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Abstract: In this paper, we present a realization and an identification algorithm for
stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The
proposed realization algorithm combines the deterministic LPV input output to LPV state-space
realization scheme based on correlation analysis with a stochastic covariance realization
algorithm. Based on this realization algorithm, a computationally efficient and statistically
consistent identification algorithm is proposed to estimate the LPV model matrices, which
are computed from the empirical covariance matrices of outputs, inputs and scheduling signal
observations. The effectiveness of the proposed algorithm is shown via a numerical case study.

1. INTRODUCTION

Identification of Linear Parameter-Varying (LPV) models
has gained significant attention over the past few years,
owing to their ability to describe the behavior of many
time-varying and non-linear systems. Many approaches
have been proposed for the identification of LPV models,
in input-output (Bamieh and Giarré, 2002; Laurain et al.,
2010; Mejari et al., 2018; Piga et al., 2015) as well
as State-Space (SS) representations (Felici et al., 2007;
Tanelli et al., 2011; van Wingerden and Verhaegen, 2009;
Verdult and Verhaegen, 2005). The reader is referred
to (Tóth, 2010) for a detailed summary of the available
LPV identification approaches.

Controller design approaches often require the LPV
models to be in SS representation with an affine
dependency on the scheduling variable. To this end,
realization theory of LPV models plays a key role in
understanding the conditions under which the observed
behavior of a system can be realized by a state-space affine
representation. It also allows to formulate identification
algorithms for estimating state-space representation from
a finite set of observations. The realization theory for
deterministic Linear Parameter-Varying State-Space with
Affine dependence (LPV-SSA) representation has been
developed in Tóth et al. (2012); Petreczky et al. (2017).
The results of Tóth et al. (2012); Petreczky et al. (2017)
were used to derive LPV-SS identification algorithm
in Cox et al. (2015, 2018). These methods are focused
on deterministic realizations, which for certain control
and filtering problems are too restrictive. In this paper,
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BayesRealForRNN.

we focus on formulating a realization algorithm and a
related identification algorithm for stochastic LPV-SSA
representations. The main idea is to decompose the
stochastic LPV-SSA realization/identification problem
into two independent problems: realization/identification
of deterministic part which depends only on the input,
and realization/identification of stochastic part. To this
end, the proposed algorithm is based on the combination
of correlation analysis (Cox et al., 2018) for deterministic
realization and stochastic covariance identification
algorithm for stochastic LPV-SSA representations (Mejari
and Petreczky, 2019a).

The algorithm presented in this paper extends the results
of Mejari and Petreczky (2019a), to the case of stochastic
LPV-SSA representations with exogenous inputs. The
proposed approach differs significantly from the subspace
based identification methods for stochastic LPV-SSA
representations (van Wingerden and Verhaegen, 2009; dos
Santos et al., 2009; Favoreel et al., 1999). First, the
cited papers do not deal with the realization problem. In
particular, while the possibility of decomposing the output
into a deterministic and purely stochastic components
is sometimes claimed in the literature, the formal
details of such a decomposition were never addressed.
Second, in contrast to the literature mentioned above,
the identification algorithm proposed in this paper
is provenly consistent and it does not require local
observability assumptions. The downside is that the
proposed algorithm is provenly consistent only for a
specific class of scheduling signals and stochastic LPV-SSA
representations. Moreover, the proposed algorithm avoids
the curse of dimensionality, but this comes at a price
of either using some prior knowledge on the system to
determine the correct selection of the rows and columns
of a Hankel-matrix or using an exhaustive search to find
such a selection.
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The paper is organized as follows. In Section 2, we
present the problem formulation. Section 3 presents the
formal definition and basic properties of the class of LPV
state-space representations considered in this paper. In
Section 4, we formalize the decomposition of outputs
of such LPV state-space representations into stochastic
and deterministic components. In Section 5, we present
the realization algorithm for stochastic LPV state-space
representations, and in Section 6 we present the related
identification algorithm. Finally, in Section 7 we illustrate
the results with a numerical example.

2. PROBLEM FORMULATION

Let y, u, µ be stochastic processes taking values in Rny ,
Rnu and Rnµ , representing the output process, the input
process, and the scheduling signal process respectively.
We define a discrete-time Linear Parameter-Varying
State-Space Affine (LPV-SSA) representation of the
process (y,u,µ) as the discrete-time system of the form

x(t+ 1) =

nµ∑
i=1

(Aix(t) +Biu(t) +Kiv(t))µi(t),

y(t) = Cx(t) +Du(t) + v(t), (1)

where, Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ki ∈ Rnx×ny ,
∀i = 1, . . . , nµ, C ∈ Rny×nx and D ∈ Rny×nu are real
constant matrices, and v is a white noise process, i.e.,
E[v(t)vT (s)] = 0, s 6= t and E[v(t)vT (t)µi(t)] = Qi > 0,
i = 1, . . . , nµ. The realization and identification problems
considered in this paper are as follows.

Problem 1. (Realization problem). For process (y,u,µ),
find matrices ({Ai, Bi,Ki}

nµ
i=1, C,D) and processes x,v

such that (1) is a representation of (y,u,µ).

Problem 2. (Identification problem). Assume that y :
Z → Rny is a sample path of the output process y,
u : Z → Rnu is a sample path of the input process u and
µ : Z→ Rnµ is a sample path of the scheduling process µ,
corresponding to the same random event ω ∈ Ω. Given a
dataset {y(t), u(t), µ(t)}Nt=1 consisting of N samples of the
output, input and scheduling process, compute from this
dataset the estimates {{ÂNi , B̂Ni , K̂N

i , Q̂
N
i }

nµ
i=1, Ĉ

N , D̂N},
such that as N → ∞, the estimated matrices
{{ÂNi , B̂Ni , K̂N

i , Q̂
N
i }

nµ
i=1, Ĉ

N , D̂N} converge to matrices
{{Ai, Bi,Ki, Qi}

nµ
i=1, C,D} such that the LPV-SSA (1)

with Qi = E[v(t)v>(t)µ2
i (t)], i = 1, . . . , nµ, is a

representation of (y,u,µ).

3. PROPERTIES OF LPV-SSA REPRESENTATION

In order to make Problems 1-2 well-posed, we have to
impose additional constraints on the class of processes
(y,u,µ) and on the class of LPV-SSA representations. To
this end, we need the following notation and terminology.

Notation 1. (Σ). Let Σ = {1, . . . , nµ}.

A non empty word over Σ is a finite sequence of letters, i.e.,
w = σ1σ2 · · ·σk, where 0 < k ∈ Z, σ1, σ2, . . . , σk ∈ Σ. The
set of all nonempty words is denoted by Σ+. We denote an
empty word by ε. Let Σ∗ = ε ∪ Σ+. The concatenation of
two nonempty words v = a1a2 · · · am and w = b1b2 · · · bn is
defined as vw = a1 · · · amb1 · · · bn for some m,n > 0. Note
that if w = ε or v = ε, then vε = v and εw = w, moreover,

εε = ε. The length of the word w ∈ Σ∗ is denoted by |w|,
and |ε| = 0.

Assumption 1. (White noise scheduling). The scheduling
process µ = [1,µ2, . . . ,µnµ ]T is zero-mean independent
identically distributed (i.i.d.) such that, for all t ∈ Z, we
have µ1(t) ≡ 1, and for each σ = 2, . . . , nµ, µσ is a zero
mean i.i.d. process.

We define scalars E[µ2
σ(t)] = pσ, for all t ∈ Z. In

particular, p1 = 1. For every word w ∈ Σ+ where w =
σ1σ2 · · ·σk, k ≥ 1, σ1, . . . , σk ∈ Σ, we define the process
µw and the number pw as follows

µw(t) = µσ1
(t− k + 1)µσ2

(t− k + 2) · · ·µσk(t),∀t ∈ Z
pw = pσ1

pσ2
· · · pσk .

We set µε(t) = 1 and pε = 1. For a process r ∈ Rnu , for
each w ∈ Σ+ we define the process zrw as

zrw(t) = r(t− |w|)µw(t− 1)
1
√
pw
, ∀t ∈ Z, (2)

which is interpreted as the past of r w.r.t. {µσ}σ∈Σ.

We remark that in this paper, the notion of Zero Mean
Wide Sense Stationary w.r.t. Inputs (ZMWSSI) process
and Square Integrable w.r.t. Input (SII) process, will
be a central notion for the mathematical framework of
stochastic LPV-SSA representations. We refer the reader
to Petreczky and Vidal (2018) for the detailed definition
of ZMWSSI and SII processes.

All the process considered in this paper will be assumed
to be ZMWSSI and SII process w.r.t. scheduling µ.

Definition 1. (White noise w.r.t. µ). A process r is called
a white noise process w.r.t. µ, if r is ZMWSII w.r.t. µ,
and E[zrw(t)(zrv(t))

T ] = 0, v 6= w, E[zrσw(t)(zrσw(t))T ] =
E[zrσ(t)(zrσ(t))T ] > 0, for all w, v ∈ Σ+.

Using the concept of ZMWSSI process and white noise
process w.r.t. µ, we can formulate the main assumption
regarding the processes (y,u,µ).

Assumption 2. Assume that µ satisfies Assumption 1, and[
yT uT

]T
is a ZMWSSI and SII process w.r.t. µ, and

u is a white noise process w.r.t. µ, and the covariance
E[zuσ(t)(zuσ(t))T ] = E[u(t − 1)(u(t − 1))T ] = Λu > 0 does
not depend on σ ∈ Σ.

Next, we recall from Mejari and Petreczky (2019a) the
notion of a stationary stochastic LPV-SSA representation
of a process r without inputs.

Definition 2. A stationary LPV-SSA representation
without inputs of a process r taking values in
Rp, is a tuple ({Ãσ, K̃σ}

nµ
σ=1, C̃, D̃, x̃, ṽ), where

Ãσ ∈ Rñ×ñ, K̃σ ∈ Rñ×m̃, C̃ ∈ Rp×ñ and v is a
process taking values in Rm̃ such that such that

1.
[
x̃T ṽT

]T
is a ZMWSSI process, and

E[x̃(t)(zṽw(t))T ] = 0 for all w ∈ Σ+.
2. ṽ is a white noise process w.r.t. µ.
3. The eigenvalues of the matrix

∑
σ∈Σ pσÃσ ⊗ Ãσ are

inside the open unit circle.
4. x̃(t+1) =

∑nµ
i=1(Ãix̃(t)+K̃iṽ(t))µi(t), r(t) = C̃x̃(t)+

D̃ṽ(t).

We call x̃ the state process and ṽ the noise process.
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In the terminology of Petreczky and Vidal (2018), a
stationary LPV-SSA without inputs u, corresponds to a
stationary generalized bilinear system w.r.t. the scheduling
inputs {µσ}σ∈Σ. If a process r has a stationary LPV-SSA
representation without inputs, then r is a ZMWSSI process
and x̃ is uniquely determined by ṽ and the matrices
(C̃, D̃, {Ãσ, K̃σ}σ∈Σ). In order to define this notion more
precisely, let us introduce the following notation.

Notation 2. (Matrix Product). Consider a collection of
square matrices Aσ ∈ Rn×n, σ ∈ Σ. For any word w ∈ Σ+

of the form w= σ1σ2 · · ·σk, k > 0 and σ1, . . . , σk ∈ Σ, we
define Aw=Aσk · · ·Aσ2Aσ1 . For an empty word ε, Aε = In.

From Petreczky and Vidal (2018) it follows that

x̃(t) =
∑

σ∈Σ,w∈Σ∗

√
pσwÃwK̃σzṽσw(t), (3)

where the infinite sum on the right-hand side is absolutely
convergent in the mean square sense.

Using the notion of a stationary LPV-SSA without inputs,
we can define the class of LPV-SSA representation with
inputs which will be considered in this paper.

Definition 3. (Stationary LPV-SSA). The LPV-SSA
representation (1) is stationary with input u, if

({Aσ, [Kσ Bσ]}σ∈Σ, C,
[
Iny D

]
x,
[
vT uT

]T
) is a

stationary LPV-SSA representation of y without
inputs as in Definition 2, and the orthogonality condition
E[v(t)uT (t)µ2

σ(t)] = 0, ∀σ ∈ Σ holds.

From (3) it follows that for a stationary LPV-SSA
representation with input u of the form (1),

x(t)=
∑

w∈Σ∗,σ∈Σ

√
pσwAw (Kσzvσw(t) +Bσzuσw(t)) ,

where the infinite sums on the right hand side are
absolutely convergent in the mean-square sense. That is,
the matrices and the noise processes determine the state
process of a stationary LPV-SSA (with or without inputs)
uniquely.

4. DECOMPOSITION OF THE OUTPUT OF
LPV-SSA REPRESENTATION

It turns out that the output process of stationary
LPV-SSA representations admits a decomposition into
deterministic and stochastic parts. The deterministic
part depends only on the input process, while the
stochastic part depends only on the noise process. This
decomposition does not depend on the particular choice of
LPV-SSA representation, but only on the output process
at hand.

Definition 4. (Deterministic and stochastic components).
Assume the processes (y,u,µ) satisfy Assumption 2.
Define the deterministic component yd of y as follows

yd(t) = El[y | {zuw(t)}w∈Σ+ ∪ {u(t)}], (4)

where El[·] is the orthogonal projection as defined
in Petreczky and Vidal (2018). Define the stochastic
component of y as

ys(t) = y(t)− yd(t). (5)

From the definition it follows that

y(t) = yd(t) + ys(t),

i.e., the process y(t) can be represented as the sum
of its deterministic and stochastic components. In case
when the process admits an LPV-SSA representation,
the stochastic and deterministic components satisfy the
following properties.

Lemma 1. (Decomposition of y). Assume that there
exists a stationary LPV-SSA representation of (y,u,µ)
of the form (1) and that (y,u,µ) satisfy Assumption 2. It
then follows that

xd(t+ 1) =

nµ∑
i=1

(Aix
d(t)+Biu(t))µi(t),

yd(t) = Cxd(t)+Du(t), (6)

and ({Aσ, Bσ}σ∈Σ, C,D,x
d,u) is a stationary LPV-SSA

representation of yd without inputs and with noise process
u, moreover,

xs(t+ 1) =

nµ∑
i=1

(Aix
s(t)+Kiv(t))µi(t),

ys(t) = Cxs(t)+v(t), (7)

and ({Aσ,Kσ}σ∈Σ, C, Iny ,x
s,v) is a stationary LPV-SSA

representation of ys without inputs, where

xd(t) = El[x(t) | {zuw(t)}w∈Σ+ ∪ {u(t)}] (8)

xs(t) = x(t)− xd(t) (9)

The proof of Lemma 1 is presented in Mejari and Petreczky
(2019b). Thus, ys depends only on the noise v, and yd does
not depend on the noise but it depends only on input u.
In fact, the converse of Lemma 1 also holds.

Lemma 2. Assume that y has a stationary LPV-SSA
representation with input u. Assume that Σd =
({Âdi , B̂di }

nµ
i=1, Ĉ

d, D̂d, x̂d,u) is a stationary LPV-SSA
representation of yd without input such that its noise
process equals the input process u. Assume that Σs =
({Âsi , K̂s

i }
nµ
i=1, Ĉ

s, Iny , x̂
s, es) is a stationary LPV-SSA

representation of ys without inputs in forward innovation
form, i.e., assume that the process es is the so called
innovation process of ys as defined in Petreczky and Vidal
(2018):

es(t) = ys(t)− El[ys(t) | {zy
s

w (t)}w∈Σ+ ] (10)

Then, tuple ({Âi, K̂i, B̂i}
nµ
i=1, Ĉ, D̂, x̂, e

s) is a stationary
LPV-SSA representation of y with input u, where

x̂(t) =
[
(x̂d(t))T (x̂s(t))T

]T
Âσ = diag(Âdσ, Â

s
σ), B̂σ =

[
(B̂dσ)T 0Tnx×nu

]T
K̂σ =

[
0Tnx×ny (K̂s

σ)T
]T
, Ĉ=

[
Ĉd Ĉs

]
, D̂=D̂d.

(11)

Moreover, the innovation process es satisfies

es(t) = y(t)−El[y(t) | {zyw(t), zuw(t)}w∈Σ+ ∪{u(t)}] (12)

The proof of Lemma 2 is presented in Mejari and Petreczky
(2019b). Thus, the problem of realization of y can be
decomposed into two problems:

P1 finding a stationary LPV-SSA representation Σd
without inputs of yd, such that the noise process of
Σd is u,

P2 finding a stationary LPV-SSA representation Σs
without inputs of ys = y − yd, such that the noise
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process es of Σs is the innovation process of ys as
defined in Mejari and Petreczky (2019a).

Moreover, the innovation process es(t) is the error of
projecting y(t) onto the linear space spanned by the
products of the past values of y, u and the scheduling
process µ, as defined in (12).

5. REALIZATION ALGORITHMS

In this section, we first recall the basis reduced Ho-Kalman
realization algorithm for deterministic LPV state-space
representations. In turn, this algorithm will be used for
covariance realization algorithms for estimating LPV-SSA
representations of yd, ys, presented in Section 5.2–5.3.

5.1 Basis reduced Ho-Kalman realization algorithm

Recall from Petreczky et al. (2017); Cox et al. (2018)
that a deterministic LPV-SSA representation (with affine
dependence) is a system of the form

x(t+ 1) =

nµ∑
i=1

(Aix(t) +Biu(t))µi(t),

y(t) = Cx(t) +Du(t),

(13)

where Ai, Bi, C,D are matrices of suitable dimensions,
x : Z → Rnx is the state trajectory u : Z → Rnu is the
input trajectory y : Z → Rny is the output trajectory. In
order to avoid technical problems, we assume that x, u, y
all have finite support, i.e. there exist a t0 ∈ Z, such
that x(s) = 0, y(s) = 0, u(s) = 0 for all s < t0. We
identify a deterministic LPV-SSA of the form (13) with
the tuple S = ({Aσ, Bσ}σ∈Σ, C,D). The number nx is
called the dimension of S . The sub-Markov parameters
of S = ({Aσ, Bσ}σ∈Σ, C,D) are the values of the map
MS : Σ∗ → Rny×nu , such that for all w ∈ Σ∗,

MS (w) =

{
CAsBσ, w = σs, σ ∈ Σ, s ∈ Σ∗

D. w = ε
(14)

We will refer to MS as the sub-Markov function
of the deterministic LPV-SSA representation of S .
From Petreczky et al. (2017) it then follows that two
deterministic LPV-SSA representations S1, S2 have
the same input-output behavior, if and only if their
sub-Markov parameters are equal, i.e., MS1

= MS2
.

Moreover, the sub-Markov parameters can be determined
from the input-output behavior.

Below we recall from Cox et al. (2018) an adaptation of
this Ho-Kalman-like algorithm, which uses sub-Markov
parameters to compute a deterministic LPV-SSA
representation. In order to present the algorithm, we
present the notion of n-selection. Let us define the set Σn

as the set of all words w ∈ Σ∗ of length less than or equal
to n, i.e., Σn = {w ∈ Σ∗ | |w| ≤ n}.
Definition 5. (Selection). We define (n, ny, nu)-selection
as a pair (α, β) such that

1. α ⊆ Σn × {1, 2, · · · , ny} and β ⊆ Σ × Σn ×
{1, 2, · · · , nu}

2. card(α) = card(β) = n, where card denotes
cardinality of the set.

We will fix the following ordering of α and β.

α = {(ui, ki)}ni=1, β = {(σj , vj , lj)}nj=1, (15)

ui ∈ Σn, ki ∈ {1, 2, · · · , ny}, σj ∈ Σ, vj ∈ Σn, lj ∈
{1, 2, · · · , nu}
Example 1. Consider n=2, number of outputs and inputs
ny = nu == 2, and scheduling signal dimension nµ =
2, we have, Σn = {ε, 1, 2, 11, 12, 21, 22}. Then, one of
the n-selection pair (α, β) can be chosen as, for e.g.,
α = {(u1, k1) , (u2, k2)} = {(ε, 1) , (11, 2)} and β =
{(σ1, v1, l1) , (σ2, v2, l2)} = {(1, 21, 1) , (2, 22, 2)}.

Let M : Σ∗ → Rny×nu be a map, values of which represent
potential sub-Markov parameters (14) of an LPV-SSA. Let
us now define the Hankel matrix HMα,β ∈ Rn×n as follows:

i, j = 1, . . . , n, the (i, j)-th element of HMα,β is of the form[
HMα,β

]
i,j

=[M(σjvjui)]ki,lj , (16)

[M(σjvjui)]ki,lj denotes the entry of M(σjvjui) on the

ki-th row and lj-th column, and (ui, ki) ∈ α, (σj , vj , lj) ∈ β
are as in the ordering of (15).

In addition, we define the σ-shifted Hankel-matrix
HMσ,α,β ∈ Rn×n as follows: its i, j-th entry is given by[

HMσ,α,β
]
i,j

= [M(σjvjσui)]ki,lj . (17)

Moreover, let us define Hankel matricesHMα,σ ∈ Rn×nu and

HMβ ∈ Rny×n as follows[
HMα,σ

]
i,j

= [M(σui)]ki,j , j = 1, . . . , nu (18)[
HMβ

]
i,j

= [M(σjvj)]i,lj , i = 1, . . . , ny (19)

Consider the model matrix computations summarized in
Algorithm 1, using Hankel matrices and selections.

Algorithm 1 Deterministic realization: Matrix
computations using Hankel matrices and n-selection

Input: (n, ny, nu)-selection (α, β); Hankel matrix HMα,β
(16); shifted Hankel-matrix HMσ,α,β (17); Hankel matrices

HMα,σ and HMβ defined in (18)-(19) respectively, and M(ε).

1. Compute the matrices

Âσ = (HMα,β)−1HMσ,α,β ,
B̂σ = (HMα,β)−1HMα,σ, Ĉ = HMβ

2. Compute D̂ = M(ε).

Output: Matrices ({Âσ, B̂σ}σ∈Σ, Ĉ, D̂)

Lemma 3. (Adapted from (Cox et al., 2018)). Let the
(n, ny, nu)-selection (α, β) be such that rank(HMα,β) = n,
and assume that there exists a deterministic LPV-SSA
representation S∗ of dimension n such that M = MS∗ .

Then the tuple Ŝ = ({Âσ, B̂σ}σ∈Σ, Ĉ, D̂), returned
by Algorithm 1, when applied to the matrices HMα,β ,

HMσ,α,β , HMα,σ, HMβ ((16)-(19)) and M(ε), is a minimal
dimensional deterministic LPV-SSA representation such
that MŜ = M , i.e. M(σw) = ĈÂwB̂σ for all w ∈ Σ∗.

5.2 Correlation analysis: finding an LPV-SSA
representation of yd

In this section, we describe an adaptation of the correlation
analysis (CRA) method (Cox et al., 2015, 2018) for finding
a stationary LPV-SSA representation of yd with noise
process u.
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Let us define the map Ψu,y : Σ∗ → Rny×nu as follows

Ψu,y(w) =


1
√
pw
E[y(t)(zuw(t))T ]Λ−1

u ∀w ∈ Σ+

E[y(t)uT (t)]Λ−1
u w = ε

(20)

where we recall from Assumption 2, Λu=var(u).

It turns out that if y has a stationary LPV-SSA
representation with input u, then Ψu,y is the sub-Markov
function of a deterministic LPV-SSA representation.

Lemma 4. Assume that ({Aσ, Bσ}, C,D,x,u) is a
stationary LPV-SSA representation (without inputs,
Definition 2) of yd. Then Ψu,y in (20) equals the
sub-Markov function MS (14) of the deterministic
LPV-SSA representation S = ({Aσ, Bσ}σ∈Σ, C,D).

Conversely, if Ŝ = ({Âσ, B̂σ}σ∈Σ, Ĉ, D̂) is a deterministic
LPV-SSA representation such that its sub-Markov
function MŜ equals Ψu,y and it is minimal dimensional
among such deterministic LPV-SSA representations,
then ({Âσ, B̂σ}, Ĉ, D̂,x,u) is a stationary LPV-SSA
representation (without inputs) of yd.

The proof of Lemma 4 is presented in Mejari and Petreczky
(2019b).

Hence, we can adapt the basis reduced Ho-Kalman
realization algorithm as described in Algorithm 2. It is

Algorithm 2 Realization of yd: Computing an LPV-SSA
representation of yd using covariances and n-selection.

Input: (n, ny, nu)-selection (α, β) of the form (15);
Ψu,y(σjvjui)ki,lj , Ψu,y(σui)ki,l, Ψu,y(σjvj)r,j , i, j =
1, . . . , nx, l = 1, . . . , nu, r = 1, . . . , ny, Ψu,y(ε).

1. Construct the matrices HΨu,y

α,β , HΨu,y

σ,α,β , HΨu,y
α,σ and

HΨu,y

β , by replacing M with Ψu,y in (16)–(19).

2. Apply Algorithm 1 to HΨu,y

α,β , HΨu,y

σ,α,β , HΨu,y
α,σ , HΨu,y

β ,

M(ε) = Ψu,y(ε). Denote by ({Âσ, B̂σ}σ∈Σ, Ĉ, D̂) the
matrices returned by Algorithm 1.

Output: Matrices ({Âσ, B̂σ}σ∈Σ, Ĉ, D̂)

clear from Lemma 4 and Lemma 3 that Algorithm 2 is
correct.

5.3 Covariance realization algorithm

In this section, we adapt the realization algorithm from
Mejari and Petreczky (2019a) to estimate the stochastic
part (7) of a LPV-SSA representation.

Define the covariance sequence Ψys : Σ∗ → Rny×ny , where
Ψys(ε) = Iny , and for all w ∈ Σ+,

Ψys(w) = E[ys(t)(zy
s

w (t))T ] (21)

If ys has a stationary LPV-SSA representation, then
Ψys is a sub-Markov function of a suitable deterministic
LPV-SSA representation, Petreczky and Vidal (2018);
Mejari and Petreczky (2019a). Conversely, from a
deterministic LPV-SSA representation, sub-Markov
function of which equals Ψys a stationary LPV-SSA
representation can be computed.

Lemma 5. If S = ({Âσ, Ĝσ}σ∈Σ, Ĉ, Iny ) is a minimal
dimensional deterministic LPV-SSA representation such

that MS = Ψys , then ({Âsσ, K̂σ}σ∈Σ, Ĉ, Iny , x̂, e
s) is

a stationary LPV-SSA representation of ys in forward
innovation form, where Âsσ = 1√

pσ
Âσ, Ĉs = Ĉσ,

K̂σ = limi→∞ K̂i
σ, and {K̂i

σ}σ∈Σ,i∈N satisfies the following
recursion

P̂ i+1
σ =

∑
σ1∈Σ

pσ

(
Âsσ1

P̂ iσ1
(Âsσ1

)T + K̂σ1
Q̂iσ1

K̂T
σ1

)
Q̂iσ = pσE[zy

s

σ (t)(zy
s

σ (t))T ]− ĈsP̂ iσ(Ĉs)T

K̂i
σ =

(
Ĝσ
√
pσ − ÂsσP̂ iσ(Ĉs)T

)(
Q̂iσ

)−1

(22)

with P̂ 0
σ = 0. Moreover, E[es(t)(es(t))Tµ2

σ(t)] = Q̂σ =

limi→∞ Q̂iσ, E[x̂(t)x̂T (t)µ2
σ] = P̂σ = limi→∞ P̂ iσ for all

σ ∈ Σ.

The proof of Lemma 5 can be found in Petreczky and
Vidal (2018); Mejari and Petreczky (2019a). From Lemma
5, it follows that we can use the basis reduced Kalman-Ho
realization algorithm Algorithm 2, as described in
Algorithm 3, in order to compute LPV-SSA representation
of ys .

Algorithm 3 Realization of ys: Computing an LPV-SSA
representation of ys using covariances and n-selection.

Input: (n, ny, ny)-selection
(
ᾱ, β̄

)
of the form of the form

(15); Ψys(σjvjui)ki,lj ; Ψys(σui)ki,l; Ψys(σjvj)r,j , i, j =

1, . . . , n; l, r = 1, . . . , ny, {E[zy
s

σ (t)(zy
s

σ (t))T ]}σ∈Σ; number
of maximal iterations I > 0.

1. Construct the matrices HΨys

ᾱ,β̄
, HΨys

σ,ᾱ,β̄
, HΨys

ᾱ,σ , HΨys

β̄
by

replacing M with Ψys in (16)–(19).

2. Apply Algorithm 1 to HΨys

ᾱ,β̄
, HΨys

σ,ᾱ,β̄
, HΨys

ᾱ,σ , HΨys

β̄
,

M(ε) = Iny . Denote by ({Âσ, Ĝσ}σ∈Σ, Ĉ, Iny ) the
matrices returned by Algorithm 1.

3. Define Âsσ = 1√
pσ
Âσ, σ ∈ Σ, Ĉs = Ĉ.

4. Compute {K̂i
σ, Q̂

i
σ, P̂

i
σ}Ii=1 using the recursion (22).

Output: Matrices ({Âsσ, Ĝσ, K̂Iσ , Q̂Iσ , P̂ Iσ }σ∈Σ, Ĉ
s)

It is clear from Lemma 5 and Lemma 3 that Algorithm 3
is correct.

6. IDENTIFICATION ALGORITHM

In this section, we formulate an identification algorithm
based on stochastic realization Algorithms 2–3 and
selections, for N -length observation sequence of outputs,
inputs and scheduling signals, as detailed in Algorithm 4.
Intuitively, the main idea behind Algorithm 4 is to
estimate the covariances Ψu,y, Ψys and E[zyσ(t)(zyσ(t))T ]
from the observed data and then apply Algorithms 2–3
to the thus estimated covariances. More specifically, the
following assumptions are made:

Assumption 3. (1) The nx-selection pair (α, β) and
(
ᾱ, β̄

)
are such that rank HΨu,y

α,β = nx, rank HΨys

ᾱ,β̄
= nx, where

nx is the state-space dimension of a minimal LPV-SSA
realization of y.

(2) The process (y,u, {µw}w∈Σ+) is ergodic and there
exist sample paths y : Z → Rny , u : Z → Rnu and
µ : Z → Rnµ of the processes y, u and µ respectively
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such that {y(t), u(t), {µσ(t)}σ∈Σ}Nt=1 is observed and the
following holds: for all w ∈ Σ∗, σ ∈ Σ,

ΨN
u,y(w) =

1
√
pw

 1

N

N∑
t=|w|

y(t)(zuw(t))T

Λ−1
u , w ∈ Σ∗

Λy,N
σw =

1

N

N∑
t=|w|

y(t)(zyσw(t))T , Ty,N
σ,σ =

1

N

N∑
t=1

zyσ(t)(zyσ(t))T

Then for all w ∈ Σ∗, σ ∈ Σ,

Ψu,y(w) = lim
N→∞

ΨN
u,y(w), E[zyσ(t)(zyσ(t))T ] = lim

N→∞
Ty,N
σ,σ

E[y(t)(zyσw(t))T ] = lim
N→∞

Λy,N
σw ,

where, for all w = σ1σ2 · · ·σr ∈ Σ+, r > 0, we have,

µw(t) = µσ1
(t− k + 1)µσ2

(t− k + 2) · · ·µσr (t)

zuw(t) = u(t− |w|)µw(t− 1)
1
√
pw
, zuε (t) = u(t)

zyw(t) = y(t− |w|)µw(t− 1)
1
√
pw

Lemma 6. (Consistency). With the Assumption 3 the
result of Algorithm 4 satisfies the following:

K̃σ = lim
I→∞

lim
N→∞

K̃N,I
σ , Ãσ = lim

N→∞
ÃNσ ,

B̃σ = lim
N→∞

B̃Nσ , C̃ = lim
N→∞

C̃N , D̃ = lim
N→∞

D̃N

and ({Ãσ, B̃σ, K̃σ, }
nµ
σ=1, C̃, D̃, x̂, e

s) is a stationary
LPV-SSA representation of (y,u,µ), and

E[es(t)(es(t))Tµ2
σ(t)] = limI→∞ limN→∞ Q̃N,Iσ , σ ∈ Σ.

The proof of Lemma 6 is presented in Mejari and Petreczky
(2019b).

Remark 1. (Alternative way of computing ΨN
ys). An

alternative way of estimating the covariances Ψys

and E[zy
s

σ (t)(zy
s

σ (t))T ]}σ∈Σ is to use the matrices

S = ({Ãdσ, B̃dσ}σ∈Σ, C̃
d, D̃d) to approximate the sample

paths yd, ys of yd and ys by ŷd(t) = D̃du(t) +∑
v∈Σ∗,σ∈Σ,|v|<t−1 C̃

dÃdvB̃
d
σz
u
σv(t), and ŷs(t) = y(t)− ŷd(t)

and define

ΨN
ys(w) =

1

N

N∑
t=|w|

ŷs(t)zŷ
s

w (t), w ∈ Σ+

TNσ,σ =
1

N

N∑
t=|w|

zŷ
s

σ (t)(zŷ
s

σ (t))T , σ ∈ Σ

(25)

where zŷ
s

v (t) = ŷs(t− |v|)µv(t− 1) 1√
pv

for all v ∈ Σ+. We

can then view ΨN
ys(w) as an approximation of Ψys(w), and

TNσ,σ is an approximation of E[zy
s

σ (t)(zy
s

σ (t))T ]}σ∈Σ. We
could modify Algorithm 4 by replacing (23) with (25). We
conjecture that Lemma 6 will remain true for the modified
algorithm.

7. NUMERICAL EXAMPLE

In this section, we present a numerical example to test
the effectiveness of our algorithm. All computations are
carried out on an i5 1.8-GHz Intel core processor with 8
GB of RAM running MATLAB R2018a.

Algorithm 4 Identification of stochastic LPV-SSA from
observed data.

Input: Observations sequence {y(t), u(t), {µσ(t)}σ∈Σ}Nt=1,
and nx-selection (α, β) and

(
ᾱ, β̄

)
; {pσ}σ∈Σ, Λu, maximum

number of iterations I > 0.

1. Compute empirical covariances ΨN
u,y(w), for every

w ∈ Σ+, such that w = ivu or w = ivσu or w = iv or
w = σu for some words v, u ∈ Σ∗, σ ∈ Σ, (u, k) ∈ α,
(i, v, l) ∈ β for some k = 1, . . . , ny, l = 1, . . . , nu,
∀w ∈ Σ+.

2. Run Algorithm 2 with empirical covariances
ΨN

u,y(w), instead of the covariances Ψu,y.
Denote the result returned by Algorithm 2 by
S = ({Ãdσ, B̃dσ}σ∈Σ, C̃

d, D̃d).
3. Compute approximate covariances:

ΨN
ys(σw) = Λy,N

σw − ΛS (σw)

ΛS (σw) =
1
√
pσw

C̃dÃdw(ÃdσP̃σ(C̃d)T + B̃dσΛu)

TNσ,σ = Ty,N
σ,σ − Tσ,σ,S

Tσ,σ,S =
1

pσ
(C̃dP̃σ(C̃d)T + Λu)

(23)

for all σ ∈ Σ and for every w ∈ Σ+, such that w = ivu
or w = iv or w = iu or w = ivσu for some words
v, u ∈ Σ∗, i, σ ∈ Σ, (u, k) ∈ ᾱ, (v, l) ∈ β̄ for some

k, l = 1, . . . , ny, for all w ∈ Σ+. Here, P̃σ is the unique
solution to the following Sylvester equation

P̃σ=pσ
∑
σ1∈Σ

(
Ãdσ1

P̃σ1
(Ãdσ1

)T + B̃dσ1
Λu(B̃dσ1

)T
)
. (24)

4. Run Algorithm 3, with the empirical covariances
ΨN

ys instead of Ψys , and {TNσ,σ}σ∈Σ instead of

{E[zy
s

σ (t)(zy
s

σ (t))]T }σ∈Σ. Denote the result returned

by Algorithm 3 by ({Ãsσ, K̃I,sσ , Q̃Iσ , P̃
I
σ }σ∈Σ, C̃

s).
5. The estimated model matrices of LPV-SSA (1) are

given by ÃNσ = diag(Ãdσ, Ã
s
σ), B̃Nσ =

[
(B̃dσ)T 0T

]T
,

K̃N,I
σ =

[
0T (K̃I,sσ )T

]T
, ∀σ ∈ Σ, C̃N =

[
C̃d C̃s

]
,

D̃N = D̃d, Q̃N,Iσ = Q̃Iσ .

Output: Estimates {ÃNσ , B̃Nσ , K̃N,I
σ , Q̃N,Iσ }σ∈Σ, C̃

N , D̃N

The quality of the match between estimated and
true outputs is quantified on a noise-free validation
data of length Nval via Best Fit Rate (BFR) and
Variance Accounted For (VAF) criterion defined for
each output channel yi, i = 1, . . . , ny, as BFRyi =

max

{
1−

√∑Nval

t=1
(yi(t)−ŷi(t))2∑Nval

t=1
(yi(t)−ȳi)2

, 0

}
× 100%, VAFyi =

max
{

1− var(yi−ŷi)
var(yi)

, 0
}
× 100%, where ŷi denotes the

simulated one-step ahead model output and ȳi denotes the
sample mean of the output over the validation set.

The LPV-SSA representation in form (1) is used for data
generation with following matrices:

A1 =

[
0.4 0.4 0
0 0 0
0 0 0

]
, A2 =

[
0 0 0
0 0.4 0.4
0 0.4 0.4

]
,

B1 = [1 1 1]
T
, B2 = [1 0 1]

T
,
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Table 1. BFR and VAF on a noise-free
validation data Algorithm 4

BFR 93.56 %

VAF 99.58 %

Table 2. True vs estimated sub-Markov
parameters

Markov parameters True value Estimated value

CA1B1 0.80 0.7957
CA1B2 0.40 0.3914
CA2

1B1 0.32 0.3147
CA1A2B2 0.16 0.1549
CA3

1B1 0.12 0.1093

K1 = [−0.036 0 1]
T
,K2 = [0 0.015 1.17]

T
, C = [1 0 0] ,

which corresponds to state-dimension nx = 3, output
dimension ny=1, and scheduling signal dimension nµ=2
with Σ={1, 2}.
Training and noise free validation output sequences of
length N = 100000 and Nval = 100000, respectively, are
generated using a white-noise input process u with uniform
distribution U(−1.5, 1.5) and an independent scheduling
signal process µ = [µ1 µ2] such that µ1(t) = 1 and
µ2(t) is a white-noise process with uniform distribution
U(−1.5, 1.5). This corresponds to the parameter values
{pσ}σ∈{1,2} to be p1=E[µ2

1(t)]=1 and p2=E[µ2
2(t)]=0.75.

The standard deviation of the white Gaussian noise e
corrupting the training output is 1, i.e., e ∼ N (0, 1).
This corresponds to the Signal-to-Noise Ratio SNR =

10 log

∑N

t=1
(y(t)−e(t))2∑N

t=1
e2(t)

= 4.7 dB.

We run the version of Algorithm 4 explained in Remark 1,
with I = 50 iterations and with the following n-selection
pairs (α, β) and (ᾱ, β̄), with n = 3,

α = {(ε, 1), (1, 1), (21, 1)}, β = {(2, ε, 1), (1, 2, 1), (2, 21, 1)},
ᾱ = {(ε, 1), (1, 1), (21, 1)}, β̄ = {(1, ε, 1), (1, 2, 1), (1, 21, 1)},
which are used to choose corresponding entries of the
Hankel matrices. The mean time taken to run the
algorithm is 1.55 sec. The validation result using one-step
ahead predicted outputs ŷ are reported in Table 1, and
true vs estimated sub-Markov parameters are reported in
Table 2. The results show a good match between estimated
model output w.r.t. true system output.

8. CONCLUSION

In this paper, we formulated a realization algorithm and an
efficient identification algorithm for stochastic LPV-SSA
representations with inputs, by combining correlation
analysis method with a stochastic realization based
identification algorithm. The proposed algorithm provides
a computationally efficient alternative to the parametric
subspace approaches avoiding the curse of dimensionality.
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