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Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs

In this paper, we present a realization and an identification algorithm for stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The proposed realization algorithm combines the deterministic LPV input output to LPV state-space realization scheme based on correlation analysis with a stochastic covariance realization algorithm. Based on this realization algorithm, a computationally efficient and statistically consistent identification algorithm is proposed to estimate the LPV model matrices, which are computed from the empirical covariance matrices of outputs, inputs and scheduling signal observations. The effectiveness of the proposed algorithm is shown via a numerical case study. 71 pt 0.986 in 25 mm 43 pt 0.597 in 15.2 mm 43 pt 0.597 in 15.2 mm 71 pt 0.986 in 25 mm 71 pt 0.986 in 25 mm 43 pt 0.597 in 15.2 mm 43 pt 0.597 in 15.2 mm 71 pt 0.986 in 25 mm

INTRODUCTION

Identification of Linear Parameter-Varying (LPV) models has gained significant attention over the past few years, owing to their ability to describe the behavior of many time-varying and non-linear systems. Many approaches have been proposed for the identification of LPV models, in input-output [START_REF] Bamieh | Identification of linear parameter-varying models[END_REF][START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF][START_REF] Mejari | A bias-correction method for closed-loop identification of Linear Parameter-Varying systems[END_REF][START_REF] Piga | LPV system identification under noise corrupted scheduling and output signal observations[END_REF] as well as State-Space (SS) representations [START_REF] Felici | Subspace identification of MIMO LPV systems using a periodic scheduling sequence[END_REF][START_REF] Tanelli | Identification of LPV state space models for autonomic web service systems[END_REF][START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF][START_REF] Verdult | Kernel methods for subspace identification of multivariable LPV and bilinear systems[END_REF]. The reader is referred to [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF] for a detailed summary of the available LPV identification approaches.

Controller design approaches often require the LPV models to be in SS representation with an affine dependency on the scheduling variable. To this end, realization theory of LPV models plays a key role in understanding the conditions under which the observed behavior of a system can be realized by a state-space affine representation. It also allows to formulate identification algorithms for estimating state-space representation from a finite set of observations. The realization theory for deterministic Linear Parameter-Varying State-Space with Affine dependence (LPV-SSA) representation has been developed in [START_REF] Tóth | On the state-space realization of LPV input-output models: Practical approaches[END_REF]; [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]. The results of [START_REF] Tóth | On the state-space realization of LPV input-output models: Practical approaches[END_REF]; [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] were used to derive LPV-SS identification algorithm in [START_REF] Cox | Estimation of LPV-SS models with static dependency using correlation analysis[END_REF][START_REF] Cox | Towards efficient maximum likelihood estimation of LPV-SS models[END_REF]. These methods are focused on deterministic realizations, which for certain control and filtering problems are too restrictive. In this paper, This work was partially funded by CPER Data project, co-financed by European Union with the financial support of European Regional Development Fund, French State and the French Region of Hauts-de-France, and by CNRS project PEPS blanc BayesRealForRNN.

we focus on formulating a realization algorithm and a related identification algorithm for stochastic LPV-SSA representations. The main idea is to decompose the stochastic LPV-SSA realization/identification problem into two independent problems: realization/identification of deterministic part which depends only on the input, and realization/identification of stochastic part. To this end, the proposed algorithm is based on the combination of correlation analysis [START_REF] Cox | Towards efficient maximum likelihood estimation of LPV-SS models[END_REF] for deterministic realization and stochastic covariance identification algorithm for stochastic LPV-SSA representations (Mejari and Petreczky, 2019a).

The algorithm presented in this paper extends the results of Mejari and Petreczky (2019a), to the case of stochastic LPV-SSA representations with exogenous inputs. The proposed approach differs significantly from the subspace based identification methods for stochastic LPV-SSA representations (van Wingerden and Verhaegen, 2009;[START_REF] Dos Santos | Identification of bilinear systems with white noise inputs: An iterative deterministic-stochastic subspace approach[END_REF][START_REF] Favoreel | Subspace identification of bilinear systems subject to white inputs[END_REF]. First, the cited papers do not deal with the realization problem. In particular, while the possibility of decomposing the output into a deterministic and purely stochastic components is sometimes claimed in the literature, the formal details of such a decomposition were never addressed. Second, in contrast to the literature mentioned above, the identification algorithm proposed in this paper is provenly consistent and it does not require local observability assumptions. The downside is that the proposed algorithm is provenly consistent only for a specific class of scheduling signals and stochastic LPV-SSA representations. Moreover, the proposed algorithm avoids the curse of dimensionality, but this comes at a price of either using some prior knowledge on the system to determine the correct selection of the rows and columns of a Hankel-matrix or using an exhaustive search to find such a selection.
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The paper is organized as follows. In Section 2, we present the problem formulation. Section 3 presents the formal definition and basic properties of the class of LPV state-space representations considered in this paper. In Section 4, we formalize the decomposition of outputs of such LPV state-space representations into stochastic and deterministic components. In Section 5, we present the realization algorithm for stochastic LPV state-space representations, and in Section 6 we present the related identification algorithm. Finally, in Section 7 we illustrate the results with a numerical example.

PROBLEM FORMULATION

Let y, u, µ be stochastic processes taking values in R ny , R nu and R nµ , representing the output process, the input process, and the scheduling signal process respectively. We define a discrete-time Linear Parameter-Varying State-Space Affine (LPV-SSA) representation of the process (y, u, µ) as the discrete-time system of the form

x(t + 1) = nµ i=1 (A i x(t) + B i u(t) + K i v(t))µ i (t), y(t) = Cx(t) + Du(t) + v(t),
(1) where,

A i ∈ R nx×nx , B i ∈ R nx×nu , K i ∈ R nx×ny , ∀i = 1, . . . , n µ , C ∈ R ny×nx and D ∈ R ny×nu are real constant matrices, and v is a white noise process, i.e., E[v(t)v T (s)] = 0, s = t and E[v(t)v T (t)µ i (t)] = Q i > 0, i = 1, . . . , n µ .
The realization and identification problems considered in this paper are as follows. Problem 1. (Realization problem). For process (y, u, µ), find matrices ({A i , B i , K i } nµ i=1 , C, D) and processes x, v such that (1) is a representation of (y, u, µ). Problem 2. (Identification problem). Assume that y : Z → R ny is a sample path of the output process y, u : Z → R nu is a sample path of the input process u and µ : Z → R nµ is a sample path of the scheduling process µ, corresponding to the same random event ω ∈ Ω. Given a dataset {y(t), u(t), µ(t)} N t=1 consisting of N samples of the output, input and scheduling process, compute from this dataset the estimates

{{ ÂN i , BN i , KN i , QN i } nµ i=1 , ĈN , DN }, such that as N → ∞, the estimated matrices {{ ÂN i , BN i , KN i , QN i } nµ i=1 , ĈN , DN } converge to matrices {{A i , B i , K i , Q i } nµ i=1 , C, D} such that the LPV-SSA (1) with Q i = E[v(t)v (t)µ 2 i (t)], i = 1, . . . , n µ
, is a representation of (y, u, µ).

PROPERTIES OF LPV-SSA REPRESENTATION

In order to make Problems 1-2 well-posed, we have to impose additional constraints on the class of processes (y, u, µ) and on the class of LPV-SSA representations. To this end, we need the following notation and terminology. Notation 1. (Σ). Let Σ = {1, . . . , n µ }.

A non empty word over Σ is a finite sequence of letters, i.e.,

w = σ 1 σ 2 • • • σ k , where 0 < k ∈ Z, σ 1 , σ 2 , . . . , σ k ∈ Σ.
The set of all nonempty words is denoted by Σ + . We denote an empty word by . Let Σ * = ∪ Σ + . The concatenation of two nonempty words

v = a 1 a 2 • • • a m and w = b 1 b 2 • • • b n is defined as vw = a 1 • • • a m b 1 • • • b n for some m, n > 0. Note that if w = or v = , then v = v and w = w, moreover, = .
The length of the word w ∈ Σ * is denoted by |w|, and | | = 0. Assumption 1. (White noise scheduling). The scheduling process µ = [1, µ 2 , . . . , µ nµ ] T is zero-mean independent identically distributed (i.i.d.) such that, for all t ∈ Z, we have µ 1 (t) ≡ 1, and for each σ = 2, . . . , n µ , µ σ is a zero mean i.i.d. process.

We define scalars E[µ 2 σ (t)] = p σ , for all t ∈ Z. In particular, p 1 = 1. For every word w ∈ Σ + where w

= σ 1 σ 2 • • • σ k , k ≥ 1, σ 1 , . . . , σ k ∈ Σ,
we define the process µ w and the number p w as follows

µ w (t) = µ σ1 (t -k + 1)µ σ2 (t -k + 2) • • • µ σ k (t), ∀t ∈ Z p w = p σ1 p σ2 • • • p σ k .
We set µ (t) = 1 and p = 1. For a process r ∈ R nu , for each w ∈ Σ + we define the process z r w as

z r w (t) = r(t -|w|)µ w (t -1) 1 √ p w , ∀t ∈ Z, (2) 
which is interpreted as the past of r w.r.t. {µ σ } σ∈Σ .

We remark that in this paper, the notion of Zero Mean Wide Sense Stationary w.r.t. Inputs (ZMWSSI) process and Square Integrable w.r.t. Input (SII) process, will be a central notion for the mathematical framework of stochastic LPV-SSA representations. We refer the reader to [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] for the detailed definition of ZMWSSI and SII processes.

All the process considered in this paper will be assumed to be ZMWSSI and SII process w.r. 

(t)(z r v (t)) T ] = 0, v = w, E[z r σw (t)(z r σw (t)) T ] = E[z r σ (t)(z r σ (t)) T ] > 0, for all w, v ∈ Σ + .
Using the concept of ZMWSSI process and white noise process w.r.t. µ, we can formulate the main assumption regarding the processes (y, u, µ). Assumption 2. Assume that µ satisfies Assumption 1, and y T u T T is a ZMWSSI and SII process w.r.t. µ, and u is a white noise process w.r.t. µ, and the covariance

E[z u σ (t)(z u σ (t)) T ] = E[u(t -1)(u(t -1)) T ] = Λ u > 0 does not depend on σ ∈ Σ.
Next, we recall from Mejari and Petreczky (2019a) the notion of a stationary stochastic LPV-SSA representation of a process r without inputs. Definition 2. A stationary LPV-SSA representation without inputs of a process r taking values in

R p , is a tuple ({ Ãσ , Kσ } nµ σ=1 , C, D, x, ṽ), where Ãσ ∈ R ñ×ñ , Kσ ∈ R ñ× m, C ∈ R p×ñ and v is a process taking values in R m such that such that 1. xT ṽT T is a ZMWSSI process, and E[x(t)(z ṽ w (t)
) T ] = 0 for all w ∈ Σ + . 2. ṽ is a white noise process w.r.t. µ.

The eigenvalues of the matrix

σ∈Σ p σ Ãσ ⊗ Ãσ are inside the open unit circle. 4. x(t+1) = nµ i=1 ( Ãi x(t)+ Ki ṽ(t))µ i (t), r(t) = C x(t)+ Dṽ(t).
We call x the state process and ṽ the noise process. In the terminology of [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF], a stationary LPV-SSA without inputs u, corresponds to a stationary generalized bilinear system w.r.t. the scheduling inputs {µ σ } σ∈Σ . If a process r has a stationary LPV-SSA representation without inputs, then r is a ZMWSSI process and x is uniquely determined by ṽ and the matrices ( C, D, { Ãσ , Kσ } σ∈Σ ). In order to define this notion more precisely, let us introduce the following notation. Notation 2. (Matrix Product). Consider a collection of square matrices

A σ ∈ R n×n , σ ∈ Σ. For any word w ∈ Σ + of the form w = σ 1 σ 2 • • • σ k , k > 0 and σ 1 , . . . , σ k ∈ Σ, we define A w =A σ k • • • A σ2 A σ1 . For an empty word , A = I n .
From [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF] it follows that

x(t) = σ∈Σ,w∈Σ * √ p σw Ãw Kσ z ṽ σw (t), (3) 
where the infinite sum on the right-hand side is absolutely convergent in the mean square sense.

Using the notion of a stationary LPV-SSA without inputs, we can define the class of LPV-SSA representation with inputs which will be considered in this paper.

Definition 3. (Stationary LPV-SSA). The LPV-SSA representation (1) is stationary with input u, if ({A σ , [K σ B σ ]} σ∈Σ , C, I ny D x, v T u T T )
is a stationary LPV-SSA representation of y without inputs as in Definition 2, and the orthogonality condition

E[v(t)u T (t)µ 2 σ (t)] = 0, ∀σ ∈ Σ holds.
From (3) it follows that for a stationary LPV-SSA representation with input u of the form (1),

x(t) = w∈Σ * ,σ∈Σ √ p σw A w (K σ z v σw (t) + B σ z u σw (t)) ,
where the infinite sums on the right hand side are absolutely convergent in the mean-square sense. That is, the matrices and the noise processes determine the state process of a stationary LPV-SSA (with or without inputs) uniquely.

DECOMPOSITION OF THE OUTPUT OF LPV-SSA REPRESENTATION

It turns out that the output process of stationary LPV-SSA representations admits a decomposition into deterministic and stochastic parts. The deterministic part depends only on the input process, while the stochastic part depends only on the noise process. This decomposition does not depend on the particular choice of LPV-SSA representation, but only on the output process at hand. Definition 4. (Deterministic and stochastic components).

Assume the processes (y, u, µ) satisfy Assumption 2. Define the deterministic component y d of y as follows

y d (t) = E l [y | {z u w (t)} w∈Σ + ∪ {u(t)}], (4 
) where E l [•] is the orthogonal projection as defined in [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]. Define the stochastic component of y as y s (t) = y(t) -y d (t).

(5)

From the definition it follows that y(t) = y d (t) + y s (t),

i.e., the process y(t) can be represented as the sum of its deterministic and stochastic components. In case when the process admits an LPV-SSA representation, the stochastic and deterministic components satisfy the following properties. Lemma 1. (Decomposition of y). Assume that there exists a stationary LPV-SSA representation of (y, u, µ) of the form (1) and that (y, u, µ) satisfy Assumption 2. It then follows that

x d (t + 1) = nµ i=1 (A i x d (t)+B i u(t))µ i (t), y d (t) = Cx d (t)+Du(t), (6) 
and ({A σ , B σ } σ∈Σ , C, D, x d , u) is a stationary LPV-SSA representation of y d without inputs and with noise process u, moreover,

x s (t + 1) = nµ i=1 (A i x s (t)+K i v(t))µ i (t),
y s (t) = Cx s (t)+v(t), ( 7) and ({A σ , K σ } σ∈Σ , C, I ny , x s , v) is a stationary LPV-SSA representation of y s without inputs, where

x d (t) = E l [x(t) | {z u w (t)} w∈Σ + ∪ {u(t)}] (8) x s (t) = x(t) -x d (t) (9) 
The proof of Lemma 1 is presented in [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF]. Thus, y s depends only on the noise v, and y d does not depend on the noise but it depends only on input u.

In fact, the converse of Lemma 1 also holds. ) is a stationary LPV-SSA representation of y s without inputs in forward innovation form, i.e., assume that the process e s is the so called innovation process of y s as defined in [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]:

e s (t) = y s (t) -E l [y s (t) | {z y s w (t)} w∈Σ + ] (10) 
Then, tuple ({ Âi , Ki , Bi } nµ i=1 , Ĉ, D, x, e s ) is a stationary LPV-SSA representation of y with input u, where

x(t) = (x d (t)) T (x s (t)) T T Âσ = diag( Âd σ , Âs σ ), Bσ = ( Bd σ ) T 0 T nx×nu T Kσ = 0 T nx×ny ( Ks σ ) T T , Ĉ = Ĉd Ĉs , D = Dd . (11) 
Moreover, the innovation process e s satisfies e s (t) = y(t)

-E l [y(t) | {z y w (t), z u w (t)} w∈Σ + ∪ {u(t)}] (12)
The proof of Lemma 2 is presented in [START_REF] Mejari | Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs[END_REF]. Thus, the problem of realization of y can be decomposed into two problems:

P1 finding a stationary LPV-SSA representation Σ d without inputs of y d , such that the noise process of Σ d is u, P2 finding a stationary LPV-SSA representation Σ s without inputs of y s = yy d , such that the noise Margin requirements for the other pages Paper size this page A4 process e s of Σ s is the innovation process of y s as defined in Mejari and Petreczky (2019a).

Moreover, the innovation process e s (t) is the error of projecting y(t) onto the linear space spanned by the products of the past values of y, u and the scheduling process µ, as defined in (12).

REALIZATION ALGORITHMS

In this section, we first recall the basis reduced Ho-Kalman realization algorithm for deterministic LPV state-space representations. In turn, this algorithm will be used for covariance realization algorithms for estimating LPV-SSA representations of y d , y s , presented in Section 5.2-5.3.

Basis reduced Ho-Kalman realization algorithm

Recall from [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]; [START_REF] Cox | Towards efficient maximum likelihood estimation of LPV-SS models[END_REF] that a deterministic LPV-SSA representation (with affine dependence) is a system of the form

x(t + 1) = nµ i=1 (A i x(t) + B i u(t))µ i (t), y(t) = Cx(t) + Du(t), (13) 
where A i , B i , C, D are matrices of suitable dimensions, x : Z → R nx is the state trajectory u : Z → R nu is the input trajectory y : Z → R ny is the output trajectory. In order to avoid technical problems, we assume that x, u, y all have finite support, i.e. there exist a t 0 ∈ Z, such that x(s) = 0, y(s) = 0, u(s) = 0 for all s < t 0 . We identify a deterministic LPV-SSA of the form ( 13 

. α ⊆ Σ n × {1, 2, • • • , n y } and β ⊆ Σ × Σ n × {1, 2, • • • , n u } 2. card(α) = card(β) = n,
where card denotes cardinality of the set.

We will fix the following ordering of α and β.

α = {(u i , k i )} n i=1 , β = {(σ j , v j , l j )} n j=1 , (15) 
u i ∈ Σ n , k i ∈ {1, 2, • • • , n y }, σ j ∈ Σ, v j ∈ Σ n , l j ∈ {1, 2, • • • , n u } Example 1.
Consider n = 2, number of outputs and inputs n y = n u = = 2, and scheduling signal dimension n µ = 2, we have, Σ n = { , 1, 2, 11, 12, 21, 22}. Then, one of the n-selection pair (α, β) can be chosen as, for e.g.,

α = {(u 1 , k 1 ) , (u 2 , k 2 )} = {( , 1) , (11, 2)} and β = {(σ 1 , v 1 , l 1 ) , (σ 2 , v 2 , l 2 )} = {(1, 21, 1) , (2, 22, 2)}.
Let M : Σ * → R ny×nu be a map, values of which represent potential sub-Markov parameters ( 14) of an LPV-SSA. Let us now define the Hankel matrix H M α,β ∈ R n×n as follows: i, j = 1, . . . , n, the (i, j)-th element of H M α,β is of the form

H M α,β i,j = [M (σ j v j u i )] ki,lj , (16) 
[M (σ j v j u i )] ki,lj denotes the entry of M (σ j v j u i ) on the k i -th row and l j -th column, and (u i , k i ) ∈ α, (σ j , v j , l j ) ∈ β are as in the ordering of ( 15).

In addition, we define the σ-shifted Hankel-matrix H M σ,α,β ∈ R n×n as follows: its i, j-th entry is given by

H M σ,α,β i,j = [M (σ j v j σu i )] ki,lj . (17) 
Moreover, let us define Hankel matrices

H M α,σ ∈ R n×nu and H M β ∈ R ny×n as follows H M α,σ i,j = [M (σu i )] ki,j , j = 1, . . . , n u (18) 
H M β i,j = [M (σ j v j )] i,lj , i = 1, . . . , n y (19) 
Consider the model matrix computations summarized in Algorithm 1, using Hankel matrices and selections. 

= (H M α,β ) -1 H M σ,α,β , Bσ = (H M α,β ) -1 H M α,σ , Ĉ = H M β 2. Compute D = M ( ).
Output: Matrices ({ Âσ , Bσ } σ∈Σ , Ĉ, D)

Lemma 3. (Adapted from [START_REF] Cox | Towards efficient maximum likelihood estimation of LPV-SS models[END_REF]). Let the (n, n y , n u )-selection (α, β) be such that rank(H M α,β ) = n, and assume that there exists a deterministic LPV-SSA representation S * of dimension n such that M = M S * . Then the tuple Ŝ = ({ Âσ , Bσ } σ∈Σ , Ĉ, D), returned by Algorithm 1, when applied to the matrices 16)-( 19)) and M ( ), is a minimal dimensional deterministic LPV-SSA representation such that M Ŝ = M , i.e. M (σw) = Ĉ Âw Bσ for all w ∈ Σ * .

H M α,β , H M σ,α,β , H M α,σ , H M β ((

Correlation

analysis: finding an LPV-SSA representation of y d

In this section, we describe an adaptation of the correlation analysis (CRA) method [START_REF] Cox | Estimation of LPV-SS models with static dependency using correlation analysis[END_REF][START_REF] Cox | Towards efficient maximum likelihood estimation of LPV-SS models[END_REF] 

(w) =    1 √ p w E[y(t)(z u w (t)) T ]Λ -1 u ∀w ∈ Σ + E[y(t)u T (t)]Λ -1 u w = (20)
where we recall from Assumption 2, Λ u = var(u).

It 

(σ j v j u i ) ki,lj , Ψ u,y (σu i ) ki,l , Ψ u,y (σ j v j ) r,j , i, j = 1, . . . , n x , l = 1, . . . , n u , r = 1, . . . , n y , Ψ u,y ( ).

Covariance realization algorithm

In this section, we adapt the realization algorithm from Mejari and Petreczky (2019a) 

P i σ1 ( Âs σ1 ) T + Kσ1 Qi σ1 KT σ1 Qi σ = p σ E[z y s σ (t)(z y s σ (t)) T ] -Ĉs P i σ ( Ĉs ) T Ki σ = Ĝσ √ p σ -Âs σ P i σ ( Ĉs ) T Qi σ -1 (22) with P 0 σ = 0. Moreover, E[e s (t)(e s (t)) T µ 2 σ (t)] = Qσ = lim i→∞ Qi σ , E[x(t)x T (t)µ 2 σ ] = Pσ = lim i→∞ P i σ for all σ ∈ Σ.
The proof of Lemma 5 can be found in [START_REF] Petreczky | Realization theory for a class of stochastic bilinear systems[END_REF]; Mejari and Petreczky (2019a). From Lemma 5, it follows that we can use the basis reduced Kalman-Ho realization algorithm Algorithm 2, as described in Algorithm 3, in order to compute LPV-SSA representation of y s .

Algorithm 3 Realization of y s : Computing an LPV-SSA representation of y s using covariances and n-selection. Input: (n, n y , n y )-selection ᾱ, β of the form of the form (15); Ψ y s (σ j v j u i ) ki,lj ; Ψ y s (σu i ) ki,l ; Ψ y s (σ j v j ) r,j , i, j = 1, . . . , n; l, r = 1, . . . , n y , {E[z y s σ (t)(z y s σ (t)) T ]} σ∈Σ ; number of maximal iterations I > 0. (2) The process (y, u, {µ w } w∈Σ + ) is ergodic and there exist sample paths y : Z → R ny , u : Z → R nu and µ : Z → R nµ of the processes y, u and µ respectively

Construct the matrices H
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  ) with the tuple S = ({A σ , B σ } σ∈Σ , C, D). The number n x is called the dimension of S . The sub-Markov parameters of S = ({A σ , B σ } σ∈Σ , C, D) are the values of the map M S : Σ * → R ny×nu , such that for all w ∈ Σ * , M S (w) = CA s B σ , w = σs, σ ∈ Σ, s ∈ Σ * to M S as the sub-Markov function of the deterministic LPV-SSA representation of S . From Petreczky et al. (2017) it then follows that two deterministic LPV-SSA representations S 1 , S 2 have the same input-output behavior, if and only if their sub-Markov parameters are equal, i.e., M S1 = M S2 . Moreover, the sub-Markov parameters can be determined from the input-output behavior. Below we recall from Cox et al. (2018) an adaptation of this Ho-Kalman-like algorithm, which uses sub-Markov parameters to compute a deterministic LPV-SSA representation. In order to present the algorithm, we present the notion of n-selection. Let us define the set Σ n as the set of all words w ∈ Σ * of length less than or equal to n, i.e., Σ n = {w ∈ Σ * | |w| ≤ n}. Definition 5. (Selection). We define (n, n y , n u )-selection as a pair (α, β) such that 1

Algorithm 1

 1 Deterministic realization: Matrix computations using Hankel matrices and n-selection Input: (n, n y , n u )-selection (α, β); Hankel matrix H M α,β (16); shifted Hankel-matrix H M σ,α,β (17); Hankel matrices H M α,σ and H M β defined in (18)-(19) respectively, and M ( ). 1. Compute the matrices Âσ

  M with Ψ u,y in (16)-(19).

  = Ψ u,y ( ). Denote by ({ Âσ , Bσ } σ∈Σ , Ĉ, D) the matrices returned by Algorithm 1. Output: Matrices ({ Âσ , Bσ } σ∈Σ , Ĉ, D) clear from Lemma 4 and Lemma 3 that Algorithm 2 is correct.

  = I ny . Denote by ({ Âσ , Ĝσ } σ∈Σ , Ĉ, I ny ) the matrices returned by Algorithm 1.3. Define Âsσ = 1 √ pσ Âσ , σ ∈ Σ, Ĉs = Ĉ. 4. Compute { Ki σ , Qi σ , P i σ } I i=1 using the recursion (22). Output: Matrices ({ Âs σ , Ĝσ , KI σ , QI σ , P I σ } σ∈Σ , Ĉs )It is clear from Lemma 5 and Lemma 3 that Algorithm 3 is correct.6. IDENTIFICATION ALGORITHMIn this section, we formulate an identification algorithm based on stochastic realization Algorithms 2-3 and selections, for N -length observation sequence of outputs, inputs and scheduling signals, as detailed in Algorithm 4. Intuitively, the main idea behind Algorithm 4 is to estimate the covariances Ψ u,y , Ψ y s and E[z y σ (t)(z y σ (t)) T ] from the observed data and then apply Algorithms 2-3 to the thus estimated covariances. More specifically, the following assumptions are made: Assumption 3. (1) The n x -selection pair (α, β) and ᾱ, β are such that rank H Ψu,y α,β = n x , rank H Ψ y s ᾱ, β = n x , where n x is the state-space dimension of a minimal LPV-SSA realization of y.

  Let us define the map Ψ u,y : Σ * → R ny×nu as follows Ψ u,y
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  turns out that if y has a stationary LPV-SSA representation with input u, then Ψ u,y is the sub-Markov function of a deterministic LPV-SSA representation. Lemma 4. Assume that ({A σ , B σ }, C, D, x, u) is a stationary LPV-SSA representation (without inputs, Definition 2) of y d . Then Ψ u,y in (20) equals the sub-Markov function M S (14) of the deterministic LPV-SSA representation S = ({A σ , B σ } σ∈Σ , C, D). Conversely, if Ŝ = ({ Âσ , Bσ } σ∈Σ , Ĉ, D) is a deterministic LPV-SSA representation such that its sub-Markov function M Ŝ equals Ψ u,y and it is minimal dimensional among such deterministic LPV-SSA representations, then ({ Âσ , Bσ }, Ĉ, D, x, u) is a stationary LPV-SSA representation (without inputs) of y d .

	The proof of Lemma 4 is presented in Mejari and Petreczky
	(2019b).
	Hence, we can adapt the basis reduced Ho-Kalman
	realization algorithm as described in Algorithm 2. It is
	Algorithm 2 Realization of y

d : Computing an LPV-SSA representation of y d using covariances and n-selection. Input: (n, n y , n u )-selection (α, β) of the form (15); Ψ u,y

  to estimate the stochastic part (7) of a LPV-SSA representation. Define the covariance sequence Ψ y s : Σ * → R ny×ny , where Ψ y s ( ) = I ny , and for all w ∈ Σ + , Lemma 5. If S = ({ Âσ , Ĝσ } σ∈Σ , Ĉ, I ny ) is a minimal dimensional deterministic LPV-SSA representation such that M S = Ψ y s , then ({ Âs σ , Kσ } σ∈Σ , Ĉ, I ny , x, e s ) is a stationary LPV-SSA representation of y s in forward innovation form, where Âs σ =

					1 √ pσ Âσ , Ĉs = Ĉσ ,
		Kσ = lim i→∞	Ki σ , and { Ki σ } σ∈Σ,i∈N satisfies the following
		recursion	
		P i+1 σ	=	p σ	Âs σ1
			σ1∈Σ
	Ψ y s (w) = E[y s (t)(z y s w (t)) T ]	(21)		
	If y s has a stationary LPV-SSA representation, then		
	Ψ y s is a sub-Markov function of a suitable deterministic		
	LPV-SSA representation, Petreczky and Vidal (2018);		
	Mejari and Petreczky (2019a). Conversely, from a		
	deterministic LPV-SSA representation, sub-Markov		
	function of which equals Ψ y s a stationary LPV-SSA		
	representation can be computed.			
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Then for all w ∈ Σ * , σ ∈ Σ, Ψ u,y (w) = lim

where, for all

Lemma 6. (Consistency). With the Assumption 3 the result of Algorithm 4 satisfies the following: 

where

We can then view Ψ N y s (w) as an approximation of Ψ y s (w), and

We could modify Algorithm 4 by replacing ( 23) with (25). We conjecture that Lemma 6 will remain true for the modified algorithm.

NUMERICAL EXAMPLE

In this section, we present a numerical example to test the effectiveness of our algorithm. All computations are carried out on an i5 1.8-GHz Intel core processor with 8 GB of RAM running MATLAB R2018a.

Algorithm 4 Identification of stochastic LPV-SSA from observed data. Input: Observations sequence {y(t), u(t), {µ σ (t)} σ∈Σ } N t=1 , and n x -selection (α, β) and ᾱ, β ; {p σ } σ∈Σ , Λ u , maximum number of iterations I > 0.

1. Compute empirical covariances Ψ N u,y (w), for every w ∈ Σ + , such that w = ivu or w = ivσu or w = iv or w = σu for some words v, u ∈ Σ * , σ ∈ Σ, (u, k) ∈ α, (i, v, l) ∈ β for some k = 1, . . . , n y , l = 1, . . . , n u , ∀w ∈ Σ + . 2. Run Algorithm 2 with empirical covariances Ψ N u,y (w), instead of the covariances Ψ u,y . Denote the result returned by Algorithm 2 by S = ({ Ãd σ , Bd σ } σ∈Σ , Cd , Dd ). 3. Compute approximate covariances:

for all σ ∈ Σ and for every w ∈ Σ + , such that w = ivu or w = iv or w = iu or w = ivσu for some words var(yi-ŷi) var(yi) , 0 × 100%, where ŷi denotes the simulated one-step ahead model output and ȳi denotes the sample mean of the output over the validation set.

The LPV-SSA representation in form ( 1) is used for data generation with following matrices: 

which corresponds to state-dimension n x = 3, output dimension n y =1, and scheduling signal dimension n µ =2 with Σ = {1, 2}.

Training and noise free validation output sequences of length N = 100000 and N val = 100000, respectively, are generated using a white-noise input process u with uniform distribution U(-1.5, 1.5) and an independent scheduling signal process µ = [µ 1 µ 2 ] such that µ 1 (t) = 1 and µ 2 (t) is a white-noise process with uniform distribution U(-1.5, 1.5). This corresponds to the parameter values {p σ } σ∈{1,2} to be p 1 =E[µ 2 1 (t)]=1 and p 2 =E[µ 2 2 (t)]=0.75. The standard deviation of the white Gaussian noise e corrupting the training output is 1, i.e., e ∼ N (0, 1). This corresponds to the Signal-to-Noise Ratio SNR = 10 log We run the version of Algorithm 4 explained in Remark 1, with I = 50 iterations and with the following n-selection pairs (α, β) and (ᾱ, β), with n = 3, α = {( , 1), (1, 1), (21, 1)}, β = {(2, , 1), (1, 2, 1), (2, 21, 1)}, ᾱ = {( , 1), (1, 1), (21, 1)}, β = {(1, , 1), (1, 2, 1), (1, 21, 1)}, which are used to choose corresponding entries of the Hankel matrices. The mean time taken to run the algorithm is 1.55 sec. The validation result using one-step ahead predicted outputs ŷ are reported in Table 1, and true vs estimated sub-Markov parameters are reported in Table 2. The results show a good match between estimated model output w.r.t. true system output.

CONCLUSION

In this paper, we formulated a realization algorithm and an efficient identification algorithm for stochastic LPV-SSA representations with inputs, by combining correlation analysis method with a stochastic realization based identification algorithm. The proposed algorithm provides a computationally efficient alternative to the parametric subspace approaches avoiding the curse of dimensionality.