

Modeling Geometry and Reference Systems on the Web of Data

Raphaël Troncy, Ghislain Auguste Atemezing, Nathalie Abadie

▶ To cite this version:

Raphaël Troncy, Ghislain Auguste Atemezing, Nathalie Abadie. Modeling Geometry and Reference Systems on the Web of Data. Linking Geospatial Data Workshop, Dec 2014, Londres, United Kingdom. hal-02398638

HAL Id: hal-02398638 https://hal.science/hal-02398638

Submitted on 7 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling Geometry and Reference Systems on the Web of Data

Raphaël Troncy¹, Ghislain A. Atemezing¹ and Nathalie Abadie²

 ¹ EURECOM, Sophia Antipolis, France, <raphael.troncy@eurecom.fr>
² COGIT-IGN, Paris, France, <nathalie-f.abadie@ign.fr>

Abstract. For many years now, the web of data has been dominated with the use of only one Coordinate System (CRS), namely WGS84, to represent the localization of geographic objects on Earth. Reasons for its adoption is the simplicity of the vocabulary (few core classes and properties) and the fact that the vocabulary is described in a W3C namespace. Nowadays, with the Open Data movement, more and more publishers including governments and local authorities are releasing legacy data that is often geolocalized in a different coordinate system. For example, IGN in France in releasing data that is geolocalized using Lambert93, a Lambert conformal conic projection (LCC) when objects are localized on the France metropolitan area. In this paper, we propose two vocabularies that take into account geometries defined in different coordinate systems. We provide as well mappings with existing vocabularies to ensure compatibilities with existing implementations. Finally, we provide a REST service that supports the conversion of coordinates between several CRS.

Keywords: Ontology modeling, Geographic data, Coordinate systems, Geometry vocabulary, Linked Data, REST service

1 Identification and Description of CRS

The EPSG registry³ identifies various coordinates systems. The Open Geospatial Consortium (OGC) recommends to use URI to identify coordinate reference systems under the uri http://www.opengis.net/def/crs/. For example, the WGS84 coordinate system is identified by OGC with http://www.opengis.net/def/crs/OGC/1.3/CRS84 while the authority EPSG will identify CRS under the uri http://www.opengis.net/def/crs/EPSG/0/4326.

In France, the National Geographic Institute (IGN) is also maintaining a registry of several coordinate systems (Figure 1). Each system is described within an XML file⁴ following the ISO 1911 standard. The URI scheme is defined as follows: http://registre.ign.fr/[authority]/[registry]/([version])?/[type_of_ resource](/[parent_identifier])*/[resource_identifier]. For example: http://registre.ign.fr/ign/IGNF/crs/RGF93EQGPFR.

³ http://www.epsg-registry.org/

⁴ http://librairies.ign.fr/geoportail/resources/IGNF.xml

2 Raphaël Troncy, Ghislain A. Atemezing and Nathalie Abadie

We have developed a complete vocabulary for defining CRS. We will use the prefix ignf to refer to this vocabulary which is available at http://data.ign.fr/ontologies/ignf#⁵.

REGION	COORDINATE SYSTEM	ELLIPSOID	PROJECTION SYSTEM	ALTIMETRY SYSTEM
FRANCE METROPOLITAN	RGF93	IAG GRS 1980	Lambert 93 and CC 9 Zones	
MAYOTTE	RGM04 (ITRF2000)	IAG GRS 1980	UTM 38 South	SHOM 1953
GUYANE	RGFG95	IAG-GRS 1980	UTM 21 22 North	
MARTINIQUE	WGS84	IAG-GRS 1980	UTM 20 North	
GUADELOUPE	WGS84	IAG-GRS 1980	UTM 20 North	
LA RÉUNION	RGR92	IAG-GRS 1980	UTM 40 South	GGR 99
NOUVELLE- CALÉDONIE	ITRF90	IAG-GRS 1980		
POLYNÉSIE	RGPF	IAG-GRS 1980	UTM 5, 6, 7 and 8 South	Tahiti IGN 1966
WALLIS ET FUTUNA	MOP87	International 1924		
SAINT-PIERRE ET MIQUELON	RGM01 (ITRF2000)	IAG GRS 1980	UTM 21 North	Danger 1950
ILE CLIPPERTON	Marine 1967	International	UTM 12 South	

Fig.1. Coordinate Reference System used in France. Source: http://geodesie.ign.fr/

2 A Vocabulary for Geometries

We have already surveyed in [1] numerous vocabularies for representing geographical features and their geometries, either using a literal à la WKT or a structured representation à la NeoGeo. We have developed a new vocabulary that re-uses and extends the existing vocabularies for representing geometries, namely:

http://www.opengis.net/ont/geosparql# (prefix gsp⁶. This vocabulary provides the basic concepts to represent geographical data such as SpatialObject, Feature or Geometry. A Feature is linked to a Geometry via the relation gap:hasGeometry. The geometries are strings typed as gmlLiteral or

⁵ The vocabulary is temporary available at http://www.eurecom.fr/~atemezin/ datalift/ign-onto/ignfV2.rdf

⁶ All prefixes used in this paper are in line with the prefixes recommended by the Linked Open Vocabulary (LOV) initiative

wktLiteral, corresponding respectively to the properties asGML and asWKT. The vocabulary contains also spatial functions.

- http://www.opengis.net/ont/sf# (prefix sf): This vocabulary describes the standard Simple Features for SQL of OGC. The class sf:Geometry is a subclass of gsp:Geometry.

The extensions are the following:

- Links between geometries and instances of different type
- the representation of geometries in a more structured way
- the integration of coordinate reference systems

We will use the prefix geom to refer to the vocabulary we propose available at http://data.ign.fr/ontologies/geom#⁷. In the GeoSPARQL standard, the property gsp:hasGeometry links a resource of type gsp:Feature to a resource of type gsp:Geometry. In our case, we left the domain empty to accept any type of resource links to a geometry. We use the property geom:geometry to link a resource to a given Geometry.

The naming convention used for the geom vocabulary follows the terms used by the SimpleFeatures vocabulary, the glossary of multilingual terminology of ISO/TC 211, available at http://www.isotc211.org/Terminology.htm.

Axiom 1 A resource of type geom: Geometry should be associated to only one resource of type ignf: CoordinatesSystem via the property geom: crs.

Alignments: geom:Geometry is a subclass of both sf:Geometry and ngeo:Geometry. It contains in addition the property geom:crs.

Axiom 2 A POINT is a subclass of a GEOMETRY.

Axiom 3 The instances of the class geom:Point are associated with the instance of only one ignf:CoordinatesSystem via the property geom:crs. An instance of a Point has only one coordinate X and coordinate Y. The coordinates are xsd:double and use respectively the following properties:

- geom: coordX which refers to, in a particular CRS, the longitude of a point and within a projection coordinate system (CS), the value of false easting of a point.
- geom: coordY which refers to, in a particular CRS, the latitude of a point and within a projection CS, the value of false northing point.

On the current usage of positioning on the web of data, it is assumed that the coordinates should be in WGS84, and hence the definition of the point. However, publishers might have data in different CRS according to the location. Thus, our proposal is to define a more generic class for a point with the benefit of choosing the CRS of the underlying data.

⁷ The vocabulary is temporary available at http://www.eurecom.fr/~atemezin/ datalift/ign-onto/GeometryV8.ttl

Listing 1.1. Definition in Turtle of the axiom defining a POINT.

3 A REST Service for Converting Geo Data

As we have seen, geo data interpretation relies on a coordinate system, and while the WGS84 standard is the de-facto standard for GPS devices, many other coordinates systems are in used. For example LAMBERT 93, RGM 04 or RGR 92 are respectively used to locate points of interests in France continental, Mayotte or La Reunion. We have developed a REST service that is capable of transforming one dataset using a particular coordinates system into another one. The algorithms implemented are the ones described at http://geodesie.ign.fr/ index.php?page=algorithmes and available within the standalone Circé software⁸. The REST service is available at https://github.com/vienlam/Geo.

Acknowledgments

This work has been partially supported by the French National Research Agency (ANR) within the Datalift Project, under grant number ANR-10-CORD-009.

References

- 1. G. Atemezing and R. Troncy. Comparing Vocabularies for Representing Geographical Features and Their Geometry. In *Terra Cognita Workshop*, 2012.
- S. Auer, J. Lehmann, and S. Hellmann. LinkedGeoData Adding a Spatial Dimension to the Web of Data. In *International Semantic Web Conference (ISWC'09)*, 2009.
- A. de León, L. M. Vilches, B. Villazón-Terrazas, F. Priyatna, and O. Corcho. Geographical linked data: a Spanish use case. In *International Conference on Semantic Systems (I-SEMANTICS'10)*, Graz, Austria, 2010.

⁸ http://fr.wikipedia.org/wiki/Circ_(logiciel)

- J. Goodwin, C. Dolbear, and G. Hart. Geographical Linked Data: The Administrative Geography of Great Britain on the Semantic Web. *Transactions in GIS*, 12:19–30, 2008.
- K. Janowicz, S. Schade, A. Bröring, C. Kessler, C. Stasch, P. Maué, and T. Diekhof. A transparent semantic enablement layer for the geospatial web. In *Terra Cognita Workshop*, 2009.
- M. Perry and J. Herring. OGC GeoSPARQL- A Geographic Query Language for RDF Data. In OGC Implementation Standard, ref: OGC 11-052r4, 2012.
- J. Salas and A. Harth. Finding spatial equivalences accross multiple RDF datasets. In *Terra Cognita Workshop*, pages 114–126, Bonn, Germany, 2011.