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Realization theory of recurrent neural networks and rational systems

Thibault Defourneau, Mihaly Petreczky

Abstract— In this paper, we show that, under mild assump-
tions, input-output behavior of a continuous-time recurrent
neural network (RNN) can be represented by a rational or
polynomial non-linear system. The assumptions concern the
activation function of RNNs, and they are satisfied by many
classical activation functions. We also present an algorithm
for constructing the polynomial and rational system. This
embedding of RNNs into rational systems can be useful for sta-
bility, identifiability, and realization theory for RNNs, as these
problems have been studied for polynomial/rational systems.
In particular, we use this embedding for deriving necessary
conditions for realizability of an input-output map by RNN,
and for deriving sufficient conditions for minimality of an RNN.

I. INTRODUCTION

One of the challenges in machine learning is to provide
a mathematical theory for analyzing learning algorithms.
Recently, there has been a surge of interest in the use of
neural networks, leading to the emergence of the field of
deep learning. One of the most widespread models used in
deep learning are recurrent neural networks (RNNs). RNNs
can seen as non-linear dynamical systems equipped with an
internal state, input and output. Learning such an RNN from
data is equivalent to estimating the parameters of the RNN,
viewed as a dynamical system. That is, learning algorithms
for RNNs correspond to system identification algorithms,
and developing a mathematical theory for learning RNNs
is equivalent to developing system identification for RNNs.
There is a rich literature on system identification, in particu-
lar on system identification for linear systems [15]. Note that
linear dynamical systems are a particular class of RNNs.

One of the principal building blocks of system iden-
tification theory for linear systems is realization theory.
Realization theory can be viewed as an attempt to solve
an idealized system identification problem, where there is
infinite data, not modelling error, etc. In general, the aim of
realization theory is to understand the relationship between
an observed behavior and dynamical systems producing this
observed behavior. For the particular case of RNNs, the main
questions of realization theory can be stated as follows:

1) Which class of observed behaviors (input-output maps)
can be represented by an RNN ?
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2) How can we characterize minimal RNNs (RNNs of
the least complexity) representing a certain observed
behavior ? What is the appropriate definition of min-
imality (smallest number of neurons, etc.) for RNNs,
are minimal RNNs are related by some transformation
?

3) Is there a constructive procedure for constructing a
RNN representation from input-output behavior which
can be proven to be mathematically correct ?

For linear systems, realization theory [12], [24] has been
useful for system identification, for example it helped to
address identifiability, canonical forms and gave rise to
subspace identification algorithms. We expect that realization
theory of RNNs will lead to similarly useful results for the
latter dynamical systems.

In order to develop realization theory of RNNs, we embed
RNNs into the class of rational systems, and then we use
realization theory of rational/polynomial systems in order to
derive new results on realization theory of RNNs.

In this paper, we consider RNNs in continuous-time, in
order to avoid some technical difficulties encountered in
the discrete-time case. Note that discrete-time RNNs can be
viewed as discretizations of continuous-time RNNs.

In this paper we assume that the high-order derivatives of
the activation function satisfy a polynomial equation. Several
widely-used activation functions have this property.
• We show that an input-output map can be realized by a

RNN, only if it can be realized by a rational system, i.e.
a non-linear system defined by vector fields and readout
maps which are fractions of polynomials. We present an
explicit construction of such a rational system.

• We present a necessary condition for existence of a
realization by RNNs, using results from realization
theory of rational systems. This necessary condition is
a generalization of the well-known rank condition for
Hankel matrices of linear systems.

• We formulate sufficient conditions for observabil-
ity/reachability/minimality of RNNs, using existing re-
alization theory for rational systems [19], [16], [4], [22].

Note that RNNs could be viewed as analytic systems and
one could try to apply realization theory of analytic systems
[11], [10], [9]. However, realization theory for analytic
systems is not computationally effective. In contrast, the
conditions for observability/reachability/minimality of RNNs
which are derived in this paper are computational effective
and they are less restrictive than those which can be obtained
by viewing RNNs as analytic systems [11], [10], [9].

To the best of our knowledge, the results of the paper
are new. RNNs have been widely used in the machine



learning literature, both in discrete-time and continuous-
time, [25], [26]. Observability of RNNs was studied in [3],
controllability in [21] and minimality in [2]. This paper was
inspired by [3], [21], [2], but in contrast to [3], [21], [2],
we do not use any assumption on the structure of the weight
matrices, except for observability issues. This means that the
results of this paper can be applied even when the results of
[3], [21], [2] are not applicable.

In Section II we present the basic notation and termi-
nology. In Section III we present the construction of the
rational system which realizes the same input-output map
as an RNN. In Section IV, we use the results of Section III
to derive necessary conditions for existence of a realization
by RNN. Finally, in Section V we use the results of Section
III to derive sufficient conditions for minimality of RNNs.
An extended version of this paper containing detailed proofs
can be found in the technical report [8].

II. BASIC DEFINITIONS

In this section, we fix the notation used in the paper and
we recall some algebraic tools necessary for this paper. Then
we recall the definition of RNNs and of rational systems.

A. Preliminaries

We use the standard terminology and notation from com-
mutative algebra and algebraic geometry see [14], [23], [6].
In particular, by R[X1, . . . , Xn] we denote the algebra of real
polynomials in n variables and by R(X1, . . . , Xn) we denote
the quotient field of R[X1, . . . , Xn]. We refer to the element
of R(X1, . . . , Xn) as rational functions in n variables.

B. Recurrent neural networks.

Below we define formally what we mean by recurrent
neural networks in continuous-time. We will follow the
notation of [3], [21], [2].

Definition 1: A recurrent neural network, abbreviated by
RNN, with input-space U ⊂ Rm and output-space Rp, is a
dynamical system

Σ :

{
ẋ(t) = −→σ

(
Ax(t) +Bu(t)

)
, x(0) = x0

y(t) = Cx(t)
(1)

where
• σ : R → R is a continuous globally Lipschitz scalar

function. It is called the activation function.
• A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are matrices,

called weight matrices,
• the map −→σ : Rn → Rn is defined by

−→σ : (x1, . . . , xn)T 7→ (σ(x1), . . . , σ(xn))T ,

• u(t) is an input, x(t) ∈ Rn is the state and y(t) is the
output at time t, and x0 ∈ Rn is the initial-state.

We denote such a system by Σ = (A,B,C,U , σ, x0).
If we take σ the identity map in Definition 1, it is the

same as a linear system in control theory. Next we define
formally what we mean by a solution and an input-output
map of a system Σ = (A,B,C,U , σ, x0). To this end, in the

sequel, we denote by PC([0; +∞[, X) the set of piecewise-
continuous functions from [0; +∞[ to X ⊆ Rk, k > 0.

Definition 2: A triple (x, u, y) is a solution of an RNN
Σ = (A,B,C,U , σ, x0) if u ∈ PC([0; +∞[,U), x :
[0; +∞[→ Rn, y : [0; +∞[→ Rp, x is absolutely contin-
uous, and (1) holds.

Remark 1: As the activation function σ is globally Lips-
chitz, it follows that for every u ∈ PC([0; +∞[,U), there
exist unique x, y such that (x, u, y) is a solution of Σ.

In this paper, we focus on solutions (x, u, y) of an RNN
such that u is piecewise constant.

Notation 1 (Upc): We denote by Upc the set of all
piecewise-constant functions of the form u : [0; +∞[→ U .

Definition 3: Let p : Upc → PC([0; +∞[,Rp) be an
input-output map, and let Σ = (A,B,C,U , σ, x0) be an
RNN. Σ is said to be a realization of the input-output map p
if for every u ∈ Upc, the unique solution (x, u, y), x(0) = x0

of Σ is such that p(u) = y.

C. Rational and polynomial systems.

Informally, rational respectively polynomial systems are
control systems in continuous time, whose differential equa-
tions and readout maps are rational functions, i.e. they are
fractions of polynomials, respectively polynomial functions.

Definition 4 (Polynomial and rational systems): A ratio-
nal system with input-space U ⊂ Rm, state-space Rn and
output-space Rp is a dynamical system as

R :

{
υ̇i(t) =

Pi,u(t)(υ(t))

Qi,u(t)(υ(t)) , i = 1, . . . , n , υ(0) = υ0

yk(t) =
hk,1(υ(t))
hk,2(υ(t))) , k = 1, . . . ,p

(2)

where
• u(t) is the input, υ(t) = (υ1(t), . . . , υn(t))T is the state

and y(t) = (y1(t), . . . , yp(t))T is the output at time t.
Moreover υ0 ∈ Rn is the initial state;

• hk,1, hk,2, k = 1, . . . ,p are non-zero polynomials in n
variables and for all α ∈ U , i = 1, . . . , n, Pi,α, Qi,α are
polynomials in n variables, Qi,α is non-zero.

We will identify the rational system R with the tuple
({Pi,α, Qi,α}i=1,...,n,α∈U , {hk,1, hk,2}pk=1,U , υ0). We will
say that R is polynomial, if hk,2 = 1, Qi,α = 1 for all
k = 1, . . . ,p, i = 1, . . . , n, α ∈ U .
Note that the existence and uniqueness of a state trajectory
of a rational system requires some care, as in our definition
we did not exclude the possibility that x(t) passes through
the zero set of a denominator Qi,α.

Definition 5: A triplet (υ, u, y) is a solution of a rational
system R of the form (2), if the input u : [0; +∞[→ U is
piecewise constant, the state υ : [0; +∞[→ Rn is absolutely
continuous, the output y : [0; +∞[→ Rp is piecewise
continuous, and they satisfy

υ̇i(t) Qi,u(t)(υ(t)) = Pi,u(t)(υ(t))
yk(t) hk,2(υ(t)) = hk,1(υ(t)) ,

(3)

for 1 6 i 6 n, and 1 6 k 6 p, where
υ(t) = (υ1(t), . . . , υn(t))T is the state and y(t) =
(y1(t), . . . , yp(t))T .



By uniqueness of a solution of an analytic differential equa-
tion, for any initial state υ0 ∈ Rn such that Qi,u(t)(υ0) 6= 0
and hk,1(υ0) 6= 0, there exist at most one solution (υ, u, y)
of R such that υ(0) = υ0. In particular, if R is a polynomial
system, then for any initial state υ0 ∈ Rn there exist at most
one solution (υ, u, y) of R such that υ(0) = υ0.

Definition 6: Let p : Upc → PC([0; +∞[,Rp) be an
input-output map, and let R be a rational system of the form
(2). We say that R realizes p, if for any u ∈ Upc there exists
a solution (υ, u, y) of R such that υ(0) = υ0 and p(u) = y.

III. REPRESENTING RNNS BY RATIONAL SYSTEMS.

In this section we show that an RNN realization of a given
input-output map imply the existence of a rational system
which is a realization of the same map. Moreover, we present
the construction of such a rational realization. We introduce
the following assumption.

Assumption 1 (A1): The function σ : R → R is analytic,
and there exist an integer N > 0 and N analytic functions
ξ1, . . . , ξN : R→ R such that
σ V0(ξ1, . . . , ξN ) = U0(ξ1, . . . , ξN )

ξ̇i Vi(ξ1, . . . , ξN ) = Ui(ξ1, . . . , ξN ) , if 1 6 i 6 N
(4)

where Uk, Vk are polynomials in N variables.
Assumption (A1) involves existence of analytic functions

{ξi}Ni=1 and hence it is not easy to check it. In fact, As-
sumption (A1) can be replaced by the following hypothesis,
which involves only derivatives of the activation function σ.

Assumption 2 (A2): The function σ : R → R is analytic,
and there exist an integer N > 0 and a no-zero polynomial
Q in N + 1 variables, such that

Q(σ, σ(1) . . . , σ(N)) = 0 (5)

where σ(i) denotes the i-th derivative of σ.
Lemma 1 (Equivalence of (A1) and (A2)): A function σ

satisfies Assumption (A1) if and only if it satisfies Assump-
tion (A2).
The proof of Lemma 1 is presented in [8].

Example 1: Let consider an analytic RNN of a response
map for which the activation function σ is the hyperbolic
tangent th, or the sigmoid function S given below:

∀x ∈ R , th(x) =
ex − e−x

ex + e−x
, S(x) =

1

1 + e−x
.

These functions are analytic and satisfy a differential polyno-
mial equation, more precisely the hyperbolic tangent verifies
y(1) = 1 − y2 with y(0) = 0, and the sigmoid function
satisfies y(1) = y(1 − y) with y(0) = 1

2 . It follows that
Assumption (A2) holds.

Then we restrict the set of input maps, by supposing the
following assumption.

Assumption 3 (Finite input set): In the rest of the paper
we assume that U ⊂ Rm is a finite set.

Notation 2: We denote by |U| the cardinality of U . We set
U = {α1, . . . , αK}, where αi ∈ Rm, and αi 6= αj if i 6= j.
In that case, we have |U| = K.

The assumption that U is finite is not an overly restrictive
one, and it is satisfied in many potential applications.

Next we present the main theorem of this paper.
Theorem 1 (Embedding RNNs into rational systems):

Let σ : R → R be a globally Lipschitz function which
satisfies (A1) and assume that U is finite. Consider an
input-output map p : Upc → PC([0; +∞[,Rp). If Σ is a
RNN with activation function σ and input space U , and
Σ is a realization of p, then there exists a rational system
which is a realization of p.
The proof of Theorem 1 is presented in [8]. The proof of
the theorem relies on defining a rational system associated
with the RNN. In order to avoid excessive notation, in the
sequel we identify the sum of fraction of multi-variable poly-
nomials

∑N
k=1

Pi
Qi

with the fraction obtained by bringing all

summands to the same denominator, i.e.,
∑N
k=1 PiΠ

N
r=1,r 6=kQi

ΠNk=1Qi
.

Definition 7: Let Σ be an RNN, whose activation function
satisfies (A1), and assume that ξ = (ξ1, . . . , ξN )T satis-
fies (4). Define the rational system R(Σ) associated with
the RNN Σ = (A,B,C,U , σ, x0), A = (ai,j)

n
i,j=1, C =

(ck,i)k=1,...,p,i=1,...,n as follows:

∀i = 1, . . . , N, j = 1, . . . , n, α ∈ U :

υ̇i,j,α(t) =
Ui(υj,α(t))

Vi(υj,α(t))
{
n∑
l=1

aj,l
U0(υl,β(t))

V0(υl,β(t))
} if u(t) = β

υj,α(t) = (υ1,j,α(t), . . . , υN,j,α(t)),

υj,α(0) = ξ
(
eTj (Ax0 +Bα))

ẋj(t) =
U0(υj,β(t))

V0(υj,β)
if u(t) = β, and xj(0) = eTj x0,

yk(t) =

n∑
i=1

ck,ixi(t), k = 1, . . . ,p

Remark 2: If Assumption (A1) is satisfied with polyno-
mial equations, i.e. Vi = 1, i = 0, . . . , N , like in examples
from Example 1, then R(Σ) is a polynomial system.

The proof of Theorem 1 relies on the following sim-
ple result, which is interesting on its own right. Let
ξ = (ξ1, . . . , ξn) is from (4), and define F : Rn →
RL, as F (x) = (z1, . . . , znN |U|, x

T )T , where zφ(i,j,α) =
ξi(e

T
j (Ax + Bα)) and for any i = 1, . . . , N, j =

1, . . . , n, α ∈ U , φ(i, j, α) = N · |U| · (j−1)+N · (r−1)+ i
if α = αr, r = 1, . . . ,K.

Lemma 2: If (x, u, y) is a solution of the RNN Σ =
(A,B,C,U , σ, x0), then (υ, u, y), with υ(t) = F (x(t)) for
t ≥ 0, is a solution of R(Σ).
The proof of Lemma 2 is presented in [8].

IV. EXISTENCE OF AN RNN REALIZATION

Theorem 1 allows us to formulate a necessary condition
for realizability of an input-output map by an RNN, using
conditions of [19, Theorem 5.16] for existence of a realiza-
tion by a rational system. In order to present this condition,
we need to introduce additional notation and terminology.

Definition 8: An input-output map p : Upc →
PC([0; +∞[,Rp) is causal if, for all t > 0 and for all



u, v ∈ Upc such that ∀s ∈ [0, t] : u(s) = v(s), it holds
that ∀s ∈ [0, t] : p(u)(s) = p(v)(s).
In other words, p is causal, if p(u)(t) depends only on the
values of u on the interval [0, t]. If p is the input-output map
of a control system, then causality must necessarily hold.

Definition 9: An input-output map p : Upc →
PC([0; +∞[,Rp) is analytic if, for all k ∈ {1, . . . ,p} and
for all α1, . . . , αl ∈ U , l > 0, the function φp,k,α1,...,αl :
([0,+∞[)l → R is analytic, where

φp,k,α1,...,αl(t1, . . . , tl) = pk(uα1,...,αl
t1,...,tl

)(Tl)

uα1,...,αl
t1,...,tl

(t) =

{
αi if t ∈ [Ti−1, Ti[, i = 1, . . . , l
αl if t ≥ Tl

T0 = 0 , Ti =

i∑
j=1

tj , i = 1, 2, . . . , l.

(6)

where pk is the k-th component of p, i.e. p(u) =
(p1(u), . . . , pp(u))T for all u ∈ Upc.

Notation 3: We denote by A(Upc) the set of causal
analytic input-output maps of the form p : Upc →
PC([0; +∞[,R).
Note that the set A(Upc) forms an algebra over the field
of real numbers with the usual point-wise addition, multi-
plication and multiplication by scalar. It can be shown that
the algebra A(Upc) is isomorphic to the ring of functions
A
(
Ũpc → R

)
defined in [19, Definition 4.3], therefore it is

an integral domain.
Definition 10: Let ϕ ∈ A(Upc) and define the derivative

Dαϕ of ϕ along α ∈ U as the function Dαϕ : Upc →
PC([0; +∞[,R), such that for all u ∈ Upc, for all t > 0,(

Dαϕ(u)
)
(t) =

d

ds

(
ϕ
(
uα)(t+ s)

)
| s=0

,

uα(τ) =

{
u(τ) τ ∈ [0, t[
α τ > t

It is easy to see that Dαϕ is also causal and analytic,
and hence Dαϕ belongs to A(Upc). Now we define the
observation algebra of an input-output map.

Definition 11: Let p : Upc → PC([0; +∞[,Rp) be an an-
alytic and causal input-output map. The observation algebra
of p, denoted by Aobs(p), is the smallest sub-algebra of the
algebra A

(
Upc
)

such that the following holds.
• Consider the components pk : Upc → PC([0; +∞[,R),
k = 1, . . . ,p of p, i.e., ∀u ∈ Upc : p(u) =
(p1(u), . . . , pp(u))T . For every k = 1, . . . ,p, pk ∈
Aobs(p).

• For every g ∈ Aobs(p), Dαg ∈ Aobs(p), α ∈ U , i.e.,
Aobs(p) is closed under taking derivatives Dα, α ∈ U .

We call the observation field, denoted by Qobs(p), the field
of fractions of Aobs(p).

If an input-output map p : Upc → PC([0; +∞[,Rp)
is realized by an RNN Σ = (A,B,C,U , σ, x0), with σ
satisfying Assumption (A1), then the rational system R(Σ),
given in Definition 7, also realizes the input-output map
p by Theorem 1 and Lemma 1. Thus the transcendence
degree of the observation algebra Aobs(p) is finite by [19,
Theorem 5.16]. We are now in the position to state a

necessary condition for existence of an RNN realization,
which summarizes the arguments above.

Theorem 2 (Existence of an RNN: necessary condition):
The input-output map p : Upc → PC([0; +∞[,Rp) has
a realization by an RNN whose activation function
satisfies Assumption (A1) only if p is causal, analytic and
trdeg Aobs(p) < +∞.

V. MINIMALITY, REACHABILITY AND OBSERVABILITY

In this section, we first provide sufficient conditions for
minimality of RNNs. We also provide a Hankel-rank like
condition for minimality of the RNNs. Finally we relate
reachability and observability properties for RNNs with the
corresponding properties of rational systems.

A. Sufficient conditions for minimality of RNNs

Define the dimension of a RNN Σ of the form (1)
(respectively rational system R of the form (2)) as the
number n of its state variables, and we denote the dimension
of Σ (respectively R) by dim(Σ) (respectively dim(R)) .
Note that our definition of dimension of a rational system
coincides with that of [20, Definition 13]. We say that
RNN Σ with activation function σ is a σ-minimal real-
ization (respectively the rational system R is a minimal
realization) of an input-output map p, if Σ (respectively
R) is a realization of p and there exists no RNN Σ

′
with

activation function σ (respectively no rational system R
′
),

such that Σ
′

(respectively R
′
) is a realization of p and

dim(Σ
′
) < dim(Σ) (respectively dim(R

′
) < dim(R)). .

Lemma 3: Let Σ = (A,B,C, σ, x0) be an RNN, whose
activation function σ satisfies (A1) and assume that Σ is a
realization of the input-output map p. If the rational system
R(Σ), given in Definition 7, is a minimal realization of p,
then Σ is a minimal RNN realization of p.
The proof of Lemma 3 is presented in [8].

Unfortunately, in most of the cases, R(Σ) will not be
minimal. Intuitively, this has to do with the fact that the
states x1(t), . . . , xn(t) of R(Σ) are integrals of the other
states, leading to lack of observability if n > 1 and x(0) is
chosen so that Cx(0) = 0. In order to remedy this problem,
we define auxiliary rational systems associated with RNNs.

Definition 12: Let Σ = (A,B,C,U , σ, x0) be an RNN,
whose activation function satisfies (A1), assume that ξ =
(ξ1, . . . , ξN ) satisfies (4). Define the auxiliary ratio-
nal system Raux(Σ) associated with the RNN Σ, A =
(ai,j)

n
i,j=1, C = (ck,i)k=1,...,p,i=1,...,n as follows:

∀i = 1, . . . , N, j = 1, . . . , n, α ∈ U :

υ̇i,j,α(t) =
Ui(υj,α(t))

Vi(υj,α(t))
{

n∑
l=1

aj,l
U0(υl,β(t))

V0(υl,β(t))
} , if u(t) = β

υj,α(t) = (υ1,j,α(t), . . . , υn,j,α(t))T ,

υj,α(0) = ξ
(
eTj (Ax0 +Bα)

)
,

yk,α(t) =

n∑
i=1

ck,i
U0(υi,α(t))

V0(υi,α(t))
, k = 1, . . . ,p



Remark 3 (Polynomial Raux(Σ)): If Assumption (A1) is
satisfied with polynomial equations, i.e. Vi = 1, i =
0, . . . , N , like in examples from Example 1, then Raux(Σ)
is a polynomial system.

Note that the rational system Raux(Σ) does not realize
the input-output map pΣ,x0

of the RNN Σ, but it realizes an
input-output map which is constructed from derivatives of p
.More precisely, let p : Upc → PC([0; +∞[,Rp) be an input-
output map realized by the RNN Σ. Define the input-output
map p̂ : Upc → PC([0; +∞[,Rp|U|) as follows:

∀u ∈ Upc , p̂(u) = (Dα1
p(u), . . . , DαKp(u))T , (7)

where, Dαp(u) = (Dαp1(u), . . . , Dαpp(u))T , α ∈
U , Dαpk(u) is defined in Definition 10 and p(u) =
(p1(u), . . . , pp(u))T .

Lemma 4: Let Σ = (A,B,C,U , σ, x0) be an RNN and
let p : Upc → PC([0; +∞[,Rp) be an input-output map.
If the RNN Σ realizes p, then the rational system Raux(Σ)
realizes the input-output map p̂ defined in (7).
The proof of Lemma 4 is presented in [8].

Lemma 5: Let Σ = (A,B,C,U , σ, x0) be an RNN and
let p be an input-output map realized by Σ. If Raux(Σ) is
a minimal realization of p̂, then the RNN Σ is σ-minimal
realization of p.
The proof of Lemma 5 is presented in [8].

It is known from [16], [17] that algebraic, rational and
semi-algebraic observability and algebraic reachability char-
acterize minimality of rational systems and these properties
can be checked using methods of computational algebra
[18]. In particular, we can derive sufficient conditions for
the minimality of the RNN Σ using these reachability and
observability concepts for rational systems. To this end, be-
low the notions of algebraic reachability and algebraic/semi-
algebraic observability for rational systems. Let R be a
rational system of the form (2). Define the set RR(υ0) of
reachable states of R as the set formed by υ(t) such that
t > 0 and (υ, u, y) is a solution of R with υ(0) = υ0.
The system R is said to be algebraically reachable, if there
is no non-trivial polynomial which is zero on RR(υ0). The
system R is called accessible, if RR(υ0) contains an open
subset of Rn. It is clear that accessibility of implies algebraic
reachability.

Let R be a rational system of the form (2). Recall from
[16, Definition 3.19] or from [5, Definition 4] that obser-
vation algebra of R, denoted by Aobs(R), is the smallest
sub-algebra of the field of rational functions R(X1, . . . , Xn)
which contains hk,1

hk,2
, k = 1, . . . ,p and which is closed

under taking the formal Lie derivatives with respect to
the formal vector fields fα =

∑n
i=1

Pi,α
Qi,α

∂
∂Xi

. If R is
polynomial, i.e. Qi,α = 1, i = 1, . . . , n, hk,2 = 1, k =
1, . . . ,p, then Aobs(R) is the sub-algebra of the ring of
polynomials R[X1, . . . , Xn]. Following [16] we say that the
rational system R is algebraically observable, if Aobs(R) =
R[X1, . . . , Xn]. Following [17] that R is semi-algebraically
observable if trdeg(Aobs(R)) = n. We will say that R is
observable, if for every two distinct initial states υ”

0 , υ
′

0 there
exists solutions (υ”, u, y”) and (υ

′
, u, y

′
) of R such that

υ”(0) = υ”
0 , υ

′
(0) = υ

′

0, and y” 6= y
′
. It is easy to see that

algebraic observability implies semi-algebraic observability.
Moreover, for polynomial systems algebraic observability
implies observability [4].

Lemma 6 (Sufficient conditions): If one of the conditions
below holds, then Σ is σ-minimal realization of p:
• Raux(Σ) is semi-algebraically observable and alge-

braically reachable.
• Raux(Σ) is polynomial, it is algebraically observable

and algebraically reachable.
• Raux(Σ) is polynomial, it is algebraically observable

and accessible.
The above lemma is then a direct consequence of Lemma 5
and [20, Proposition 6], its detailed proof is presented in [8].

B. A Hankel-rank like condition for minimality of RNNs

Recall that a linear system is a minimal realization of
its input-output map, if and only if the dimension of this
system equals the rank of the Hankel-matrix of the input-
output map. We would like to formulate a similar result,
where the role of the rank of the Hankel-matrix is played
by the observation algebra Aobs(p). To this end, recall from
[20, Lemma 1, Theorem 4] that R(Σ) is minimal if and
only if dim(R(Σ)) = trdegAobs(p). In a similar manner, if
Aobs(p̂) is the observation algebra of the input-output map
p̂ defined in (7), then Raux(Σ) is minimal if and only if
dim(Raux(Σ)) = trdegAobs(p̂).

Lemma 7: Assume that σ satisfies (A1), and let the RNN
Σ be a realization of the input-output map p. If one of the fol-
lowing conditions hold for n = dim(Σ): (1) trdegAobs(p) =
n(1 + |U|N), or (2) trdegAobs(p̂) = n|U|N , then Σ is a σ-
minimal realization of p.
The proof of Lemma 7 is presented in [8].

C. Some aspects of reachability and observability of RNNs

One may wonder how restrictive the conditions of Lemma
6 are, and how they relate to accessibility/reachability and
observability of the RNN Σ studied in [3], [21], [1]. In order
to present this relationship more precisely, we introduce the
following terminology. Define the reachable set of an RNN
Σ = (A,B,C,U , σ, x0)

RΣ(x0) = {x(t) | t > 0 , (x, u, y)

is a solution of Σ, x(0) = x0}.

We will say that Σ is accessible, if RΣ(x0) contains an open
subset of Rn, we say that Σ is algebraically reachable if
there is no non-trivial polynomial which is zero on RΣ(x0).
We say that Σ is span-reachable, if the linear span of the
elements RΣ(x0) is Rn, i.e. Σ is reachable if there exist
no linear function which is zero on RΣ(x0). Clearly, if Σ
is accessible, then it is algebraically reachable, and if Σ is
algebraically reachable, then it is span-reachable. We say that
the RNN Σ is weakly observable if for every initial state
x̂ ∈ Rn there is an open subset V of Rn such that x̂ ∈ V
and for every x̂ 6= x ∈ V , there exist solution (x, u, y) and
(x′, u, y′) of Σ, with x(0) = x̂ and x′(0) = x, such that



y 6= y′. Then the RNN Σ is observable if for every initial
state x̂ ∈ Rn, V = Rn in the latter definition.

Lemma 8: Let Σ = (A,B,C,U , σ, x0) be an RNN.
• If Raux(Σ) is algebraically reachable, then Σ is span-

reachable. In particular, if Raux(Σ) is accessible, then
Σ is span-reachable.

• If Raux(Σ) is polynomial, and it is observable, and if
the function σ is invertible and Ker(A) is trivial, then
Σ is observable. In particular, if Raux is algebraically
observable, then Σ is observable.

• If Raux(Σ) is polynomial, and it is semi-algebraically
observable, and if the function σ is invertible and
Ker(A) is trivial, then Σ is weakly observable.

The proof of Lemma 8 is presented in [8]. Note that
invertability of σ holds for many commonly used activation
functions, see Example 1. Observe that accessibility, and
algebraic / semi-algebraically observability conditions for
rational / polynomial systems can be checked by using
methods of computer algebra [18].

From [11, Theorem 1.12] it follows that if the RNN Σ
is accessible and weakly observable, then it is a minimal
realization of its input-output map p. From the comparison
between the conditions of Lemma 6 with those of Lemma 8
it is clear that minimality of Raux(Σ) is a much weaker
condition than accessibility and weak observability of Σ.
This suggests that using realization theory of rational systems
is likely to yield more useful results for RNNs than using
realization theory of general analytic systems.

Recall from [3, Theorem 1] that a necessary condition for
observability of Σ = (A,B,C,U , σ, x0) is that the largest
A-invariant coordinate subspace of Σ included in Ker(C)
is trivial. More precisely, following [3] we say that a vector
subspace V of Rn is a coordinate subspace if it is spanned by
some vectors from the canonical basis of Rn, i.e. there exists
an integer s > 0 and integers i1, . . . , is ∈ {1, . . . , n} such
that V is spanned by ei1 , . . . , eis , where (e1, . . . , en) denotes
the canonical basis of Rn. Let Oc(A,C) be the largest
coordinate subspace which is A-invariant and contained in
Ker(C).

Lemma 9: If Raux(Σ) is polynomial and it is semi-
algebraically observable, then there exists no non-trivial
coordinate subspace which is A-invariant and contained in
Ker(C), i.e. Oc(A,C) = {0}.
The proof of Lemma 9 is presented in [8].

By [3, Theorem 1] Oc(A,C) = {0}, it is also sufficient
if ker(C)∩ ker(A) = {0}, the activation function σ satisfies
only the IPP property, given in [3] for example, and if B
verifies a condition on its rows. But here we do not need the
latter hypothesis on Σ.

VI. CONCLUSIONS

We have shown that input-output maps of a large class
of recurrent neural networks can be represented by ratio-
nal/polynomial systems, and we used this fact to derive
necessary and sufficient conditions for existence of a re-
alization by a recurrent neural network and its minimality.
Future research will be directed towards deriving a more

complete realization theory of recurrent neural network and
for using the results of realization theory for analyzing
machine learning algorithms.
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[19] J. Němcová, and J.H. van Schuppen, Realization theory for rational
systems: The existence of rational realizations, SIAM J. Control
Optim., 2009, pages 2840-2856, volume 48
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