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Abstract
Checking the soundness of the cyclic induction reasoning for first-order logic with in-

ductive definitions (FOLID) is decidable but the standard checking method is based on a
doubly exponential complement operation for Büchi automata. We present a polynomial
method ‘semi-deciding’ this problem; its most expensive steps recall the comparisons with
multiset path orderings. In practice, it has been integrated in the Cyclist prover and
successfully checked all the proofs included in its distribution.

FOLID cyclic proofs may also be hard to certify. Our method helps to represent
the cyclic induction reasoning as being well-founded, where the ordering constraints are
automatically built from the analysis of the proofs. Hence, it creates a bridge between
the two induction reasoning methods and opens the perspective to use the certification
methods adapted for well-founded induction proofs.

Introduction. Cyclic pre-proofs for the classical first-order logic with inductive predicates
(FOLID) have been extensively studied in [1, 2, 4]. They are finite sequent-based derivations
where some terminal nodes, called buds, are labelled with sequents already occurring in the
derivation, called companions. Bud-companion (BC) relations, graphically represented as back-
links, are described by an induction function attached to the derivation, such that only one
companion is assigned to each bud, but a node can be the companion of one or several buds.
The pre-proofs can be viewed as digraphs whose cycles, if any, are introduced by the BC-
relations.

It is easy to build unsound pre-proofs, for example by creating a BC-relation between the
nodes labelled by the sequents from a stuttering step. The classical soundness criterion is the
global trace condition. Firstly, the paths are annotated by traces built from inductive antecedent
atoms (IAAs) found on the lhs of the sequents in the path, then it is shown that for every infinite
path p in the cyclic derivation of a false sequent, there is some trace following p such that all
successive steps starting from some point are decreasing and certain steps occurring infinitely
often are strictly decreasing w.r.t. some semantic ordering. We say that a progress point
happens in the trace when a step is strictly decreasing. A proof is a pre-proof if every infinite
path has an infinitely progressing trace starting from some point.

The standard checking method [2] of the global trace condition is decidable but based on
a doubly exponential complement operation for Büchi automata [5]. It has been implemented
in the Cyclist prover [3] and experiments showed that the soundness checking can take up
to 44% of the proof time. On the other hand, a less costly, polynomial-time, checking method
has been presented in [7, 9].1 The pre-proof to be checked is firstly normalized into a digraph
consisting of a set of derivation trees to which is attached an extended induction function. The
resulting digraph counts among its roots the companions and the root of the pre-proof to be
checked. The normalized pre-proof is a proof if every strongly connected component (SCC)
of the digraph satisfies some ordering constraints, similar to those used for certifying cyclic
Noetherian induction proofs [8].

1 [6] tackles a similar question, although from a more theoretical viewpoint.



Implementation. The method has been implemented in Cyclist. Cyclist builds the pre-
proofs using a depth-first search strategy that aims at closing open nodes as quickly as possible.
Whenever a new cycle is built, model-checking techniques provided by an external model checker
are called to validate it. If the validation result is negative, the prover backtracks by trying to
find another way to build new cycles. Hence, it may happen that the model checker be called
several times during the construction of a pre-proof.

To each root r from the digraph P of a normalized pre-proof tree-set, the method attaches a
measure M(r) consisting of a multiset of IAAs of the sequent labelling r, denoted by S(r). One
of the challenges is to find the good measures such that the ordering constraints be satisfied.
A procedure for computing these measure values is given by Algorithm 1.

Algorithm 1 GenOrd(P): to each root r of P is attached a measure M(r)

for all root r do
M(r) := ∅

end for
for all rb-path r → b from a non-singleton SSC do

if there is a trace between an IAA A of S(b) and an IAA A′ of S(r) then
add A to M(rc) and A′ to M(r), where rc is the companion of b

end if
end for

Firstly, the measures attached to each root are empty sets. Then, for each root-bud (rb)
path from a cycle, denoted by r → b, and for every trace along r → b, leading some IAA of
S(r) to another IAA of S(b), we add the corresponding IAAs to the measures of r and the
companion of b, respectively. Since the number of rb-paths is finite, Algorithm 1 terminates.

Algorithm 1 may compute measure values that do not pass the comparison test for some
non-singleton SCCs that are validated by the model checker. For this case, we considered an
improvement consisting of the incremental addition of IAAs from a root sequent that are not
yet in the measure value of the corresponding root r. Since the validating orderings are multiset
extensions of multiset path orderings, such an addition does not affect the comparison value
along the rp-paths starting from r. On the other hand, it may affect the comparison tests for
the rp-paths ending in the companions of r. This may duplicate some IAAs from the value
measure of the roots from the rp-paths leading to these companions. The duplicated IAAs have
to be processed as any incrementally added IAA, and so on, until no changes are performed
anymore.

Table 1 illustrates some statistics about the proofs of the conjectures considered in Table
1 from [3], checked with the standard as well as our improved method. The IAAs are indexed
in Cyclist to facilitate the construction of traces; the way they are indexed influence how the
pre-proofs are built. The column labelled ‘Time-E’ is the proof time measured in milliseconds
with our method. Similarly, the ‘Time’ column displays the proof time using the standard
method, while ‘SC%’ shows the percentage of time taken to check soundness using the model
checker. ‘Depth’ shows the depth of the proof, ‘Nodes’ the number of nodes in the proof, and
‘Bckl.’ the number of back-links in the proof. The last column shows the number of calls to
the model checker as (calls on unsound proof)/(total calls) when our method is not used. The
proofs have been performed on a MacBook Pro featuring a 2,7 GHz Intel Core i7 processor and
16 GB of memory. We can notice that, by using our method, the execution time is reduced by
a factor going from 1.43 to 5.

Even when using the improved version of Algorithm 1, the method may propose measure
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Theorem Time-E Time SC% Depth Nodes Bckl. Uns./All
O1x ` Nx 2 7 61 2 9 1 0/1
E1x ∨O2x ` Nx 4 11 63 3 19 2 0/4
E1x ∨O1x ` Nx 2 9 77 2 13 2 2/5
N1x ` Ox ∨ Ex 3 7 52 2 8 1 0/1
N1x ∧N2y ` Q(x, y) 297 425 40 4 19 3 168/181
N1x ` Add(x, 0, x) 1 5 76 1 7 1 0/1
N1x ∧N2y ∧Add3(x, y, z) ` Nz 8 14 38 2 8 1 4/5
N1x ∧ N2y ∧ Add3(x, y, z) `

Add(x, sy, sz)
15 22 32 2 14 1 9/10

N1x ∧N2y ` R(x, y) 266 484 48 4 35 5 149/170

Table 1: Statistics for Cyclist proofs checked with the standard and our methods.

values that do not pass the comparison tests. Indeed, this was happened once, while proving
N1x ∧ N2y ` R(x, y). Hopefully, the prover backtracked and finally found the same proof as
that built using the model checker. The source code of the implementation can be downloaded
at https://members.loria.fr/SStratulat/files/e-cyclist.zip
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