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We consider the stabilization problem for linear systems of balance laws subject to uncertain gains affecting the boundary conditions and the reaction term. The stabilization is achieved using the supervisory control, a well established approach in finite dimension. In the context where a controller exists for each estimator, the supervisory control with a performance signal built with the boundary output effectively steers the system to the origin. This novel approach is illustrated with a traffic flow control problem modelled by the Aw-Rascle-Zhang equations.

Introduction

Hyperbolic systems are suitable to model a large number of physical systems, such as traffic networks [START_REF] Belletti | Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model[END_REF] or oil well drilling [START_REF] Di Meglio | An adaptive observer for hyperbolic systems with application to UnderBalanced Drilling[END_REF]. It shows the great potential of industrial applications linked to these models. Thus, a large number of results showed up these last two decades: adaptive observers [START_REF] Di Meglio | An adaptive observer for hyperbolic systems with application to UnderBalanced Drilling[END_REF][START_REF] Anfinsen | An adaptive observer design for n + 1 coupled linear hyperbolic PDEs based on swapping[END_REF], adaptive control [START_REF] Wadoo | Adaptive control of a hyperbolic partial differential equation system with uncertain parameters[END_REF], stability analysis and controller synthesis based on Linear Matrix Inequalities (LMI) [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF], control of switched hyperbolic systems [START_REF] Hante | Modeling and analysis of modal switching in networked transport systems[END_REF][START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF], etc.

A challenging issue for this type of systems remains their control in presence of large parameter uncertainties. In this context, the so-called adaptive control is used. It consists of the unknown parameter evaluation by some update laws. Using the certainty equivalence principle, which invariably considers the estimated parameters as the true ones, a candidate controller designed for the current estimate of the system is applied. This method has been successfully used in several cases. For instance, Krstic and Smyshlyaev investigated the adaptive control for parabolic equations (see the book [START_REF] Smyshlyaev | Adaptive Control of Parabolic PDEs[END_REF]). Other examples are the use of the adaptive control for the Burgers' equation with unknown viscosity in [START_REF] Liu | Adaptive control of Burgers' equation with unknown viscosity[END_REF], for a non-local hyperbolic PDE in [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF], for an anti-stable wave equation in [START_REF] Krstic | Adaptive control of an anti-stable wave PDE[END_REF] or for a hyperbolic PDE with an unknown reaction coefficient in [START_REF] Wadoo | Adaptive control of a hyperbolic partial differential equation system with uncertain parameters[END_REF]. Recently, adaptive observers have been developed for hyperbolic systems in [START_REF] Di Meglio | An adaptive observer for hyperbolic systems with application to UnderBalanced Drilling[END_REF][START_REF] Anfinsen | An adaptive observer design for n + 1 coupled linear hyperbolic PDEs based on swapping[END_REF].

In finite dimension, the use of the conventional adaptive control faces some issues, exhibiting at best bad performances [START_REF] Liberzon | Switching in Systems and Control, ser. Systems and Control: Foundations and Applications[END_REF]. In order to overcome these issues, the supervisory control , which is an adaptive control following a switching-based principle has been developed. This procedure, which usually embeds a hysteresis switching policy, has been meticulously analyzed in [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF]. More precisely, the supervisory control consists of several components: a multi-estimator based on the available measurements, the candidate controllers, a performance signal, and a switching policy. The difference between this latter method and the conventional adaptative framework is the abrupt change in the update law due to the switching policy. To the best of our knowledge, supervisory control is up to now exclusive to finite-dimensional systems.

In this article, we aim at introducing supervisory control in order to stabilize linear hyperbolic systems of balance laws subject to uncertain gains affecting the boundary conditions and the reaction term (Section 2). We show that the proposed supervisory control is effective to steer the system to the origin (Section 3). We illustrate our approach with a problem of traffic flow control modelled by the Aw-Rascle-Zhang (ARZ) equations [START_REF] Belletti | Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model[END_REF] (Section 4).

Notations. R + is the set of nonnegative real numbers. N is the set of natural numbers. R n×n is the set of square real matrices of dimension n. Given a matrix A, the transpose of the matrix A is denoted by A . For a symmetric matrix A ∈ R n×n , A being positive definite is denoted by A > 0, while A being positive semi-definite is denoted by A ≥ 0. The usual Euclidian norm in R n is denoted by • . The spectral radius of a matrix A ∈ R n×n is denoted by ρ(A) and its norm induced by the usual Euclidian norm in R n is denoted by A . The smallest eigenvalue of a matrix A ∈ R n×n is denoted by λ min (A) while its largest eigenvalue is denoted by λ max (A). The derivative of a matrix A(x) with respect to x is denoted by A (x). The identity matrix of dimension n is denoted by

I n . The set of functions y : [a, b] → R n such that y 2 L 2 (a,b) = b a y 2 dx < ∞,
is denoted by L 2 (a, b). Furthermore, we denote the set L 2 (0, 1) by E. The set of functions y ∈ E such that there exists a function g ∈ E such that

1 0 yϕ dx = - 1 0 gϕdx for all ϕ ∈ C 1 c = h ∈ C 1 ([0, 1]) |supp(h) ⊆ (0, 1) where supp(h) = {x ∈ (0, 1) |h(x) = 0 }, is denoted by H 1 (0, 1).

Problem Statement

We consider the following system

∂ t u + Λ + ∂ x u = Γ 1 u + Γ 2 v , (1) 
∂ t v -Λ -∂ x v = Γ 3 u + Γ 4 v , (2) 
where t ∈ R + is the time variable, x ∈ (0, 1) is the spatial variable, u : (0, 1 -m) . The matrices Γ 1 , Γ 2 , Γ 3 , and Γ 4 are in R m×m , R m×(n-m) , R (n-m)×m , and R (n-m)×(n-m) respectively. Matrices Λ + and Λ -are diagonal positive definite. To obtain an unique and well-defined solution to system (1) and ( 2) we consider the following boundary conditions

) × R + → R m , v : (0, 1) × R + → R (n
u(0, t) v(1, t) = G u(1, t) v(0, t) + LU (t) , (3) 
together with the following initial conditions

u(x, 0) = u 0 (x) , x ∈ (0, 1) , (4) v(x, 0) = v 0 (x) , x ∈ (0, 1) , (5) 
where G and L are matrices in R n×n and R n×p respectively, for some integer p satisfying n > p. The vector U ∈ R p is the control input and u 0 , v 0 ∈ E × E. The output of the system is given by

y(t) = C u(1, t) v(0, t) , ( 6 
)
where C is in R q×n . Let us introduce the following notations

|Λ| = diag Λ + , Λ -, (7) 
Γ = Γ 1 Γ 2 Γ 3 Γ 3 . (8) 
The matrices G, L, C, and Γ are supposed to be uncertain. Let us denote by G * , L * , C * , and Γ * the true matrices. These real matrices belong to a (known) set of N > 0 admissible candidates. These candidates are denoted

ω i = (G i , L i , C i , Γ i ), i = 1, . . . , N .
This assertion is formally stated in the following assumption.

Assumption 1 Matrices G * , L * , C * , and Γ * belong to a known discrete set Ω. More precisely, there exists N such that I = {1, . . . , N } and

Ω = ∪ i∈I ω i = ∪ i∈I (G i , L i , C i , Γ i ).
Let j * ∈ I be the mode which corresponds to the true matrices G * , L * , C * , and Γ * .

Assumption 1 requires that one element in Ω matches the true parameters. This condition may be strong from an applicative point of view. In a more realistic situation, it may be supposed that only a compact set is known for the unknown parameters. Then, dividing this set in several subsets and selecting a representative element per subset yields a finite collection of possible elements for the true parameters. This procedure has been done for the finite dimensional case in [START_REF] Vu | Supervisory control of uncertain linear time-varying systems[END_REF]. The stabilization of the uncertain system is achieved under the hypotheses that the discretization is thin enough and that the controllers are robust to small uncertainties. However, a thin division entails a large number of modes N , which could be expensive from a computational point of view. This drawback can be avoid using a state-sharing technique, see e.g. [START_REF] Liberzon | Switching in Systems and Control, ser. Systems and Control: Foundations and Applications[END_REF]. This technique is suitable for our system, but only in special cases. Nonetheless, since the purpose of the paper is to introduce the supervisory switching control for a PDE system, we supposed that one mode matches the true parameters.

Remark 2 Here, it is assumed that matrices Λ + , Λ -, and Γ are constant. However, the results may be generalized to spatially dependent matrices.

We aim at using the output y in (6) to identify a stabilizing supervisory control for system (1)-( 5).

Let us recall the definitions of Global Exponential Stability in the L 2 -norm for system (1)- [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF].

Definition 3 System (1)-( 5) is said to be Globally Exponentially Stable (GES) in the L 2 -norm if there exist ν > 0 and M > 0 such that, for every initial condition u 0 , v 0 ∈ E, the solution to system (1)-( 5) satisfies, for

all t ≥ 0, u v (•, t) E ≤ M e -νt u 0 v 0 E . (9) 
In the proof of the main result of the paper we shall consider system such as ( 1), ( 2) with the boundary condition u(0, t)

v(1, t) = A u(1, t) v(0, t) + δ(t) , (10) 
where

δ : [0, ∞) → R n is a L 2 -function and A ∈ R n×n .
Definition 4 Let consider system (1), ( 2) along with the boundary condition [START_REF] Bernard | Adaptive output-feedback stabilization of non-local hyperbolic PDEs[END_REF] and the initial conditions (4) and [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF]. It is said to be Input-to-State-Stable (ISS) in the L 2 -norm with respect to input δ in L 2 (0, ∞) if there exist ν > 0, C > 0, and a K-function θ, such that, for every initial condition u 0 , v 0 ∈ E, the solution satisfies, for all t ≥ 0,

u v (•, t) E ≤ Ce -νt u 0 v 0 E + θ δ L 2 (0,t) . ( 11 
)
3 Supervisory Control Strategy

In this section, the supervisory control for system (1)-( 5) is introduced. We first present the control method and then demonstrate its ability to stabilize the system. This construction follows the conventional approach as stated by Hespanha, Morse, and Liberzon in the late nineties, see e.g. [START_REF] Hespanha | Logic-based switching control of a nonholonomic system with parametric modeling uncertainty[END_REF] and [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF]. A schematic representation of the closed-loop is given by Figure 1 at the end of the section.

Multi-Estimator Structure

The multi-estimator is defined as the set of estimator systems

∂ t u i + Λ + ∂ x u i = Γ 1,i u i + Γ 2,i v i , (12) 
∂ t v i -Λ -∂ x v i = Γ 3,i u i + Γ 4,i v i , (13) 
with boundary conditions

u i (0, t) v i (1, t) = (G i + Q i C i ) u i (1, t) v i (0, t) + L i U (t) -Q i y(t) , (14) 
and initial conditions

u i (x, 0) = u 0 i (x) , x ∈ (0, 1) , ( 15 
) v i (x, 0) = v 0 i (x) , x ∈ (0, 1) , (16) 
where

u 0 i v 0 i ∈ E, Q i ∈ R n×q , i ∈ I.
Let us denote the error variables with respect to the estimator i by ũi

(x, t) = u i (x, t) -u(x, t) , (17) ṽi (x, t) = v i (x, t) -v(x, t) . (18) 
Then, let us denote by e i (t), i ∈ I, the measurement deviation with respect to the output of system (1)-( 5)

e i (t) = C i u i (1, t) v i (0, t) -y(t) . (19) 
As mentioned in Section 2, the analysis of supervisory switching control requires an ISS result with respect to the injection error e i for estimator system ( 12), ( 13), and ( 14). It is given by the following lemma Proposition 5 Let us consider PDEs (12), ( 13) with boundary condition

u i (0, t) v i (1, t) = G i u i (1, t) v i (0, t) + L i U i (t) + δ(t) , ( 20 
)
where δ is a perturbation in L 2 (0, ∞). If the controller U i stabilizes the unperturbed system (δ ≡ 0), then it is ISS with respect to perturbation δ in L 2 (0, ∞).

PROOF. System (12), [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF], and (20) is linear, which implies by Lemma 1 and Proposition 3 in [START_REF] Dashkovskiy | Input-to-state stability of infinite-dimensional control systems[END_REF] that it is ISS with respect to δ. This concludes the proof of Proposition 5.

Let us write the error system for j * . It satisfies

∂ t ũj * + Λ + ∂ x ũj * = Γ 1,j * ũj * + Γ 2,j * ṽj * , (21) ∂ t ṽj * -Λ -∂ x ṽj * = Γ 3,j * ũj * + Γ 4,j * ṽj * , (22) 
with boundary conditions ũj * (0, t)

ṽj * (1, t) = (G j * + Q j * C j * ) ũj * (1, t) ṽj * (0, t) . ( 23 
)
The matrices Q i , i ∈ I, have to be designed such that every systems (21), (22), and (23) with j * replace by i are exponentially stable, which is guaranteed by the following assumption.

Assumption 6 (cf conditions of Theorem 3.1. in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF]) For every i ∈ I, there exist ν i > 0, θ i in R, matrices F i in R n×q , diagonal positive definite matrices S + i in R m×m , and S - i in R (n-m)×(n-m) such that for S i (x) defined by

S i (x) = diag e 2θix S + i , e -2θix S - i , (24) 
the following conditions hold, for all x ∈ [0, 1],

diag e -2θi S + i , S - i (S i (0)G i + F i C i ) S i (0)G i + F i C i diag S + i , e -2θi S - i > 0 , ( 25 
)
-2θ i S i (x) + S i (x)Γ i Λ -1 + Λ -1 Γ i S i (x) ≤ -2ν i S i (x)Λ -1 . ( 26 
)
Using Assumption 6, the sought matrices Q i , i ∈ I are given by

Q i = S -1 i (0)F i . ( 27 
)
Using Assumption 6, Proposition 2.1. in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF] may be applied and one can conclude that system (21), ( 22), and ( 23) is exponentially stable.

Remark 7 Assumption 6 comes from a Lyapunov analysis. More precisely, the candidate Lyapunov function takes the following form

Z i (y) = 1 0 y (x)Λ -1 P i (x)y(x)dx , (28) 
where P i = S -1 i . More details may be found in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF].

Remark 8 Condition (26) involves the spatial variable x ∈ [0, 1], meaning that the number of conditions to verify is infinite. In order to overcome this issue, overapproximation techniques are proposed in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF], which consists of reducing the problem to a finite number of LMI using polytopic embeddings.

Multi-Controller

In this paper, the candidate controllers for system (1)-( 5) are stated in an abstract way and only depend on the states of the multi-estimator

U i (t) = K i [u i , v i ] (t) . ( 29 
)
The controller U i is designed such that it stabilizes the system ( 12), ( 13) with the boundary condition

u i (0, t) v i (1, t) = G i u i (1, t) v i (0, t) + L i U i (t) . (30) 
Controller (29) may be static as in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF] or derived by backstepping (see e.g. [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems, ser. PNLDE Subseries in Control[END_REF]). The only requirement is that it exists a controller for each mode, which is state in Assumption 9 For every i ∈ I, there exists a controller U i , which stabilizes system (12), [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF], and (30).

Switching Logic

Let us introduce the performance signal. It is designed with the available measurement y(t). It satisfies

μi (t) = -ξµ i (t) + e i (t) 2 , ( 31 
) µ i (0) = ε i > 0 , (32) 
where e i is defined in [START_REF] Yang | Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach[END_REF], ε i , i = 1, . . . , N , are the corresponding initial conditions for each performance signal and 0 < ξ < 2ν with

ν = min ν i , (33) 
is a tuning parameter. The parameters ν i , i ∈ I, are those used in the construction of the gains Q i in Assumption 6. It corresponds to the decay rate of the Lyapunov function of the error system if i were the true index. Let us explain the bound ξ < 2ν. Foremost, we need the following lemma

Lemma 10 Let Assumption 6 holds. Then, for every 0 ≤ t 1 < t 2 the following holds

e j * 2 L 2 (t1,t2) ≤ M 1 max t∈[t1,t2] ũ j * ṽ j * (•, t) 2 E + M 2 ũ j * ṽ j * (•, t 1 ) 2 E , (34) 
where M 1 , M 2 > 0.

The proof of Lemma 10 is postponed in Appendix A page 8.

The solution to (31) and (32) is

µ i (t) = e -ξt ε i + t 0 e -ξ(t-s) e i (s) 2 ds . ( 35 
)
Let us define the time instant t n by

t n = nτ , (36) 
with τ = ρ (|Λ|) . ( 37 
)
Using the exponential stability of the dynamics of ũ j * ṽ j * and Lemma 10 with t n and t n+1 we get

e j * 2 L 2 (tn,tn+1) ≤ M 1 e -2ν j * tn ũ0 j * ṽ0 j * 2 E + M 2 e -2ν j * tn ũ0 j * ṽ0 j * 2 E = M e -2ν j * tn ũ0 j * ṽ0 j * 2 E , (38) 
where M = M 1 + M 2 . Besides, we have

e j * (t) 2 ≤ e j * 2 L 2 (tn,tn+1) , (39) 
for almost every t ∈ [t n , t n+1 ]. Thus, using (38) and (39) we get

e j * (t) 2 ≤ M e -2ν j * tn ũ0 j * ṽ0 j * 2 E , (40) 
for almost every t ∈ [t n , t n+1 ]. Let us rewrite (35) for i = j * as

µ j * (t) = e -ξt ε j * + N -1 n=0 tn+1 tn e -ξ(t-s) e j * (s) 2 ds + t t N e -ξ(t-s) e j * (s) 2 ds . (41) 
Using (40) in (41) we obtain

µ j * (t) ≤ e -ξt ε j * + M ũ0 j * , ṽ0 j * 2 E × N -1 n=0 
e -2ν j * tn tn+1 tn e -ξ(t-s) ds

+ M ũ0 j * ṽ0 j * 2 E × e -2ν j * t N t t N e -ξ(t-s) ds . (42) 
In the following analysis we will need the boundedness of the signal µ j * . Therefore, using inequality (42), we get that ξ has to satisfy ξ < 2ν j * . Since the true index parameter j * is unknown the condition ξ < 2ν must hold. This property should be understood as follows: the "learning rate" ξ of the performance signal must be slower than the "convergence rate" of the estimator systems.

Remark 11 Let us notice that we have decomposed the time interval [0, T ] in several sub-intervals whose the length is given by the minimum of time needed for a particle to travel trough the whole space domain. Otherwise, we would have T in the right-hand side of inequality (42) and we could not conclude on the boundedness of µ j * .

Finally, let us introduce the procedure to switch from one mode to the other. This procedure satisfies a scaleindependent hysteresis switching, such as in [START_REF] Hespanha | Logic-based switching control of a nonholonomic system with parametric modeling uncertainty[END_REF]:

σ(t) =        σ (t -) if ∀i ∈ I , (1 + h)µ i ≥ µ σ(t -) , arg min i∈I µ i (t) elseif . (43) 
σ(0) =                arg min i∈I ε i if ε i = ε j , ∀i, j ∈ I , pick randomly ε k , k ∈ I s. t. ε k = min i∈I ε i elseif . (44) 
Let us state σ (t -) = lim s→t,s<t σ(s). Roughly speaking, t -is the value of σ "just before t". The parameter h is a strictly positive constant, called hysteresis constant. The switching signal σ constructed in this way is piecewise constant and continuous from the right.

In summary, the closed-loop of the supervisory switching control used in this paper is illustrated by Figure 1. It is based on the representations given in [START_REF] Liberzon | Switching in Systems and Control, ser. Systems and Control: Foundations and Applications[END_REF].

Stabilization under Supervisory Control

Let us state the main result of the paper.

Theorem 12 Under Assumptions 1, 6, and 9 signals defined by the supervisory control system (1)-( 5), ( 12)-( 16), (29), ( 31)-( 33), (43), and (44) exist for all t ∈ R + and remain bounded for any initial conditions u 0 v 0 ∈ E. Moreover, there exists a time T * > 0 such that σ(t) = i * ∈ I for all t ≥ T * (i.e. the switching stops in finite time) and

lim t→∞ u v (•, t) E = 0 . ( 45 
)
PROOF. Two points need to be proved:

• first, the switching phenomena stops;

• second, the state converges to 0 ∈ E.

As a first step, let us assume that [0, T ) is the largest interval of time for which a solution exists to ( 1)-( 5), ( 12)-( 16), ( 29), ( 31)-( 33), (43), and (44).

Let us assume that the true index parameter is j * ∈ I.

The finiteness of the switching borrows the same lines as in the finite dimensional case, see e.g. [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF] and [START_REF] Liberzon | Switching in Systems and Control, ser. Systems and Control: Foundations and Applications[END_REF]. The nature of the dynamical system is not crucial. We may change the performance signals ( 31) by

µ i = e ξt µ i (t) , (46) 
where i ∈ I. As described in [START_REF] Liberzon | Switching in Systems and Control, ser. Systems and Control: Foundations and Applications[END_REF], the scaling by the function θ(t) = e ξt does not affect the switching signal generated by ( 43) and ( 44). Let us notice that the signal µ i is monotonically non decreasing because of μi = ξµ i + e ξt μi = e ξt e i (t)

2 ≥ 0 . ( 47 
)
Introducing the scaled performance signals (46) allows to get the switching finiteness by applying Theorem 1 in [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF].

The application of Theorem 1 in [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF] requires: a finite number of elements in I (Assumption 1); the boundedness of the signal µ j * (proved in Subsection 3.3); the fact that all the signals µ i , with i ∈ I, are monotonically nondecreasing (see (47)), and the positiveness of all the initial conditions of the signals µ i (see (32)). These three latter conditions combined with the switching procedure ( 43) and (44) guarantee that some index will never be used over the time. This latter observation in addition to a reasoning based on the continuity of the signals µ i are both the basis of the proof of Theorem 1 in [START_REF] Hespanha | Scale-independent hysteresis switching[END_REF]. Thus, if [0, T ) is the largest time interval on which system ( 1)-( 5), ( 12)-( 16), ( 29), ( 31)-( 33), (43), and ( 44) is defined, there exists a time instant T * in [0, T ) such that σ(t) = i * for all t ≥ T * and for which µ i * is bounded on [0, T ). Let us remark that the parameters

ω i * = (G i * , L i * , C i * , Γ i *
) may be the true parameters ω j * or not. Moreover, µ i * is bounded on [0, T ). Indeed, if we assume that it is not the case, then the switching logic would be violated because µ j * is bounded by (42).

Because the switching stops and using again the latter reasoning one gets that every switching signal is bounded on [0, T ).

As system (1)-( 5) is linear, the growth rate of the norm of the solution is controlled, see e.g. Theorem A.4. page 251 in [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems, ser. PNLDE Subseries in Control[END_REF]. Therefore, an accumulation of switches at a given time is the only reason for a local (in time) existence of a solution to system (1)-( 5), ( 12)-( 16), ( 29), ( 31)-( 33), (43), and (44). However, we just proved that this condition cannot arise. Therefore, the global (T = ∞) existence and uniqueness of a solution to (1)-( 5), ( 12)-( 16), ( 29), ( 31)-( 33), (43), and ( 44) is given by Proposition 3.1 in [START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF] in the context of weak solutions. The existence of a solution (globally in time) for the estimator systems ( 12)-( 16) holds by the same arguments. Thus, there always exists a solution to system ( 12)-( 16) for each i ∈ I, whose norm may grow, potentially, to the infinity. This latter statement together with the boundedness of every performance signal prove the first assertion of Theorem 12. Now let us prove the convergence of the system to 0, that is let us prove relationship (45). Let us denote by X 1 (t)

the vector u (0, t) v (1, t) u i * (0, t) v i * (1, t) and 
X 2 (t) the vector u (1, t) v (0, t) u i * (1, t) v i * (0, t) . One has X 1 (t) = G j * 0 -Q i * C j * G i * + Q i * C i * X 2 (t) + L j * K i * [u i * , v i * ] (t) L i * K i * [u i * , v i * ] (t) = G j * + Q j * C j * -Q j * C i * 0 G i * X 2 (t) + L j * K i * [u i * , v i * ] (t) L i * K i * [u i * , v i * ] (t) + Q j * Q i * e i * (t) . ( 48 
)
Since e i * goes to zero (µ i * is bounded) and U i * stabilizes the system (12), ( 13) with boundary condition (30) by Assumption 9, it follows from (48) that u i * and v i * go to zero in L 2 -norm by Proposition 5. Since the system satisified by u, v, u i * , and v i * is a cascade system, u and v also converges to zero, it follows (45). This concludes the proof of Theorem 12.

Remark 13

The main difference of the supervisory control analysis for system (1)-( 5) compared to the finite dimension consists of ensuring the stability of the distributed state with a performance signal built with the boundary measurements. The "hidden" regularity property of hyperbolic systems has been used to prove it.

Application to the Traffic Flow Control

In this section, the switching supervisory control is illustrated with the Aw-Rascle-Zhang model (see e.g. [START_REF] Belletti | Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model[END_REF]), which represents the density z(x, t) and the velocity w(x, t) at time t ∈ R + and space-location x ∈ (0, 1) of vehicles on a road. The dynamics is given by

∂ t z + ∂ x (zw) = 0 , (49) 
∂ t (w -V (z)) + w∂ x (w -V (z)) = (V (z) -w) τ . (50) 
The function V , the desired velocity function or equilibrium velocity function, establishes a functional relationship between a density and a velocity w = V (z). By linearizing around a steady state (z , w ) and using Riemann coordinates, equations ( 49) and (50) become

∂ t u 1 + w ∂ x u 1 = - 1 τ u 1 , (51) 
∂ t u 2 + (w + z V (z )) ∂ x u 2 = - 1 τ u 1 , (52) 
respectively. Let us assume that w + V (z ) is positive, which corresponds to a traffic free-flow mode. Therefore, it yields n = 2 and m = 2. Let us suppose the possibility to control the inflow i.e. the controller takes the following form W(t) = w(0, t)z(0, t) .

(53) In Riemann coordinates, boundary control ( 53) is equivalent to

u 1 (0, t) u 2 (0, t) = g 1 g 2 g 3 g 4 u 1 (1, t) u 2 (1, t) + 1 2 U (t) , (54) 
for a suitable choice of the control input W(t),

W(t) = - 1 V (z ) (g 3 u 1 (1, t) + g 4 u 2 (1, t) + 2 U (t) + w * ) ((g 1 -g 3 ) u 1 (1, t) + (g 2 -g 4 ) u 2 (1, t) + ( 1 -2 ) U (t) -V (z ) z ) . (55) 
We assume that the density z at x = 1 is the output of the system. Moreover, this output is not perfectly measured. The sensor returns a fraction of the correct value. In Riemann coordinates it reads

y(t) = f V (ρ ) -1 1 u 1 (1, t) u 2 (1, t) , (56) 
where f corresponds to the level of confidence. In such a situation p = 1 and q = 1. Now, let us assume that the relaxation term τ , the parameters g i , i = 1, . . . , 4, 1 , 2 , and f are uncertain. Let us choose the following equilibrium velocity function

V (z) = - 90 80 2 z 2 + 90 . (57) 
The following steady-state are considered (w , z ) = 77.3438 km.h -1 , 30 veh.km -1 .

(58)

The road is 5 km long. The set Ω is composed by four elements ω i = (G i , L i , C i , τ i ) given by

ω 1 =   1 1 -1 0.5 , 1 
-0.9 , 0.0038 We decide to use a static controller in (29), i.e.

-0.0038 , 40   , (59) 
ω 2 =   0 1 -1 0.5 , 1 0.2 , 0.0034 -0.0034 , 45   , (60) 
U i (t) = K i u i (1, t) v i (0, t) .
The matrices K i are derived with the method developped in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF] and are given by

K 1 = -0.9911 1 , K 2 = -0.0083 -1 , (63) 
K 3 = -0.5080 -0.25 , K 4 = 0.9886 0.5016 . (64)

The following matrices has been found for the multiestimator 

Q 1 = -129
The true parameters are those corresponding to the third index The initial conditions for each µ i , i ∈ I, are arbitrary chosen as

µ 0 1 , µ 0 2 , µ 0 3 , µ 0 4 = 0.3, 0.3, 0.4, 0.2 . ( 67 
)
The signal σ is initialized such that σ(0) = 4. The parameters for the performance signal (31) and switching strategy ( 43 The initial conditions (4), ( 5), [START_REF] Hespanha | Logic-based switching control of a nonholonomic system with parametric modeling uncertainty[END_REF], and ( 16) for the simulation are

u 0 1 (x) u 0 2 (x) = 1.3851 1.3889 (69) u 0 1i (x) u 0 2i (x) = u 0 1 (x) u 0 2 (x) , i ∈ I . (70) 
The evolution of u 1 u 2 (•, t) 

Conclusions

In this paper, a supervisory control framework has been introduced for stabilizing linear systems of balance laws subject to large modeling uncertainties affecting the boundary conditions and the reaction term. This adaptive method has been illustrated by a traffic flow control. This paper is the first application of supervisory control to hyperbolic PDE. Several questions remain open. One prospect could be the analysis of the multiestimator initialization using the approach developed in [START_REF] Safaei | On controller initialization in multivariable switching systems[END_REF] for finite dimensional problems. Besides, a more advanced supervisory control could be considered when every controller fails to stabilize the system while the stabilization is achieved by switching among them [START_REF] Yang | Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approach[END_REF].

Finally, the stabilization of the system whenever none of the possible parameters match the true parameter should be investigated in the future. In particular, special effort should be put to estimate the minimum division to ensure stabilization.

A Proof of Lemma 10 PROOF. Let us consider system (21)-( 23), we assume that ũ j * ṽ j * (•, t 1 ) ∈ H 1 (0, 1). Then, ũ j * ṽ j * ∈ C in R m×m , R m×(n-m) , R (n-m)×m , and R (n-m)×(n-m) respectively. Using Assumption 6 it can be proved that the matrix G in (A.4) is positive definite (see the proof of Proposition 5). Thus, from (A.3) we get λ min (G) ũ j * (1, t) ṽ j * (0, t) 
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 2 Figure 2. L 2 -norm of the state [u1 u2] (•, t)

E and σ(t) are plotted on Figure 2 .

 2 As expected by Theorem 12 the L 2 -norm of the state u 1 u 2 (•, t) E goes to 0.
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 4 Y j * = G j * + Q j * C j * = j * , Y +- j * , Y -+ j * , and Y -- j *

  1 ([t 1 , t 2 ] ; E) ∩ C [t 1 , t 2 ] ; H 1 (0, 1) . Let us define the following functionsg 1 (x) = e -2θ j * x Λ + -1 S + j * -1 ũj * (x, t) (A.1)g 2 (x) = e 2θ j * x Λ --1 S - and S - j * are defined in Assumption 6. By first multiplying (21) and (22) by g 1 (x) and g 2 (x) respectively then integrating over ∆ = (t 1 , t 2 ) × (0, 1), we obtain

		j *	-1 ṽj * (x, t) ,	(A.2)
	where S + j 1	ũj	
	0		

* * (x, t 2 ) ṽj * (x, t 2 ) S -1 j * (x) ũj * (x, t 2 ) ṽj * (x, t 2 ) dx -1 0 ũj * (x, t 1 ) ṽj * (x, t 1 ) S -1 j * (x) ũj * (x,

t 1 ) ṽj * (x, t 1 ) dx + t2 t1 ũj * (1, t) ṽj * (0, t) G ũj * (1, t) ṽj * (0, t) dt = 2 ∆ ũj * (x, t) ṽj * (x, t) P(x) ũj * (x, t)

  + m 2 ũ j * ṽ j * (t 1 ) By density, inequality (34) also holds for the function ũ j * ṽ j * (•, t 1 ) only in E. This concludes the proof of Lemma 10.

					2
					L 2 (t1,t2)
	≤ m 1 max t∈[t1,t2]	ũ j 2
					,	(A.7)
					E
	where			
	m 1 = 2 (t 2 -t 1 ) max x∈[0,1]	λ max (P(x)) ,	(A.8)
	m 2 = max x∈[0,1]	λ max S -1 j * (x) .	(A.9)
	Inequality (34) readily follows from (A.7) with
	M k =	C j * 2 m k λ min (G)	, k = 1, 2 .	(A.10)

* ṽ j * (t) 2 E

Acknowledgments

The author is deeply grateful to Antoine Girard and Christophe Prieur for many constructive suggestions.

project team.