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Consistent and computationally efficient estimation for stochastic LPV
state-space models: realization based approach.

Manas Mejari and Mihály Petreczky

Abstract— The article presents an identification algorithm for
stochastic Linear Parameter-Varying State-Space Affine (LPV-
SSA) representations, where the dependency of state-space
matrices on scheduling signals is affine. Based on stochastic
realization theory, a computationally efficient and statistically
consistent identification algorithm is proposed to estimate the
LPV model matrices, which are computed from the empirical
covariance matrices of outputs and scheduling signal observa-
tions. The effectiveness of the proposed realization algorithm is
shown via a numerical case study.

I. INTRODUCTION

The Linear Parameter-Varying (LPV) modeling paradigm
can be viewed as a natural extension of Linear Time-
Invariant (LTI) model class, having linear dynamic relation
between input and output signals. However, unlike LTI
systems, this relation can change over time according to
a measurable time-varying signal, the so called scheduling
variable. By the virtue of scheduling variables, non-linear
and time-varying dynamics can be embedded via scheduling
variable dependent LPV model coefficients. In this way,
LPV models can describe the behavior of many time-varying
and non-linear systems such as automobiles [4], [13], air-
crafts [11], and distillation columns [1] etc. Naturally, iden-
tification and control of LPV models has attracted significant
attention.

Over the past few years, many methods have been pro-
posed for the identification of LPV models, in input-output
(IO) [2], [12], [17] as well as state-space (SS) representa-
tions [9], [19], [21], [22], [20]. From a control perspective,
the IO models are not well suited for controller synthesis.
The controller design approaches (e.g., [18], [23]) often
require the LPV models to be in SS representation with
an affine dependency on the scheduling signal. To this end,
realization theory of LPV models plays a key role. Real-
ization theory aims at understanding the conditions under
which the observed behavior of a system can be realized
by a state-space representation. It also allows to formulate
identification algorithms for estimating (preferably minimal)
state-space representation from a finite set of observations.
In fact, this paper formulates such an algorithm.
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The realization theory for deterministic Linear Parameter-
Varying State-Space Affine (LPV-SSA) representation has
been developed in [14]. The results of [14] have been used
for model reduction in [3] and to derive LPV-SS identi-
fication algorithm in [6]. Recently, a maximum likelihood
based LPV-SS identification algorithm has been proposed
in [5] which combines LPV-IO identification methods with
an LPV-IO to LPV-SS realization scheme. These methods
are focused mainly on deterministic realizations, which for
certain control and filtering problems are too restrictive. This
shortfall can be overcome by modeling the behavior of the
system using stochastic state-space representations.

Intuitively, in a stochastic setting, the LPV-SSA represen-
tation can be decomposed into deterministic and stochastic
parts. Hence, intuitively, identification of stochastic LPV-
SSA representations can be decomposed into two indepen-
dent problems: identification of the deterministic part, and
identification of the stochastic part. As it was pointed out
above, there are provenly correct algorithms for identifying
the deterministic part [5]. In this paper, we will focus on the
identification of the stochastic part, i.e., on the identification
of stochastic LPV-SSA representations without inputs, which
only depend on noise processes. The contribution of this
paper can be seen as the first step towards identification of
the more general class of stochastic LPV-SSA representation
with external input processes. Note that the argument of
the decomposition above is not a mathematically strict one.
Making this argument strict calls for developing realization
theory of stochastic LPV representations with inputs. The
latter was highly non-trivial even for linear time-invariant
systems [10], and we leave it for future research.

The identification algorithm presented in this paper is a
non-parametric one and it is based on stochastic covariance
realization algorithm for LPV-SSA representations [16]. The
main idea is to estimate the unknown model matrices by ap-
plying a modification of the covariance realization algorithm
[16] to empirical covariances computed from the observed
dataset. Furthermore, in order to reduce the computational
complexity, the idea of selections from [5] is adapted to
the stochastic realization algorithm [16]: instead of using the
full Hankel-matrix, a suitable sub-matrix of the full Hankel
matrix is selected for computing the estimates of system
matrices and noise covariances. The proposed identification
algorithm is both provenly consistent and computationally
efficient.

Subspace based identification of stochastic LPV-SSA rep-
resentations has a rich literature, e.g., [21], [7], [8]. The algo-
rithm proposed in this paper differs significantly from [21],



[7], [8]. In contrast to subspace identification algorithms,
the proposed algorithm is provenly consistent and it does
not require the observability assumption of [21], [7], [8].
However, this comes at a price, as the proposed algorithm
is provenly consistent only for a very specific class of
scheduling signals and stochastic LPV-SSA representations.
The proposed algorithm avoids the curse of dimensionality,
but this comes at the price of either using some prior
knowledge on the system to determine the correct selection
of the rows and columns of a Hankel-matrix or using an
exhaustive search to find such a selection.

Outline: The terminology and notation used throughout the
paper is introduced in Section ??. The identification problem
for stochastic LPV-SSA representations is formalized in
Section II. A computationally efficient stochastic realization
algorithm is formulated in Section III, based on which
an identification algorithm is developed in Section IV. A
numerical example is reported in Section V to asses the
performance of the proposed algorithm. Finally, concluding
remarks are given in Section VI.

II. PROBLEM FORMULATION
We consider the following, discrete-time Linear

Parameter-Varying State-Space Affine (LPV-SSA)
representation

x(t+ 1) = A(µ(t))x(t) +K(µ(t))v(t),

ȳ(t) = Cx(t) +Dv(t), (1a)

where x, ȳ and v denote state process, output process
and noise process taking values in Rn, Rp, and Rm re-
spectively, µ denotes the scheduling signal process taking
values in Rd, and at every time instance t ∈ Z, µ(t) =
[1,µ2(t), · · · ,µd(t)]>. The matrices A(·) and K(·) are
affine functions of the scheduling signal µ(t) given by,

A(µ(t))=A1+

d∑
i=2

Aiµi(t),K(µ(t))=K1+

d∑
i=2

Kiµi(t). (1b)

The matrices Ai∈Rn×n, Ki∈Rn×m, ∀i=1, . . . , d, C ∈ Rp×n
and D ∈Rp×m are real, constant matrices. We define the
noise covariance matrices Qi for each R-valued scheduling
signal component µi as, Qi = E

[
v(t)v>(t)µ2

i (t)
]
, for all

i = 1, . . . , d. The LPV-SSA representation (1) is said to be
a realization of the observed stochastic process y, if for all
t ∈ Z, y(t) = ȳ(t).

The identification problem can be stated as follows:
Problem 1: Assume that ȳ :Z→Rp is a sample path of the

process y and µ̄ :Z→Rd is a sample path of the process µ.
Given a dataset {ȳ(t), µ̄(t)}Nt=1 consisting of samples of the
output and scheduling process, compute from this dataset the
estimates {{Âi, K̂i, Q̂i}di=1, Ĉ, D̂}, such that as N → ∞,
the estimated matrices {{Âi, K̂i, Q̂i}di=1, Ĉ, D̂} converge (in
a suitable sense) to the matrices {{Ai,Ki, Qi}di=1, C,D} of
a true system, i.e., the LPV-SSA of the form (1) with Qi =
E
[
v(t)v>(t)µ2

i (t)
]
, i = 1, . . . , d, is a realization of output

process y. In particular, for a large enough N , the output ŷ
obtained from the estimated matrices {{Âi, K̂i}di=1, Ĉ, D̂},
is close to the observed output y in a suitable sense.

A. Technical preliminaries

Let us define the set Σ = {1, . . . , d}. The set Σ will
be referred to as the alphabet. The elements of Σ are
termed as letters. A non empty word over Σ is a finite
sequence of letters, i.e., w = σ1σ2 · · ·σk, where 0<k ∈Z,
σ1, . . . , σk ∈ Σ. The set of all nonempty words is denoted
by Σ+. We denote an empty word by ε. Let Σ∗ = ε ∪ Σ+.
The concatenation of two nonempty words v = a1a2 · · · am
and w = b1b2 · · · bn is defined as vw = a1 · · · amb1 · · · bn
for some m,n > 0. Note that if w = ε or v = ε, then vε = v
and εw = w, moreover, εε = ε. The length of the word
w ∈ Σ∗ is denoted by |w|, and |ε| = 0. Eg: for alphabet
Σ = {1, 2}, Σ∗ = {ε, 1, 2, 11, 12, 21, 22 . . .}, for the word
w = 111 ∈ Σ∗, |w| = 3.

In this paper, we consider zero-mean independent
identically distributed (i.i.d.) scheduling process µ =
[1,µ2, . . . ,µd]

> such that for Σ = {1, . . . , d}, we have
µ1 = 1, and for each i = 2, . . . , d, µi is zero mean i.i.d.
process, and for all t ∈ Z, we have E

[
µ2
σ(t)

]
= pσ , ∀σ ∈ Σ.

In particular, p1 = 1.
Notations 1: For each word w ∈ Σ∗, we define the

number pw as follows: for an empty word w = ε, we define
pε = 1, and if w = vσ, then pw = pvpσ for v ∈ Σ∗ and
σ ∈ Σ.

For every word w ∈ Σ+ where w = σ1σ2 · · ·σk, k ≥ 1,
σ1, . . . , σk ∈ Σ, we define the input process µw as

µw(t) = µσ1
(t−k+1)µσ2

(t−k+2) · · ·µσk(t),∀t ∈ Z. (2)

For a stochastic process y ∈ Rk, we define for each w ∈ Σ+,
the process zyw as follows

zyw(t) = y(t− |w|)µw(t− 1)
1
√
pw
, ∀t ∈ Z. (3)

Notations 2 (Matrix Product): Consider a collection of
square matrices Aσ ∈ Rn×n, σ ∈ Σ. For any word w ∈ Σ+

of the form w = σ1σ2 · · ·σk, k > 0 and σ1, . . . , σk ∈ Σ,
we define the following matrix product notation: Aw =
AσkAσk−1

· · ·Aσ1
. For an empty word ε, Aε = In.

We remark that in this paper, the notion of Zero Mean
Wide Sense Stationary w.r.t. Inputs (ZMWSSI) process will
be a central notion for the mathematical framework of
stochastic LPV-SSA representations. We refer the reader to
[16, Definition 2] for the detailed definition of ZMWSSI
processes. All the process considered in this paper will be
assumed to be ZMWSSI process w.r.t. scheduling µ.

Definition 1 (Stationary LPV-SSA): The LPV-SSA repre-
sentation (1) is stationary for {µσ}σ∈Σ, if

1. The joint state and noise process
[
x> v>

]>
is

ZMWSSI, [16, Definition 2].
2. ∀w ∈ Σ+, t ∈ Z: E

[
v(t− |w|)µw(t− 1)v>(t)

]
= 0.

3. ∀w ∈ Σ+, t ∈ Z: E
[
x(t− |w|)µw(t− 1)v>(t)

]
= 0

and for all σ ∈ Σ, t ∈ Z: E
[
x(t)µ2

σ(t)v>(t)
]

= 0.
4. Stability: The eigenvalues of the matrix

∑
σ∈Σ pσAσ⊗

Aσ are inside the open unit circle.
Stationary LPV-SSA representations correspond to stationary
generalized bilinear systems in the terminology of [16], if
µσ(t) is viewed as an input of the bilinear system for all



σ ∈ Σ. It can be proved (see [16]) that if a stationary LPV-
SSA is a realization of y, then y is ZMWSSI. Note that for
stationary LPV-SSA representations, the state process x is
uniquely determined by the system matrices and the noise
process v satisfying Definition 1. This prompts us to use
the following short-hand notation for stationary LPV-SSA
representations.

Notations 3: A stationary LPV-SSA representation of the
form (1) is identified with the tuple ({Aσ,Kσ}σ∈Σ, C,D,v).

B. Forward innovation form

In the sequel, we will especially be interested in LPV-SSA
in the so called forward innovation form.

Notations 4 (Orthogonal projection El): We will use the
orthogonal projection El[·] from [16, Notation 3].
We define the forward innovation process e of ZMWSSI y as
e(t) = y(t)−El[y(t) | {zyw(t)}w∈Σ+ ]. Informally, El[y(t) |
{zyw(t)}w∈Σ+ ] denotes projection of y on its past values zyw
and e is the prediction error of the best linear predictor of
y which is computed based on the products between past
outputs and past scheduling signal values.

The LPV-SSA representation of the form (1), is said be a
realization of y in forward innovation form, if it is stationary,
it is a realization of y and D = Ip and v = e, i.e.,

x(t+1)=

d∑
i=1

µi(t) (Aix(t)+Kie(t)) ,y(t)=Cx(t)+e(t). (4)

A stationary LPV-SSA is a minimal realization of y if it
has the minimal dimension among all possible stationary
realizations of y. It turns out that we can restrict attention
to LPV-SSA realizations in forward innovation form. To
state the result formally, we need to introduce the following
definitions. A process y is said to be square integrable
w.r.t. {µσ}σ∈Σ (SII process), if ∀w ∈ Σ+, the following
process zy+ is square integrable. ∀t ∈ Z : zy+(t) = y(t +
|w|)µw(t+ |w| − 1) 1√

pw
. Let us call a process y full rank,

if its innovation process satisfies the following condition:
for all σ ∈ Σ, the covariance matrix E

[
e(t)eT (t)µ2

σ(t)
]

is
invertible.

Theorem 1 ([16]): Assume that process y is SII.
• If y has a realization by stationary LPV-SSA of the

form (1), then it has a minimal LPV-SSA realization
({Âσ, K̂σ}σ∈Σ, Ĉ, I, e) in forward innovation form.

• The matrices {Âσ, K̂σ}σ∈Σ, Ĉ of this LPV-SSA real-
ization in forward innovation form and the covariances
{Q̂i=E

[
e(t)e>(t)µ2

i (t)
]
}di=1 of the innovation process

can be computed from the matrices {{Ai,Ki, Qi =
E[v(t)vT (t)µ2

i (t)]}di=1, C,D} of (1).
• If y is full rank, then the minimal LPV-SSA realizations

of y in forward innovation form are isomorphic, i.e.
if ({Âσ, K̂σ}σ∈Σ, Ĉ, I, e) and ({Aσ,Kσ}σ∈Σ, C, I, e)
are two minimal realizations of y in forward innovation
form, then there exists a non-singular square matrix T ,
such that TAσT−1 =Âσ , TKσ=K̂σ , σ ∈ Σ, CT−1=Ĉ.

Theorem 1 prompts us to aim at identifying the LPV-SSA
representation in a forward innovation form (4).

Problem 2: Assume that ȳ : Z → Rp and µ̄ : Z →
Rd are sample paths of the processes y and µ respec-
tively. Given a dataset {ȳ(t), µ̄(t)}Nt=1, compute from this
dataset the estimates {Âσ, K̂σ, Q̂σ, Ĉ}σ∈Σ, such that as
N → ∞, the estimated matrices {{Âσ, K̂σ, Q̂σ}σ∈Σ, Ĉ}
converge (in a suitable sense) to the system matrices
{{Aσ,Kσ, Qσ}σ∈Σ, C}, of a minimal realization of output
process y in forward innovation form (4). In particular, for
a large enough N , the output ŷ obtained from the estimated
matrices {{Âσ, K̂σ}σ∈Σ, Ĉ}, is close to the observed output
y in a suitable sense.
Minimal LPV-SSAs in forward innovation form are unique
up to isomorphism, which renders the problem formulation
above well-posed. The well-posedness of a similar problem
formulation was implicitly assumed in the LPV subspace
identification literature.

III. REALIZATION ALGORITHM FOR
STOCHASTIC LPV-SSA REPRESENTATION

In this section, we present a computationally efficient
realization algorithm for stochastic LPV-SSA representation
in forward innovation form (4). This algorithm is a modifi-
cation of Algorithm 2 presented in [16, page 10], the main
difference being the size of the Hankel-matrix used. In order
to formulate the announced realization algorithm, we define
the covariance sequence and Hankel matrices.

Let y ∈ Rp be a ZMWSSI stochastic process. Let us
define the covariance matrices Λy

w ∈ Rp×p , w ∈ Σ+, and
Ty
σ,σ ∈ Rp×p, σ ∈ Σ, as follows

Λy
w=E

[
y(t)(zyw(t))>

]
, Ty

σ,σ=E
[
zyσ(t)(zyσ(t))>

]
, (5)

where zyw is as defined in (3).
The covariance sequence of y is defined as the function

Ψy : Σ∗ → Rp×pd, such that

Ψy(w) = [Λy
1w,Λ

y
2w, . . . ,Λ

y
dw] . (6)

The covariance sequence can be seen as a collection of higher
order moments which can determine the matrices of an LPV-
SSA representation which realizes y. Conversely, the values
of Ψy(w) can be expressed in terms of matrices of a LPV-
SSA representation (1). To this end, we define the following
matrices

Bσ =
1
√
pσ

(AσPσC
> +KσQσ) ∀σ ∈ Σ,

B = [B1, B2, . . . , Bd], (7)

Pσ = E
[
x(t)x>(t)µ2

σ(t)
]
, Qσ = E

[
e(t)e>(t)µ2

σ(t)
]

Note that, by [16] the state-covariance Pσ is the unique
solution of the following equation:

Pσ = pσ
∑
σ1∈Σ

(
Aσ1

Pσ1
A>σ1

+Kσ1
Qσ1

K>σ1

)
. (8)

Thus, Pσ is uniquely determined by the matrices
{Aσ,Kσ, Qσ}. Then from [16], the covariances (5), (6)
satisfy the following equation: Ψy(w) =

√
pwCAwB, ∀w ∈

Σ∗ and Ty
σ,σ = 1

pσ
(CPσC

> +Qσ), ∀σ ∈ Σ. Here, we used
Notation 2 for Aw.



Next, we introduce the notion of r-selection. Let us define
the set Σr as the set of all words w ∈ Σ∗ of length less than
or equal to r, i.e., Σr = {w ∈ Σ∗ | |w| ≤ r}. We define
r-selection as a pair (α, β) such that [15], 1. α ⊆ Σr ×
{1, 2, · · · , p} and β ⊆ Σr × {1, 2, · · · , p · d}; 2. card(α) =
card(β) = r, where card denotes cardinality of the set. Thus,
α and β are sets such that each element of these sets is a
word-index pair. We fix the following ordering of α and β.

α = {(ui, ki)}ri=1, ui ∈ Σr, ki ∈ {1, 2, · · · , p},
β = {(vj , lj)}rj=1, vj ∈ Σr, lj ∈ {1, 2, · · · , p · d},

(9)

Example 1: Consider r = 2, number of outputs
p = 2, and scheduling signal dimension d = 2, we
have, Σr = {ε, 1, 2, 11, 12, 21, 22}. Then, one of the
r-selection pair (α, β) can be chosen as, for e.g.,
α = {(u1, k1) , (u2, k2)} = {(ε, 1) , (11, 2)} and β =
{(v1, l1) , (v2, l2)}={(21, 3) , (22, 4)}.

Let us now define the Hankel matrix HΨ,α,β ∈ Rn×n as
follows: i, j = 1, . . . , n, the (i, j)th element of HΨ,α,β is of
the form

[HΨ,α,β ]i,j=[Ψy(vjui)]ki,lj , (10)

where Ψy is defined in (6) and [Ψy(vjui)]ki,lj denotes the
entry of Ψy(vjui) on the kith row and lj th column, and
(ui, ki) ∈ α, (vj , lj) ∈ β are as in the ordering of (9).
Intuitively, the rows of HΨ,α,β are indexed by word-index
pair (ui, ki) ∈ α, and similarly, the columns of Hankel
matrix HΨ,α,β are indexed by word-index pair (vj , lj) ∈ β,
and the element of HΨ,α,β with the row indexed (ui, ki) and
column index (vj , lj) is the (ki, lj)th entry of Ψy(vjui).

In addition, we define the σ-shifted Hankel-matrix
Zσ,Ψ,α,β ∈ Rn×n as follows: its i, j-th entry is given by

[Zσ,Ψ,α,β ]i,j = [Ψy(vjσui)]ki,lj . (11)

Algorithm 1, computes the matrices
({Âσ, B̂σ, K̂M

σ , Q̂Mσ , P̂
M
σ }σ∈Σ, Ĉ), given n-selection

(α, β), reduced Hankel matrix HΨ,α,β , and the matrices
{Zσ,Ψ,α,β}σ∈Σ and covariances {Ψy(ui),Ψy(vi)}ni=1,
{Ty

σ,σ}σ∈Σ. These matrices can be constructed from
finitely many (O(n2)) values of Ψy. Intuitively, the
matrices {Âσ, B̂σ}σ∈Σ, Ĉ are such that Ψy(w) = ĈÂwB̂,
B̂ = [B̂1, B̂2, . . . , B̂d], and for K̂σ = limM→∞ K̂M

σ ,
({Âσ, K̂σ}σ∈Σ, Ĉ, I, e) is a minimal realization
of y in forward innovation form whose state x̂
satisfies P̂σ = E

[
x̂(t)x̂>(t)µ2

σ(t)
]

= limM→∞ P̂Mσ , and
Q̂σ=E

[
e(t)e>(t)µ2

σ(t)
]
=limM→∞ Q̂Mσ .

This intuition is formalized in the following theorem.
Theorem 2 (Correctness of Algorithm 1): Assume y is

SII, and y has a realization by stationary stochastic LPV-
SSA representation and y is full rank. Assume that the
n-selection pair (α, β) be such that rank HΨ,α,β = n,
where n is the state-space dimension of a minimal real-
ization. Then Algorithm 1 is well-defined, and the matrices
({Âσ, B̂σ, K̂M

σ , Q̂Mσ , P̂
M
σ }σ∈Σ, Ĉ) returned by Algorithm 1

have the following property: K̂σ = limM→∞ K̂M
σ , Q̂σ =

limM→∞ Q̂Mσ , Q̂Mσ > 0, P̂σ = limM→∞ P̂Mσ , and

Algorithm 1 Matrix computations using HΨ,α,β and n-
selection

Input: n-selection (α, β); Hankel matrix HΨ,α,β (defined
in (10)); shifted Hankel-matrix {ZΨ,σ,α,β}σ∈Σ (defined in
(11)); {Ψy(ui)}ni=1, {Ψy(vi)}ni=1 where {ui, vi}ni=1 as in
(9) with r = n, and Ty

σ,σ (defined in (5)), maximum number
of iterations M > 0.

1. Compute Âσ ∈ Rn×n as linear least-square solution of

ÂσHΨ,α,β =
1
√
pσ
Zσ,Ψ,α,β .

2. Compute B̂σ ∈ Rn×p as follows:
Let B̂ ∈ Rn×p·d be matrix such that its i, j-th element is
given by

[
B̂
]
i,j

= [Ψy(εui)]ki,j = [Ψy(ui)]ki,j where

(ui, ki) ∈ α is as in (9), r = n, and j = 1, 2, . . . , p · d
Then, B̂σ ∈ Rn×p for each σ ∈ Σ is obtained by
appropriate partitioning of B as B̂ =

[
B̂1, B̂2, . . . , B̂d

]
.

3. Compute Ĉ ∈ Rp×n as follows:
Let C̄ such that its i, j-th element is given by

[
C̄
]
i,j

=

[Ψy(vjε)]i,lj = [Ψy(vj)]i,lj where (vj , lj) ∈ β as in (9),
r = n, and i = 1, 2, . . . , p. Then, Ĉ = C̄(HΨ,α,β)−1.

4. Set P̂ 0
σ = 0 and for i = 1, . . . ,M do

P̂ i+1
σ =

∑
σ1∈Σ

pσ

(
Âσ1

P̂ iσ1
Â>σ1

+ K̂i
σ1
Q̂iσ1

(K̂i)>σ1

)
Q̂iσ = pσT

y
σ,σ − ĈP̂ iσ1

Ĉ>

K̂i
σ =

(
B̂σ
√
pσ − ÂσP̂ iσĈ>

)(
Q̂iσ

)−1

Output: Matrices ({Âσ, B̂σ, K̂M
σ , Q̂Mσ , P̂

M
σ }σ∈Σ, Ĉ)

({Âσ, K̂σ, }σ∈Σ, Ĉ, I, e) is a minimal LPV-SSA realiza-
tion of y in forward innovation form with Q̂σ =
E
[
e(t)e>(t)µ2

σ(t)
]

and the unique state x̂ of this LPV-SSA
realization satisfies P̂σ = E

[
x̂(t)x̂>(t)µ2

σ(t)
]
, σ ∈ Σ.

Proof: [Sketch of the proof of Theorem 2] The proof
is a combination of the proof of the correctness of the basis
reduced Ho-Kalman like realization algorithm in [5] and the
proof of correctness of Algorithm 2 in [16, page 10].

IV. IDENTIFICATION ALGORITHM FOR
STOCHASTIC LPV-SSA REPRESENTATION

In this section, we formulate a computationally efficient
identification algorithm based on stochastic realization and
selections, using N -length observation sequence of outputs
and scheduling signals as detailed in Algorithm 2. In Algo-
rithm 2, the following assumptions are made:

Assumption 1: (1) The process y is SII, full rank, and
y has a realization by stationary stochastic LPV-SSA rep-
resentation. (2) The n-selection pair (α, β) is such that
rank HΨ,α,β = n, where n is the state-space dimension
of a minimal LPV-SSA realization of y. (3) The process
(y, {µw}w∈Σ+) is ergodic and there exist sample paths
ȳ : Z → Rp and µ̄ : Z → Rd of the processes y and



µ respectively such that {ȳ(t), {µ̄σ(t)}σ∈Σ}Nt=1 is observed
and for all v, w ∈ Σ+ the following holds,

E
[
y(t)(zyw(t))>

]
= lim
N→∞

1

N

N∑
t=|w|

ȳ(t)(z̄w(t))>

E
[
zyv (t)(zyw(t))>

]
= lim
N→∞

1

N

N∑
t=max(|v|,|w|)

z̄v(t)z̄
>
w (t)

where for all w = σ1σ2 · · ·σr ∈ Σ+, r > 0,

µ̄w(t) = µ̄σ1
(t− k + 1)µ̄σ2

(t− k + 2) · · · µ̄σr (t)

z̄w(t) = ȳ(t− |w|)µ̄w(t− 1)
1
√
pw

(12)

Algorithm 2 computes the estimates
({ÂNσ , B̂Nσ , K̂M,N

σ , Q̂M,N
σ , P̂M,N

σ }σ∈Σ, Ĉ
N ) of forward

innovation form (4), for a given number of iterations M ,
from the finite time series data {ȳ(t), {µ̄σ(t)}σ∈Σ}Nt=1.
Algorithm 2 computes the approximations of true system
matrices as well as noise covariances such that these
approximations converge to the true values as N,M →∞.

Algorithm 2 Identification of stochastic LPV-SSA models
Input: Observations sequence {ȳ(t), {µ̄σ(t)}σ∈Σ}Nt=1, and
n-selection (α, β); maximum number of iterations M > 0.

1. Compute approximate covariances from observations:

ΛNw=
1

N

N∑
t=|w|

ȳ(t)z̄w(t);TNσ,σ=
1

N

N∑
t=|w|

z̄σ(t)z̄>σ (t)

for all σ ∈ Σ and for every w ∈ Σ+, such that w = ivu
or w = iv or w = iu or w = ivσu for some words
v, u ∈ Σ∗, i, σ ∈ Σ, (u, k) ∈ α, (v, l) ∈ β for some
k = 1, . . . , p, l = 1, . . . , pd, and for all w ∈ Σ+, z̄w(t)
is as in (12).

2. Construct the empirical covariance sequences ΨN
y (w)

by replacing Λw by ΛNw in (6), and construct the empir-
ical Hankel matrix HN

Ψ,α,β ∈ Rn×n and the empirical
σ shifted Hankel matrix ZNσ,Ψ,α,β ∈ Rn×n, σ ∈ Σ, by
replacing Ψy by ΨN

y in (10) and (11) respectively, i.e.,
for all i, j = 1, . . . , n,

ΨN
y (w) =

[
ΛN1w,Λ

N
2w, . . . ,Λ

N
dw

][
HN

Ψ,α,β

]
i,j

=
[
ΨN

y (vjui)
]
ki,lj[

ZNσ,Ψ,α,β
]
i,j

=
[
ΨN

y (vjσui)
]
ki,lj

3. Run Algorithm 1, with: (1) the empirical Hankel
matrix HN

Ψ,α,β instead of HΨ,α,β ; (2) the empirical
shifted Hankel matrix ZNσ,Ψ,α,β instead of Zσ,Ψ,α,β ; (3)

the empirical {ΨN
y (ui)}ni=1, {ΨN

y (vi)}ni=1 instead of
{Ψy(ui)}ni=1, {Ψy(vi)}ni=1 where {ui, vi}ni=1 as in (9)
with r = n; (4). the empirical covariance TNσ,σ instead
of Ty

σ,σ , ∀σ ∈ Σ.

Output: Estimates {ÂNσ , B̂Nσ , K̂M,N
σ , Q̂M,N

σ , P̂M,N
σ }σ∈Σ, Ĉ

N

Theorem 3 (Consistency): Under Assumption 1, the result
of Algorithm 2 satisfies the following for all σ ∈ Σ:

K̂σ = lim
M→∞

lim
N→∞

K̂M,N
σ , Q̂σ = lim

M→∞
lim
N→∞

Q̂M,N
σ ,

P̂σ = lim
M→∞

lim
N→∞

P̂M,N
σ , Âσ = lim

N→∞
ÂNσ , Ĉ = lim

N→∞
ĈN ,

and the LPV-SSA ({Âσ, K̂σ}σ, Ĉ, x̂, e) is a minimal real-
ization of y in forward innovation form.

Proof: [Sketch of the proof of Theorem 3] By the
Part (3) of Assumption 1, limN→∞HN

Ψ,α,β = HΨ,α,β and
limN→∞ ZNσ,Ψ,α,β = Zσ,Ψ,α,β . Since ÂNσ , Ĉ

N , B̂Nσ are con-
tinuous functions of the entries of HN

Ψ,α,β , ZNσ,Ψ,α,β , σ ∈ Σ,
it follows that Âσ = limN→∞ ÂNσ , B̂σ = limN→∞ B̂Nσ ,
Ĉ = limN→∞ ĈN , where {Âσ, B̂σ}σ∈Σ, Ĉ are the matrices
computed in Steps 1,2,3 of Algorithm 1 using HΨ,α,β ,
Zσ,Ψ,α,β , {Ψy(ui)}ni=1, {Ψy(vi)}ni=1 where {ui, vi}ni=1 as
in (9) with r = n. It can be shown by induction on M that
for all M , K̂M,N

σ , Q̂M,N
σ , P̂M,N

σ are continuous functions
of ÂNσ , B̂Nσ , ĈN , and in fact K̂M

σ = limN→∞ K̂M,N
σ ,

Q̂Mσ = limN→∞ Q̂M,N
σ , P̂Mσ = limN→∞ P̂M,N

σ , σ ∈ Σ,
where {K̂M

σ , Q̂Mσ , P̂
M
σ }σ∈Σ are the matrices calculated in

Step 4 of Algorithm 1. The statement of Theorem 3 is then
a direct consequence of Theorem 2.

V. NUMERICAL EXAMPLE
In this section, we present a numerical example to test

the effectiveness of our algorithm. The proposed algorithm
is compared to the Predictor Based Subspace IDentifica-
tion (PBSID) algorithm reported in [21]. We remark that
the PBSID algorithm, requires the observability assumption
of the first local model. The realization algorithm pro-
posed in this contribution relaxes this assumption. How-
ever, it relies on choosing the correct selections (α, β).
Specifically, in the following example, we show that the
observability assumption is not satisfied by the true data
generating system, yet, the proposed algorithm is able to
estimate the model matrices such that the estimated output
matches closely with the observed outputs. The quality of
the match between estimated and true outputs is quantified
on a noise-free validation data of length Nval via Best
Fit Rate (BFR) and Variance Accounted For (VAF) cri-
terion defined for each output channel yi, i = 1, . . . , p,

as BFRyi = max

{
1−

√∑Nval
t=1 (yi(t)−ŷi(t))2∑Nval
t=1 (yi(t)−ȳi)2

, 0

}
× 100%,

VAFyi = max
{

1− var(yi−ŷi)
var(yi)

, 0
}
× 100%, where ŷi de-

notes the simulated one-step ahead model output and ȳi
denotes the sample mean of the output over the validation
set. The operator var(·) denotes the variance of its argument.

The LPV-SSA representation in forward innovation
form (4) is used for data generation with following matrices:

A1 =

0.4 0.4 0
0 0 0
0 0 0

 , A2 =

0 0 0
0 0.4 0.4
0 0.4 0.4

 ,
K1 =

−0.036
0
1

 ,K2 =

 0
0.015
1.17

 , C =
[
1 0 0

]
,



TABLE I
BEST FIT RATE (BFR) AND VARIANCE ACCOUNTED FOR (VAF) ON A

NOISE-FREE VALIDATION DATA

Algorithm 2 PBSID [21] PBSID (external inputs)
BFR 93.98 % 1.58 % 0 %
VAF 99.74 % 3.16 % 0 %

which corresponds to state-dimension n=3, output dimen-
sion p = 1, and scheduling signal dimension d = 2 with
Σ = {1, 2}. Note that, the system corresponding to the
first local model Ã1 = A1 − K1C is not observable, i.e.,
rank([C>(CÃ1)> . . . (CÃl−1

1 )>]>) = 2 < n.
Training and noise free validation output sequences of

length N = 500, 000 and Nval = 20000, respectively, are
generated from (4) by considering the scheduling signal
process µ = [µ1 µ2] such that µ1(t) = 1 and µ2(t) is a
white-noise process with uniform distribution U(−1.5, 1.5).
This corresponds to the parameter values {pσ}σ∈{1,2} to
be p1 = E

[
µ2

1(t)
]

= 1 and p2 = E
[
µ2

2(t)
]

= 0.75. The
standard deviation of the white Gaussian noise e corrupting
the training output is 1, i.e., e ∼ N (0, 1).

We run the Algorithm 2 with M = 50 iterations and
with the following r-selection pair (α, β), with r = 3,
α = {(ε, 1), (1, 1), (21, 1)}, β = {(ε, 1), (2, 1), (21, 1)},
which is used to choose corresponding entries of the Hankel
matrix. The mean time taken to run the algorithm is 1.5 sec.1

The validation result using one-step ahead predicted out-
puts ŷ are reported in Table I. We compare our algorithm
with the PBSID approach reported in [21] and implemented
using PBSID MATLAB toolbox. For PBSID, we consider
past and future window length 8 with zero external input
signal as well as with a white Gaussian noise external input
u ∼ N (0, 1) with input matrices B1 = B2 = [0 0 1]

>.
The proposed approach significantly outperforms the PBSID
method. As the data generating LPV-SSA representation does
not satisfy the underlying assumptions of PBSID method,
namely non-observability of the first local model A1, the
PBSID method fails.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, an identification algorithm for stochas-
tic linear parameter-varying state-space representations has
been presented. The proposed algorithm provides a com-
putationally efficient alternative to the parametric subspace
approaches which are prone to computational and dimension-
ality problems as the size of the dataset or the dimension
of state-space grows. Moreover, the proposed algorithm is
provenly consistent. As a future research direction, we would
like to extend the results to a more general LPV model class
with external inputs processes.
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