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Concepts from multiple testing can improve tests of single hypotheses. The proposed definition of the calibrated p value is an estimate of the local false sign rate, the posterior probability that the direction of the estimated effect is incorrect. Interpreting one-sided p values as estimates of conditional posterior probabilities, that calibrated p value is (1 -LFDR) p/2 + LFDR, where p is a two-sided p value and LFDR is an estimate of the local false discovery rate, the posterior probability that a point null hypothesis is true given p. A simple option for LFDR is the posterior probability derived from estimating the Bayes factor to be its e p ln(1/p) lower bound.

The calibration provides a continuum between significance testing and traditional Bayesian testing. The former effectively assumes the prior probability of the null hypothesis is 0, as some statisticians argue is the case. Then the calibrated p value is equal to p/2, a one-sided p value, since LFDR = 0. In traditional Bayesian testing, the prior probability of the null hypothesis is at least 50%, which usually results in LFDR > > p. At that end of the continuum, the calibrated p value is close to LFDR.

Introduction

Meta-analyses of large numbers of previous studies from biomedicine and neuroscience have raised concerns that many published results cannot be replicated [START_REF] Ioannidis | Why most published research findings are false[END_REF][START_REF] Nieuwenhuis | Erroneous analyses of interactions in neuroscience: a problem of significance[END_REF][START_REF] Button | Power failure: why small sample size undermines the reliability of neuroscience[END_REF], contributing to the perceived replication crisis in many scientific fields [START_REF] Begley | Reproducibility in science[END_REF], especially psychology (Open Science Collaboration, 2015;[START_REF] Hughes | Psychology in Crisis[END_REF]. The statistics community has responded with guidelines on hypothesis testing and recommendations to emphasize effect sizes (e.g., [START_REF] Wasserstein | The ASA's statement on p-values: Context, process, and purpose[END_REF]. However, conflicting proposals among statisticians on how to improve statistical data analysis (e.g., Wasserstein et al., 2019, and references) cause confusion among non-statisticians [START_REF] Schachtman | Palavering about p-values[END_REF][START_REF] Mayo | The ASA's p-value project: Why it's doing more harm than good[END_REF], leaving statistical consultants with the responsibility of sifting through the arguments to provide their collaborators practical solutions.

For example, many Bayesians propose to address criticisms of null hypothesis significance testing by transforming the p value to a lower bound on the posterior probability that the null hypothesis is true: see [START_REF] Held | On p-values and Bayes factors[END_REF] and its references.

Example 1. Assuming the two-sided p value is not large (p ≤ 1/e) when testing the null hypothesis [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] and [START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF] recommend

H 0 : θ = θ H 0 ,
B = -e p ln p (1) 
as a lower bound on the Bayes factor B = Pr (P = p |θ = θ H 0 ) / Pr (P = p |θ = θ H 0 ), where θ is the unknown value of the parameter of interest, θ H 0 is the fixed parameter value of the null hypothesis, P is the random variable representing the p value before it is observed to be equal to the number p. Since the posterior probability is

Pr (θ = θ H 0 | P = p) = Pr (θ = θ H 0 ) Pr (P = p |θ = θ H 0 ) Pr (P = p) = 1 + Pr (θ = θ H 0 ) 1 -Pr (θ = θ H 0 ) B -1 -1 (2) 
according to Bayes's theorem, it has a lower bound of

v = 1 + Pr (θ = θ H 0 ) 1 -Pr (θ = θ H 0 ) B -1 -1 , (3) 
called the v value because a quantity approximated by B appears in Vovk (1993, §9).

Since Pr (θ = θ H 0 | P = p) is typically much larger than p when Pr (θ = θ H 0 ) ≥ 1/2, it is often 1 claimed that p "overstates" the strength of the evidence against the null hypothesis (e.g., [START_REF] Goodman | Toward Evidence-Based Medical Statistics. 2: The Bayes Factor[END_REF]. That conclusion is disputed by [START_REF] Hurlbert | Final collapse of the Neyman-Pearson decision theoretic framework and rise of the neoFisherian[END_REF], who argue that since prudent scientists tend to believe the null hypotheses they test are false, Pr (θ = θ H 0 ) should be much smaller than 1/2, perhaps 1/10 or 1/100.

In fact, [START_REF] Bernardo | Integrated objective Bayesian estimation and hypothesis testing[END_REF][START_REF] Mcshane | Abandon statistical significance[END_REF], and others argue that since systematic errors prevent θ = θ H 0 from ever being exactly true, it follows that 0 is the only reasonable value for Pr (θ = θ H 0 ); cf. [START_REF] Van Den Bergh | A cautionary note on estimating effect size[END_REF]. In that case, Pr (θ = θ H 0 | P = p) = 0, which would make traditional Bayesian hypothesis testing useless. Frequentist hypothesis testing, on the other hand, could still serve to determine whether the sample is large enough to warrant concluding that θ > θ H 0 or that θ < θ H 0 . In that context, θ = θ H 0 is called a dividing null hypothesis [START_REF] Cox | The role of significance tests[END_REF][START_REF] Bickel | Estimating the null distribution to adjust observed confidence levels for genomescale screening[END_REF]. The idea is that if the p value is low enough, then s = sign θ -θ H 0 is a reasonable estimate of s = sign (θ -θ H 0 ), where θ is an observed point estimate of θ and the function sign (•)

has a value of 1 if its argument is positive, -1 if its argument is negative, and 0 otherwise. In that way, testing the null hypothesis that θ = θ H 0 is used as an indirect method of deciding whether to claim that s = s.

A more direct way to make that decision would be to claim that s = s only if it is sufficiently probable or, equivalently, if the sign error s = s is sufficiently improbable. The sign error [START_REF] Stephens | False discovery rates: a new deal[END_REF] is also called a "Type III error" [START_REF] Butler | Theoretical and empirical distributions of the p value[END_REF]) and a "directional error" [START_REF] Grandhi | Control of directional errors in fixed sequence multiple testing[END_REF]. The posterior probability of making a sign error given a two-sided p is

Pr (s = s| P = p) =        Pr (θ > θ H 0 | P = p) + Pr (θ = θ H 0 | P = p) if θ < θ H 0 Pr (θ < θ H 0 | P = p) + Pr (θ = θ H 0 | P = p) if θ > θ H 0 . (4) 
Under broadly applicable conditions, that is reasonably estimated by

Pr (s = s| P = p) = (1 -v ) p 2 + v , (5) 
whenever v , the v value of equation (3), is a reasonable estimate of the Pr (θ = θ H 0 | P = p) in equation ( 2). The result is proved for all reasonable estimates of Pr (θ = θ H 0 | P = p) in Section 2.

The form of equation ( 5) represents a continuum between null hypothesis significance testing and conventional Bayesian testing. The frequentist practice of considering θ = θ H 0 to be a dividing null hypothesis [START_REF] Cox | The role of significance tests[END_REF][START_REF] Bickel | Estimating the null distribution to adjust observed confidence levels for genomescale screening[END_REF] is recovered by setting Pr (θ = θ H 0 ) = 0, for in that case v = 0 and Pr (s = s| P = p) = p /2, which is a one-sided p value. At the opposite extreme, the traditional Bayesian practice of setting Pr (θ = θ H 0 ) ≥ 1/2 often results in a v value that is much greater than the p value, in which case Pr (s = s| P = p) ≈ v . Choices of Pr (θ = θ H 0 ) between those frequentist and Bayesian extremes place Pr (s = s| P = p) within a continuum of values between p /2 and 1. For that reason, the easily interpreted estimate Pr (s = s| P = p) is a natural choice of a calibrated p value, as illustrated by example in Section 3. There, Figure 1 vividly portrays the Bayes-frequentist continuum.

The American Statistical Association's call to emphasize effect size estimation [START_REF] Wasserstein | The ASA's statement on p-values: Context, process, and purpose[END_REF] does not necessarily warrant reporting conventional effect size estimates without modification (van den [START_REF] Van Den Bergh | A cautionary note on estimating effect size[END_REF]. In particular, a large effect size estimate can be misleading when a direction of the effect is too uncertain. To address that problem, Section 4 derives a simple calibration of the effect size estimate. The calibrated p value Pr (s = s| P = p) emerges as the degree of shrinkage.

Finally, implications for the debate and practice of testing null hypotheses are discussed in Section 5. As equation ( 4) suggests, to estimate LFSR of a single null hypothesis, we need not only LFDR, an estimate of LFDR, but also estimates of Pr (θ ≷ θ H 0 | P = p). Seeing that

Pr (θ ≷ θ H 0 | P = p) = Pr (θ ≷ θ H 0 , θ = θ H 0 | P = p) = Pr (θ = θ H 0 | P = p) Pr (θ ≷ θ H 0 | P = p, θ = θ H 0 ) = (1 -LFDR) Pr (θ ≷ θ H 0 | P = p, θ = θ H 0 ) , let Pr (θ ≷ θ H 0 | P = p) = 1 -LFDR p ≶ , where p ≶ is the estimate of Pr (θ ≷ θ H 0 | P = p, θ = θ H 0 )
that is defined as a one-sided p value testing the null hypothesis that θ = θ H 0 with θ ≶ θ H 0 as the alternative hypothesis. From here on, the two-sided p value is p = 2 min (p < , p > ).

Estimating Pr (θ ≷ θ H 0 | P = p, θ = θ H 0 ) by p ≶ has both a Bayesian justification and a Fisherian justification. The Bayesian justification is that p ≶ is in many cases an approximation of a

Pr (θ ≷ θ H 0 | P = p, θ = θ H 0 )
based on any member of a wide class of prior distributions that do not concentrate prior probability at θ H 0 or at any other point [START_REF] Pratt | Bayesian interpretation of standard inference statements[END_REF][START_REF] Casella | Reconciling Bayesian and frequentist evidence in the one-sided testing problem[END_REF].

Setting Pr (θ = θ H 0 ) > 0 need not conflict with those priors since Pr (θ Bickel, 2012b[START_REF] Bickel | Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support[END_REF].

≷ θ H 0 | P = p, θ = θ H 0 ), unlike Pr (θ ≷ θ H 0 | P = p), is conditional on θ = θ H 0 (cf.
The Fisherian justification is that p ≶ , as a fiducial probability or observed confidence level [START_REF] Polansky | Observed Confidence Levels: Theory and Application[END_REF] that θ ≷ θ H 0 [START_REF] Bickel | Estimating the null distribution to adjust observed confidence levels for genomescale screening[END_REF], can serve as an estimate of a posterior probability that θ ≷ θ H 0 even though, as many have noted (e.g., [START_REF] Grundy | Fiducial distributions and prior distributions: An example in which the former cannot be associated with the latter[END_REF][START_REF] Lindley | Fiducial distributions and Bayes' theorem[END_REF]Evans, 2015, §3.6), it does not necessarily satisfy the properties of a Bayesian posterior probability. In the same way, many optimal point estimates can have values that are not possible for the parameters they estimate (Bickel, 2019b). That is why Wilkinson (1977, §6.2) considered fiducial probability as an estimate of a level of belief rather than as a level of belief. Similarly, confidence distributions, a modern development of fiducial distributions [START_REF] Nadarajah | Confidence distributions: A review[END_REF], have been interpreted in terms of estimating θ [START_REF] Singh | Confidence distribution (CD) -distribution estimator of a parameter[END_REF][START_REF] Xie | Confidence distribution, the frequentist distribution estimator of a parameter: A review[END_REF] or an indicator of hypothesis truth (Bickel, 2012a).

Plugging the above estimates into equation (4) yields

LFSR =        1 -LFDR p < + LFDR if θ < θ H 0 1 -LFDR p > + LFDR if θ > θ H 0 . (6) Theorem 1. If sign θ -θ H 0 = sign (p < -p > ), then LFSR = 1 -LFDR p 2 + LFDR.
Proof. By equation ( 6), it is sufficient to prove that

p =        2 p < if θ < θ H 0 2 p > if θ > θ H 0 . Since the sign θ -θ H 0 = sign (p < -p > ) condition implies that θ < θ H 0 ⇐⇒ p < < p > and θ > θ H 0 ⇐⇒ p > < p < , it is enough to prove that p =        2 p < if p < < p > 2 p > if p > < p <
, which follows immediately from p = 2 min (p < , p > ).

The sign θ -θ H 0 = sign (p <p > ) condition for the theorem says the sign estimated by the parameter estimate agrees with the sign indicated by the one-sided p values. It holds in nearly all real situations.

Estimates of local false sign rates as calibrated p values

The estimate of the local false sign rate approaches a local false discovery rate or a one-sided p value, depending on the limiting conditions.

Corollary 1. If sign θ -θ H 0 = sign (p <p > ), then lim p→0 LFSR = LFDR and lim Pr(θ=θH 0 )→0 LFSR = p /2, where Pr (θ = θ H 0 ) is the prior probability that yields LFDR as the posterior probability.

Proof. By Bayes's theorem, LFDR → 0 as Pr (θ = θ H 0 ) → 0. Both claims then follow from Theorem 1.

Since p /2 = min (p < , p > ), that result justifies calling LFSR the LFDR-calibrated p value and accordingly denoting it by p LFDR to stress its dependence on the choice of an estimate of LFDR.

Example 2. A simple option for LFDR is v , the lower bound given in equation ( 3), with Pr (θ = θ H 0 ) in place of Pr (θ = θ H 0 ). Then we write the v -calibrated p value as p (v ).

The resulting Bayes-frequentist continuum is displayed as Figure 1, with traditional frequentism at the left end of each plot and traditional Bayesianism at the right. Figure 2 zooms in on three points in the continuum.

Many other lower bounds on LFDR are available (e.g., Held and Ott, 2018, and references).

But why estimate the LFDR with an estimate of a lower bound such as the v value (Example 2)?

There are multiple reasons to accept the v value as an adequate estimate of the LFDR. First, as the Bayes factor can be lower than B [START_REF] Held | On p-values and Bayes factors[END_REF], which is the Bayes factor bound behind the v value, the v value is not necessarily a lower bound on LFDR. Second, B is close to estimated Bayes factors for many studies in epidemiology, genetics, and ecology (Bayarri et al., 2016, Fig. 3), and the v value would be close in those cases to LFDR. Third, the v value is quantitatively similar to the following estimate of LFDR.

Example 3. Let z denote the probit transform of p /2; the probit function is implemented in R as rnorm and in Microsoft Excel as norm.s.inv. For |z | ≥ 1, the L value is

L = 1 1 + 1/ B , where B = 1.86 |z | e -z 2
2 is the median-unbiased estimate of the Bayes factor assuming the probit transform of a one-sided p value is normal with mean 0 under θ = 0 (Bickel, 2019a,d). (See Held and Ott (2016) for the maximum likelihood estimate under the same model and [START_REF] Pace | Principles of Statistical Inference: From a Neo-Fisherian Perspective[END_REF] on the 0% confidence interval as a median-unbiased estimate.) Then p (L) is the L-calibrated p value. It could be approximated by p (v ) since p (L) ≈ p (v ), and the simplicity of p (v ) may make it more practical for general use (cf. [START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF] than p (L), which requires the probit transform.

While the local false sign rate and local false discovery rate are posterior probabilities conditional on P = p, other posterior probabilities might serve as approximations.

Example 4. The positive predictive value Pr (θ = θ H 0 | P ≤ α) plays a key role in multiple papers related to the reproducibility crisis (e.g., [START_REF] Ioannidis | Why most published research findings are false[END_REF][START_REF] Button | Power failure: why small sample size undermines the reliability of neuroscience[END_REF][START_REF] Dreber | Using prediction markets to estimate the reproducibility of scientific research[END_REF][START_REF] Wilson | The prior odds of testing a true effect in cognitive and social psychology[END_REF]. It is isomorphic to

Pr (θ = θ H 0 | P ≤ α) = 1 -Pr (θ = θ H 0 | P ≤ α) ,
which is known as the false positive report probability [START_REF] Wacholder | Assessing the probability that a positive report is false: An approach for molecular epidemiology studies[END_REF] and, in the multiple testing literature, as the Bayesian false discovery rate [START_REF] Efron | Empirical Bayes methods and false discovery rates for microarrays[END_REF] and the nonlocal false discovery rate [START_REF] Bickel | Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions[END_REF]). An estimate of Pr (θ = θ H 0 | P ≤ α), such as the upper bound proposed by Bickel (2019c), is denoted by w and called a w value after [START_REF] Wacholder | Assessing the probability that a positive report is false: An approach for molecular epidemiology studies[END_REF].

Using it as an estimate of LFDR results in p (w ), the w -calibrated p value. However, w is highly biased as an estimate of LFDR when α = p [START_REF] Colquhoun | The reproducibility of research and the misinterpretation of p-values[END_REF][START_REF] Colquhoun | The false positive risk: A proposal concerning what to do about p-values[END_REF][START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF].

4 Effect size estimation informed by local false sign rate estimation If all relevant prior distributions were known, the Bayes-optimal estimate of the effect size θ under squared error loss would be its posterior mean, E (θ| P = p) = Pr (s = s| P = p) E (θ| P = p, s = s)

+ Pr (s = s, θ = θ H 0 | P = p) E (θ| P = p, s = s, θ = θ H 0 ) + Pr (s = s, θ = θ H 0 | P = p) E (θ| P = p, s = s, θ = θ H 0 ) = (1 -LFSR) E (θ| P = p, s = s) + (LFDR) θ H 0 + (LFSR -LFDR) E (θ| P = p, s = s, θ = θ H 0 ) .
Without that knowledge, θ may instead be estimated by estimating E (θ| P = p).

In agreement with the LFSR = p LFDR framework of Sections 2-3, E (θ| P = p) is estimated by the LFDR-calibrated effect size estimate,

θ LFDR = 1 -p LFDR θ + LFDR θ H 0 + p LFDR -LFDR θ H 0 ,
which uses θ to estimate E (θ| P = p, s = s) and θ H 0 to estimate E (θ| P = p, s = s, θ = θ H 0 ). The latter estimate works best when θ would probably be close to θ H 0 conditional on a sign error. The calibrated effect size estimate simplifies to

θ LFDR = 1 -p LFDR θ + p LFDR θ H 0 , (7) 
which reveals p LFDR as the degree to which θ is shrunk toward θ H 0 . The next result follows immediately from that and Corollary 1. The right-hand side of equation ( 8) has been used in multiple testing situations (e.g., [START_REF] Montazeri | Shrinkage estimation of effect sizes as an alternative to hypothesis testing followed by estimation in high-dimensional biology: Applications to differential gene expression[END_REF][START_REF] Yanofsky | Validation of differential gene expression algorithms: Application comparing fold-change estimation to hypothesis testing[END_REF]. Equation ( 9) records the effect of considering the local false sign rate even at the frequentist end of the Bayes-frequentist continuum.

Corollary 2. If sign θ -θ H 0 = sign (p < -p > ), then lim p→0 θ LFDR = 1 -LFDR θ + LFDR θ H 0 ; (8) lim Pr(θ=θH 0 )→0 θ LFDR = 1 - p 2 θ + p 2 θ H 0 . (9) 
An advantage of θ LFDR is that it shrinks θ toward θ H 0 more for higher p values without ever shrinking it all the way to θ H 0 , as seen in Figure 3. As a result, reporting calibrated effect size estimates could help prevent researchers from concluding that θ = θ H 0 on the basic of a high p value.

Discussion

Imagine a world in which abstracts have v -calibrated effect size estimates and "p(v)=0.04," "p(v)=0.01," etc. in place of our world's uncalibrated estimates and "p<0.05." Adopting the local false sign rate estimate as a calibrated p value may focus current discussions about estimation and testing. The traditional Bayesian and frequentist positions would no longer be incommensurate paradigms or matters of upbringing and taste but rather opposite directions on the continuum determined by the prior probability of the null hypothesis (Figures 12). Going forward, debates would then concentrate on ways to estimate the prior probability for each field, data type, or other reference class (cf. [START_REF] Lakens | Justify your alpha[END_REF][START_REF] De Ruiter | Redefine or justify? comments on the alpha debate[END_REF]. Progress is already being made in measuring how the prior is influenced by a field's risk tolerance [START_REF] Wilson | The prior odds of testing a true effect in cognitive and social psychology[END_REF], echoing the report that a demand for novelty leads to less reproducible results (Open Science Collaboration, 2015).

Even before a consensus is reached, statisticians can inform their collaborators of the impact of the prior probability on the local false sign rate estimate and help them determine adequate estimates of the prior for the data at hand. Estimates may be available in some cases from metaanalyses. For example, [START_REF] Benjamin | Redefine statistical significance[END_REF] derived their infamous 0.005 significance threshold in part from meta-analyses suggesting Pr (θ = θ H 0 ) = 10/11 in psychology [START_REF] Dreber | Using prediction markets to estimate the reproducibility of scientific research[END_REF][START_REF] Johnson | On the reproducibility of psychological science[END_REF]. The high value of that estimate reflects modeling assumptions that would in effect include values of θ that are close to θ H 0 with the null hypothesis rather than the alternative hypothesis. How close is close enough for inferential purposes may be a fruitful subject of future study and argument since it determines the calibrated p value through Pr (θ = θ H 0 ).

The difficulties involved in estimating prior probabilities may at times force us to retreat back to null hypothesis significance testing without any prior or to traditional Bayesian testing with the default 50% prior probability. The calibrated p value would then tell us what the estimated probability of making a sign error would be if the prior probability of the null hypothesis were actually 0% or 50%, respectively.
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  Estimating the local false sign rate of a single null hypothesis For making connections to the literature and for succinctly deriving equation (5) regarding a test of the null hypothesis θ = θ H 0 , some terminology originally developed for testing multiple null hypotheses will prove useful. Since Efron et al. (2001) calls the Pr (θ = θ H 0 | P = p) of equation (2) the local false discovery rate, let LFDR = Pr (θ = θ H 0 | P = p); see Efron (2010) and Bickel (2019a) for expositions. Similarly, since Stephens (2016) calls the Pr (s = s| P = p) of equation (4) the local false sign rate, let LFSR = Pr (s = s| P = p).

Figure 1 :

 1 Figure 1: The three curves are p (v ), v , and p /2 as functions of Pr (θ = θ H 0 ). For both p = 0.05 and p = 0.005, the v -calibrated p value p (v ) approaches the one-sided p value p /2 as Pr (θ = θ H 0 ) decreases and approaches the estimated posterior probability v as Pr (θ = θ H 0 ) increases.

Figure 2 :

 2 Figure2: The three curves are p (v ), v , and p /2 as functions of p, the two-sided p value, for each of three prior probabilities: Pr (θ = θ H 0 ) = 0.01, 0.1, 0.5. In the plot corresponding most to traditional frequentism (Pr (θ = θ H 0 ) = 0.01), the v -calibrated p value p (v ) is close to p /2, a onesided p value. In the plot corresponding most to traditional Bayesianism (Pr (θ = θ H 0 ) = 0.5), the v -calibrated p value p (v ) is close to v , the estimated posterior probability. The remaining plot (Pr (θ = θ H 0 ) = 0.1) shows a more interesting relationship between the v -calibrated p value, the estimated posterior probability, and the one-sided p value.

Figure 3 :

 3 Figure 3: θ (v ) / θ as a function of Pr (θ = 0) for θ H 0 = 0 and p = 0.05, 0.15, 0.25, 0.35. The v -calibrated effect size estimate θ (v ) is seen to shrink θ toward 0 as p or Pr (θ = 0) increases.
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