerical simulation as well as the evolution
predicted by the POD-Galerkin reduced-order model derived in Section 9.3 and by the
present combination of the manifold model and associated nonlinear correlations.
Quite clearly, the accuracy of the model proposed in the present section largely out-
performs that of the classical POD-Galerkin reduced-order model. In particular, our
model does not suffer from the energy overshoot as nonlinear saturation occurs nor
does it display the saturation to a higher energy level once the system evolves onto the
final limit cycle. However, because we use POD modes computed from the limit cycle
dynamics, the flow reconstructed in the vicinity of the fixed point actually differs from
the true one since these POD modes provide only a crude approximation of the in-
stability modes. This continuous mode deformation problem can however be solved
using Grassmann manifold interpolation techniques discussed in the upcoming sec-
tion. Finally, Figure 9.16 also highlights that the growth rate of the instability is slightly
underestimated by our model, although nothing comparable to the underestimation
of the POD-Galerkin ROM. Two different approaches can be used to correct this minor
flaw:
1. Instead of restricting ourselves to cubic monomials in a1 and a2, one can include

up to seventh-order monomials in the libraryΘ(a1, a2) used for the system identi-
fication. The resultingmodel then corresponds to a higher-order expansion of the
supercritical Hopf bifurcation normal form.

2. Alternatively, if the growth rate of the instability is known a priori, one can force
the linearized low-dimensional operator to have the same eigenvalues as its high-
dimensional counterpart. Such an approach then relies on constrained optimiza-
tion techniques discussed in [61] and [63].

Figure 9.16: Evolution as a function of time of the base flow-subtracted fluctuation’s kinetic energy
ℰ(t) for the DNS, the POD-Galerkin ROM derived in Section 9.3, and the model identified using
SINDy. Note that, for the latter, the model predicts only the evolution of the a1 and a2 POD coeffi-
cients. The other coefficients (aΔ, a3, and a4) are then reconstructed using the nonlinear correlations
identified previously.
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Although not discussed herein, both approaches have been tested and are illustrated
in the accompanying Jupyter Notebook. Both of them result in a more accurate low-
order model even though the resulting model is either more complex (i. e., includes
higher-order terms) or requiresmore advanced computational techniques for the iden-
tification (i. e., constrained ℓ1-penalized regression).

9.4.5 Solving the continuous mode deformation problem:
Grassmann manifold interpolation

The previous section highlighted how the transient and posttransient dynamics of the
two-dimensional cylinder flow could be modeled by a simple self-exciting self limit-
ing quasi-harmonic oscillatorwhose degrees of freedom correspond to the amplitudes
a1(t) and a2(t) of the two leading PODmodes. If one considers only the shift mode and
the first two pairs of POD modes computed from the limit cycle dynamics, the instan-
taneous fluctuating velocity field u(x, t) is then approximated by

u(x, t) ≃ upod(x, t) = uΔ(x)aΔ(t) + 4
∑
i=1 ui(x)ai(t). (9.13)

It must be noted, however, that while the above Galerkin expansion provides a highly
accurate approximation of the velocity field once the flow evolves onto the limit cycle,
it poorly approximates the fluctuation’s velocity field during the phase of exponential
growth. This is illustrated in Figure 9.19,whichdepicts the instantaneous relative error

Err(t) =
‖u(x, t) − upod(x, t)‖2
‖u(x, t)‖2 .

As shown, the relative error for the POD reconstruction during the initial stage of tran-
sition is of the order of 50%. This mismatch results from the inability of the Galerkin
expansion (9.13) to capture the continuous mode deformation taking place as the sys-
tem evolves from the vicinity of the base flow to that of the mean flow.

One way to circumvent this issue is to reconstruct the flow field based on the fol-
lowing parameterized Galerkin expansion

u(x, t) ≃ u𝒢(x, t) = uΔ(x, aΔ)aΔ(t) + 4
∑
i=1 ui(x, aΔ)ai(t). (9.14)

In [75, 57, 103], the parameterized expansionmodeswere computed simply by linearly
interpolating between the instability modes obtained from linear stability analysis
and the POD modes from the limit cycle dynamics. Although extremely simple to im-
plement, the elements of the resulting reduced-order basis unfortunately do not form
in general an orthonormal set of vectors. Taking into account the fact that the insta-
bility modes continuously deform into the POD modes as the system evolves onto the
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low-dimensional manifold structuring its phase space, a better reduced-order basis
can however be obtained using so-called Grassmann manifold interpolation. Such an
interpolation technique has been used in [3, 2] to derive linear parameterized reduced-
order models for aeroelastic problems. Detailed mathematical derivation of the inter-
polation scheme is beyond the scope of the present contribution and only the result-
ing algorithmic implementation will be described hereafter. Interested readers are re-
ferred to the PhD thesis of Amsallem [2] for more details. Note moreover that Grass-
mann manifold interpolation is also covered in Chapter 9 of Volume 1 of the present
book series.

Let us consider the linearly unstable base flow and the marginally stable mean
flowas twodifferent operating points of the same systemparameterized by the relative
distortion s = aΔ

max aΔ
. The base flow thus corresponds to s0 = 0, while the mean flow

corresponds to s1 = 1. Furthermore, let us denote byΦ0 ∈ ℝ
n×5 a basis of POD modes

computed from the snapshots takenduring thephase of exponential growth (hereafter
denoted as weakly nonlinear POD modes, see the first row of Figure 9.18), while the
POD basis computed from the mean flow will be denoted asΦ1 ∈ ℝ

n×5. Finally, let us
introduce the Grassmann manifold of n × 5 orthonormal matrices 𝒢(n, 5) and denote
byϕ0 andϕ1 the coordinates associatedwith our two previous bases on thismanifold.
GivenΦ0 andΦ1, our goal is thus to computeΦ(s), i. e., the reduced-order basis for s ∈
[0, 1], under the constraint that it has to live onto𝒢(n, 5). A simple three-stepprocedure
has been derived by [3] for that purpose:
1. Compute the projection ofΦ1 onto the tangent space of the Grassmann manifold

𝒢(n, 5) at the point ϕ0. This projection onto the tangent space is given by the so-
called logarithmic operator at point ϕ0

(ℐ −Φ0Φ
T
0)Φ1(Φ

T
0Φ1)
−1 = UΣVT ,

Γ = U tan−1(Σ)VT ,
(9.15)

with Γ being the projection ofΦ1 onto the tangent space considered.
2. Because this tangent space is flat, one can use simple linear interpolation to ob-

tain Γ(s), i. e., the projection of the yet-unknownbasisΦ(s) onto the tangent space
of the Grassmann manifold at ϕ0. We then have

Γ(s) = U(s tan−1(Σ))VT . (9.16)

Note that, by construction, Γ(0) = 0.
3. Finally, the projection back onto the Grassmann manifold 𝒢 is computed by the

so-called exponential operator at point ϕ0 given by

Φ(s) = Φ0V cos(s tan−1(Σ)) + U sin(s tan−1(Σ)). (9.17)

The overall procedure is schematically represented in Figure 9.17b. Note that, by con-
struction, the reduced-order basisΦ(s) is orthonormal and continuously varies from
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Figure 9.17: Illustration of different reduced-order basis interpolation techniques; ϕ0 denotes our
reference point (i. e., the weakly nonlinear POD basis) and ϕ1 corresponds to the mean flow operat-
ing condition for which we use the classical POD modes. The parameter s is the relative amplitude
of the distortion for which we want to interpolate the corresponding reduced-order basis ϕ(s). The
black thick line highlights the manifold onto which our reduced-order bases should live.

Φ0 for s = 0 toΦ1 for s = 1. This is illustrated in Figure 9.18 wherein the vorticity field
of the instantaneous shift mode and the corresponding first and second harmonics of
the vortex shedding are shown for various values of the relative distortion s, namely,
s = 0, 0.25, 0.5, 0.75, and 1. Finally, Figure 9.19a depicts the evolution as a function of
time of the relative projection error

Err(t) = ‖(ℐ −ΦΦT )u(x, t)‖2
‖u(x, t)‖2 ,

whereΦ is either given by the classical POD basisΦ1 or the one obtained from Grass-
mann manifold interpolation Φ(s). Although both bases have the same cardinality,
the one parameterized by the instantaneous relative distortion s largely outperforms
the classical POD one in terms of reconstruction accuracy, notably during the phase
of exponential growth. This is particularly visible in Figure 9.19b depicting the spatial
distribution of the projection error. These results further confirm the inherent low-
dimensionality of the problem considered despite the continuous mode deformation
occurring as nonlinear saturation takes place.

9.4.6 Limitations of the present approach

Although the POD-Galerkin reduced-order model derived in Section 9.3 was able to
capture the key physics of the problem investigated, it nonetheless suffers fromanum-
ber of major limitations listed in Section 9.3.5. On the other hand, the present sec-
tion illustrated how one could identify a highly accurate and interpretable low-order
model of the system by taking into account nonlinear correlations in the POD decom-
position and the existence of a low-dimensional manifold. The existence of this low-
dimensional manifold moreover enabled us to propose a highly accurate parameter-
ized projection basis largely outperforming classical POD-Galerkin expansion of the
velocity, notably in the initial stage of transition where the fluctuation’s velocity field
is well approximated by the instability modes rather than the POD ones.
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Figure 9.18: Evolution of the different POD modes obtained by Grassmann manifold interpolation as
the flow evolves from the linearly unstable base flow (top) to the marginally stable mean flow (bot-
tom). The intermediate rows correspond to a relative distortion of 25%, 50%, and 75%, respectively.
Column (a) depicts the shift mode uΔ, (b) depicts the first harmonics of the vortex shedding, and (c)
depicts the second harmonics. Note that, for each value of the relative distortion, these modes form
an orthonormal set of vectors.

To the best of our knowledge, the present reduced-order model is the lowest-
dimensional and yet most accurate reduced-order model capturing the transient and
posttransient dynamics of the two-dimensional cylinder flow. Note moreover that
the exact same methodology is likely to be directly applicable to any other flow con-
figuration exhibiting similar dynamics. Despite its impressive accuracy, one must
however remain conscious that the methodology proposed herein also has some lim-
itations. First and foremost, the identification of the reduced-order model relied on
the existence of a low-dimensional manifold and on our ability to define a corre-
sponding nonlinear embedding of the original high-dimensional data. Although such
low-dimensional nonlinear manifolds are likely to exist for a large class of dissipative
dynamical systems, they may however be higher-dimensional and/or more compli-
cated to capture. Nonetheless, in such cases one could use advanced techniques
from manifold learning such as kPCA [92, 93], Isomap [107], LLE and its variants
[84, 121, 35], spectral embedding [10], MDS [17], or autoencoders [13].

Secondly, we assumed that the right-hand side f (a) of our low-order model

da
dt
= f (a)

could be expressed as a linear combination of monomials in a1 and a2. While this
choice may be justified for a large class of dynamical systems, the present choice pre-
cludes the identification of systems involving other types of nonlinearities, such as
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Figure 9.19: (a) Comparison of the relative error for the orthogonal projection of the base flow-
subtracted fluctuation’s velocity field onto either the leading five POD modes (–) extracted from
the limit cycle dynamics or the Grassmann interpolated ones (−−). The direct numerical simulation
has been started from an initial condition close to the linearly unstable base flow. (b) Spatial distri-
bution of the projection error at various times. The vertical velocity component is shown. From top
to bottom: t = 6 (exponential growth of the instability), t = 60 (onset of nonlinear saturation), and
t = 120 (asymptotic limit cycle).
rational functions. It must be noted however that the SINDy framework is quite exten-
sible and various extensions have been proposed since [22] to enable the identification
of dynamical systems with exotic nonlinearities; see for instance [66]. Alternatively, if
the dynamics appear to be strongly nonlinear and not expressible in terms of classi-
cal analytical functions, one could include wavelets in the library Θ(a) used in the
identification or turn to a class of neural networks known as long short-term memory
(LSTM). Although one would sacrifice interpretability by doing so, recent works have
shown that such LSTM deep neural networks are able to capture and reproduce the
chaotic spatio-temporal dynamics of the Kuramoto-Sivashinky equation [112, 26].

9.5 Good practices

The two-dimensional cylinder flowat Re = 100 is a prototypical example fromfluid dy-
namics capturing the key physics of bluff body flows. Despite the low-dimensionality
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of the flow dynamics, it has been shown that a reduced-order model derived from a
naive POD-Galerkin projection procedure fails to accurately reproduce the dynamics
of the flow, most notably its transient dynamics. The key reasons for this failure, ex-
plained in [77], are twofold:
1. Galerkin projection of the Navier–Stokes equations onto the span of a low-

dimensional POD basis causes a disruption of the energy cascade, hence giving
rise to the energy overshoot illustrated in Figure 9.9.

2. POD modes are classically computed from statistically steady operating condi-
tions. Consequently, this set of modes may provide only a crude approximation
of the fluctuation’s velocity field during transient dynamics. As a consequence,
the corresponding low-dimensional linear operator obtained from Galerkin pro-
jection does not correctly capture the spectral properties of its high-dimensional
counterpart.

Recent advances in data-driven techniques and machine learning are likely to help
overcoming these limitations. It must be emphasized however that, despite their im-
pressive successes regularly reported in mainstream and scientific media, blindly ap-
plying techniques from machine learning (and in particular from deep learning) to
fluid dynamics problems may give rise to overly complicated models. The aim of this
section is to discuss a set of goodpractices that, according to the authors, are of crucial
importance when it comes to data-driven reduced-order modeling.

9.5.1 Dimensionality reduction

The aim of reduced-order modeling is to obtain a low-dimensional representation of
the dynamics of the original high-dimensional system. The very first step is thus to
apply dimensionality reduction. POD, which is discussed at length in this book series,
is the standard choice in mechanical engineering due to its ability to rank the modes
according to the fraction of the fluctuation’s kinetic energy they capture. Once the
POD modes have been computed, most of the reduced-order models proposed in the
literature then carry on directlywith the derivation of the low-dimensionalmodel gov-
erning the dynamics of these modes. It must be noted, however, that, as discussed in
the previous section, POD analysis provides a set ofmodeswhose temporal evolutions
are only linearly uncorrelated. Hence, truncated POD corresponds simply to an opti-
mal linear embedding of our original high-dimensional data set into a lower linear
subspace. While this property might be beneficial for reduced-order models of linear
systems, dissipative nonlinear dynamical systems are typically characterized by non-
linear correlations across vastly different ranges of temporal and/or spatial scales.
Consequently, if the data turn out to live on a low-dimensional nonlinear manifold,
POD analysis would then overestimate the number of dimensions required to describe
the dynamics of the system. Accounting for these nonlinear correlations is thus a key
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problem for standard reduced-order modeling strategies which is often disregarded
by practitioners, although it may cause the identified/derived reduced-order model to
be unnecessarily complicated.

Looking for nonlinear correlations between the various features of a multivariate
time series is obviously significantly more complicated than looking for simple lin-
ear correlations. Given the quadratic nature of the nonlinear convective term in the
Navier–Stokes equations, it seems however reasonable to restrict ourselves to poly-
nomial correlations. Moreover, when the investigated flow exhibits only periodic dy-
namics as for the one considered herein, one can simply guess a priori the variables
involved in the correlations by considering a limited number of triadic interactions.
Polynomial regression can then be used to unravel the exact form of these nonlinear
correlations. For more complicated flow configurations (e. g., chaotic and/or higher-
dimensional dynamics), this task can however quickly become intractable without
further preprocessing. Recently, Lopez-Paz et al. [64] proposed a new correlation met-
ric to unravel whether two features of a multivariate time series are nonlinearly cor-
related or not: the randomized dependence coefficient (RDC). Mathematical derivation
of this metric is far beyond the scope of this contribution and interested readers are
referred to the original paper [64] for more details. Note that this nonlinear correla-
tion metric is extremely simple to use and can be implemented with less than 10 lines
of R or Python. Preliminary results on a high Reynolds number shear-driven cavity
flowhave shown that the shear-layer dynamics and inner-cavity flowwere onlyweakly
nonlinearly correlated, thus considerably simplifying the identification of a reduced-
order model with only four degrees of freedom. As an element of comparison, a clas-
sical POD-Galerkin reduced-order model would involve 12 to 15 degrees of freedom.

Although the combination of POD, RDC analysis, and polynomial regression has
now become one of the standard approaches used by the present authors, it must be
noted that numerous other alternatives exist to unravel nonlinear correlations. In the
field ofmachine learning, these tools form a subset known asmanifold learning or rep-
resentation learning. From the authors’ point of view, a particularly interesting tech-
nique from manifold learning is the use of so-called autoencoders. This is the subject
of ongoing investigations by the present authors. Formore details about autoencoders
and manifold learning, please see the excellent review article by Bengio et al. [13].

9.5.2 System identification

The field of system identification uses statistical methods to build mathematical
models of dynamical systems from measured data. With respect to the classifica-
tion proposed in [115], system identification enables us to obtain either gray-box or
black-boxmodels. Variousmethods have been proposed over the years. Some of these
are classified in Figure 9.20 depending on the complexity (linear or nonlinear, in-
terpretable or noninterpretable) of the resulting model. While the identification of
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Figure 9.20: Classification of various system identification techniques based on the complexity of
the resulting model. On the left, these techniques and their variants enable the identification of
linear input–output models. At the center, NARMAX, EDMD, and SINDy allow one to identify inter-
pretable input–output nonlinear dynamical systems. Finally, on the right, neural networks and their
variants give rise to black-box strongly nonlinear models.

a linear time-invariant dynamical system has a plethora of theoretical results, theo-
retical guarantees for nonlinear system recovery are much more scarce. Like many
fields, nonlinear system identification has nonetheless been revolutionized with the
popularization of deep learning. It must be noted however that, from the authors’
point of view, a number of recent studies have put too much emphasis on illustrating
deep learning techniques while discarding the possibility that the system considered
could be modeled using a much simpler approach, notably studies which have used
the two-dimensional cylinder flow as an illustration. Following Ockham’s razor, we
thus strongly encourage practitioners to try linear system identification first (e. g.,
ERA, DMD, ARMAX), before moving to interpretable nonlinear system identification
(e. g., NARMAX, SINDy) and eventually neural network-based techniques only if the
previous two approaches have failed.

9.6 Conclusion

This work proposes a new reduced-order modeling procedure for unsteady fluid flows
that yields accurate nonlinear models and insight into relevant flow structures. This
procedure identifies sparse interpretable nonlinear models, not on the full fluid state,
but from time-resolved measurements of the leading POD coefficients that may be
realistically obtained in experiments. The sparsity of the model prevents overfitting
and uncovers key nonlinear interaction terms. Althoughmodels are data-driven, they
are interpretable, and it is also possible to incorporate partial prior knowledge of the
physics or constraints to improve the models. If the stability modes are also available,
it is possible to estimate the full state from the sparse model using Grassmann man-
ifold interpolation: The full state is expanded in terms of a parameterized reduced-
order basis, based on the dynamics.

This methodology is illustrated using the canonical two-dimensional cylinder
flow at Re = 100. Despite its simplicity, this flow configuration is a prototypical exam-
ple capturing the key physics of bluff body flows. Even though this study uses data
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from direct numerical simulations, the overall strategy is generally applicable to a
real flow experiment with minor modifications. Despite their simplicity, the identified
models do not suffer the same drawbacks as reduced-order models obtained from a
Galerkin projection procedure, namely, overestimation of the duration of transients
and energy overshoots at the onset of nonlinear saturation. Instead, the identified
sparse models provide simple explanations for the nonlinear saturation process of
globally unstable flows. Moreover, the models are based on sensor measurements,
which may include POD coefficients, lift, drag, or pressure measurements that are
physically linked to the geometry. Working in these intrinsic coordinates has the
potential to overcome many of the limitations of classical modal-based projection
methods, including mode deformation due to moving geometry and varying parame-
ters.

9.7 Perspectives

The effectiveness of the reduced-order models identified and the modularity of the
methodology proposed in the present work suggest a number of exciting future di-
rections. There is significant potential for these methods to be applied broadly to ob-
tain interpretable reduced-order models for a range of flow configurations in simu-
lations and experiments. For example, these manifold models may be applied to de-
velop nonlinear unsteady aerodynamic models, generalizing previous linear and lin-
ear parameter-varying models [19, 20, 47].

A key motivation in this work is its extension to flow control. Given a feature vec-
tor a and actuators characterized by a control law b(t), one could use SINDywith con-
trol [23, 52] in order to identify low-order models

da
dt
= f (a,b)

that incorporate the influenceof the actuationbon thedynamics ofa. Combining such
an approach with machine learning control [36] may result in interpretable models of
entirely new flow behaviors and previously unobserved flow physics that are discov-
ered in the controlled flow. The identifiedmodels can then serve as a low-dimensional
representation of the actual system in order to facilitate the computation of nonlinear
optimal feedback control laws. This is an area of active research by the authors. In the
near future, the authors aim to apply themethodology introduced in the present work
to the optimal control of experimental flows.

There are a number of methodological extensions that may improve the perfor-
mance of this sparse modeling framework. First, it will be important to demonstrate
that thesemethods scale favorably to systemswith higher-dimensional attractors. Be-
cause the algorithms are based on simple regression and sparse optimization, they
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should remain computationally tractable. Next, it may be possible to increase the ac-
curacy of the Grassmann interpolation by building local modal libraries in different
dynamic regimes (e. g., linear instability, saturated limit cycle, etc.). The storage re-
quirements may further be reduced using compression techniques and sparse sam-
pling. Finally, it has been demonstrated in [63] how such manifold models could be
identified directly from sensor measurements such as the lift and drag coefficients.
For the present flow configuration, the present authors identified that the dynamical
system governing the dynamics of the lift coefficient CL(t) of the form

d2CL
dt2
+ (σ − [αC2L + β(

dCL
dt
)
2
])

dCL
dt
+ ω2

0CL = 0.

Such sensor-based models are strongly related to the existence of a low-dimensional
manifold structuring the phase space of the system investigated and to the strong
correlations existing between the various sensor measurements considered and the
spatio-temporal coherent structures found in the flow. Our ability to identify such
sensor-based manifold models may eventually have a major impact in experimental
fluid mechanics and flow control.

A data-driven generalization of manifold models are cluster-based network mod-
els, where the snapshots are coarse-grained by centroids and the topology is encoded
in a transition model between these centroids [58]. Such models may approximate
broadband-frequency wall turbulence for dozens of different wall surface actuations
[39]. Theprice for for this conceptually simple, automatable, and robust reduced-order
modeling avenue is that themanifold and sparse dynamics still need to be distilled—if
they exist.
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