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Causality and network graph in general bilinear state-space
representations

Mónika Józsa, Mihály Petreczky and M. Kanat Camlibel

Abstract—This paper proposes an extension of the well-known
concept of Granger causality, called GB–Granger causality. GB–
Granger causality is designed to relate the internal structure of
bilinear state-space systems and statistical properties of their out-
put processes. That is, if such a system generates two processes,
where one does not GB–Granger cause the other, then it can be
interpreted as the interconnection of two subsystems: one that
sends information to the other, which does not send information
back. This result is an extension of earlier obtained results [1]
on the relationship between Granger-causality and the internal
structure of linear time-invariant state-space representations.

I. INTRODUCTION

Detecting interactions among stochastic processes and relat-
ing them to the internal structure of the generating systems can
be of interest for several applications such as mapping interac-
tions in the brain, predicting economical price movements or
understanding social group behaviour. The first step towards
detecting such interactions is to propose a formal mathematical
definition of the concept of interaction. In this paper, we
propose two formalizations of one directional interactions
between two stochastic processes. The stochastic processes
are assumed to be outputs of a non-linear dynamical system.
Both formalizations will try to capture causal interactions, i.e.,
that one process causes the other one. The first formalization
concentrates on the information flow between the dynamical
systems that generate the processes. The second one focuses
on statistical properties of the processes.

More precisely, let y be an output process that is partitioned
into two components such as y = [yT1 ,y

T
2 ]T . For the first

approach, assume that y is the output of a dynamical system.
Assume that this dynamical system can be represented as an
interconnection of two systems: one which generates y1 as
output, the second which generates y2. Furthermore, assume
that the subsystem generating y1 sends information to the
other subsystem, but there is no informating flowing in the
opposite direction. That is, the network graph1 of this dy-
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1Informally, by the network graph of a system, we mean a directed graph,
whose nodes correspond to subsystems, such that each subsystem generates
a component of the output process. Furthermore, there is an edge from one
node to the other, if the subsystem corresponding to the source node sends
information to the subsystem corresponding to the target node.

namical system has two nodes and one edge. Then, according
to the first approach we say that y1 influences y2. This
approach offers an intuitive mechanistic explanation of how
one component of the output process influences the other.
However, the same output process can be generated by systems
with different network graphs. As a result, the presence of an
interaction between two output components depends on the
exact dynamical system representing the output process.

The second approach is based on statistical properties of
the joint process y = [yT1 ,y

T
2 ]T . A widely used example of

this approach is Granger causality [2]. Intuitively, y1 Granger
causes y2 if the best linear predictions of y2 based on the
past values of y are better than those only based on the past
values of y2. We then say that y1 influences y2, if y1 Granger
causes y2. Concepts that follow from this second approach
lead to definitions that depend only on properties of y and do
not depend on which dynamical system we use to represent
y. However, they do not always offer an explanation of the
mechanisms according to which the interaction takes place.

In summary, the first approach focuses on the mechanism
inside a dynamical system but is too sensitive to the choice
of the system itself. The second approach solves the issue
with the first; however, it generally does not capture the inner
mechanism of the interaction. It is thus of interest to relate
these approaches to benefit from the advantages of both.

In [1]–[4], Granger causality was formally related to the
network graphs of autoregressive (AR), moving-average (MA)
and linear-time-invariant state-space (LTI–SS) models. These
results show that Granger causality, despite being defined
based on statistical properties of a process, can be related to
structural properties of linear models of that process. In most
of the fields, however, where Granger causality is applied (e.g.
econometrics, neuroscience), linear models are insufficient to
represent the observed process.

In this paper, we extend the result on the relation between
Granger causality and linear models to an extension of Granger
causality and a class of nonlinear models. That is, we define a
new concept of causality that can describe interaction between
processes that relate to each other in a nonlinear way. Com-
pared to other reformulations of Granger causality, see e.g.
[5], our concept is designed to have a structural interpretation
in the chosen class of nonlinear systems.

In order to achieve the objective of the paper, we will 1)
focus on a specific class of nonlinear dynamical systems; 2)
define a new concept of causality as interaction among the
components of a process generated by a system chosen in 1)
based on statistical properties of the process at hand; and 3)
characterize the causality defined in 2) by properties of the
inner structure of the system generating the process at hand.
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Fig. 1: Illustration of the results: Cascade interconnection
structure in a GB–SS representation S with input u and output
y decomposed into subsystems S1 and S2 in the presence of
GB–Granger non-causality from y1 to y2 with respect to u.

As a first step towards nonlinear systems, a natural choice
is to study bilinear systems, which include e.g., LTI–SS,
switched linear, autoregressive moving-average (ARMA), and
jump Markov linear models. Bilinear systems produce richer
phenomena than linear systems, yet many analytical tools for
linear systems are suitable to analyze them. In this paper, we
focus on general bilinear state-space (GB–SS) representations
for which stochastic realization theory exists [6]. This theory
serves as a basis for the technicalities of the paper.

To formalize causality for the outputs of GB–SS represen-
tations, we introduce an extension of Granger causality, called
GB–Granger causality, that coincides with Granger causality,
when applied to outputs of stochastic LTI–SS models.

In the main results, we consider a GB–SS representation
with output process y = [yT1 ,y

T
2 ]T and input process u. Then,

we show that GB–Granger non-causality from y1 to y2 with
respect to u is equivalent to the decomposition of the GB–
SS representation into the interconnection of two subsystems,
one generating y1, and another one generating y2, where the
former sends no information to the latter (see Figure 1).

The results of this paper are based on realization theory of
bilinear systems [6]–[11] and results on Granger causality in
linear systems [2], [12]–[16]. We adopt the concept of GB–
SS representation from [6] and rely on the realization theory
presented there. The advantage of GB–SS representations in
[6] is that, contrary to [9], [11], the input process is not
necessarily white, which therefore includes, e.g. jump Markov
linear systems. However, contrary to [7]–[9], it does not allow
additive input terms in the system. Note that our results depend
on realization theory of GB-SS representations. Hence, in
order to extend our results to GB-SS representations with
additive inputs, realization theory of the latter system class
has to be developed. This remains a topic of future research.

Granger causality between stochastic processes was studied
for AR, MA models [2], transfer functions [3], [4], [19], and
for stochastic linear state-space representations [1], [12]–[15],
[17]. For extending the concept of Granger causality in GB–
SS representations, we rely on the ideas from [1], [13], [14],
[16]. In contrast to [1], [13], [14], [16], which consider linear
state-space representations, in this paper we consider GB-SS
representations.

The structure of the paper is as follows: First, we introduce
the terminology in Section II, which is followed by a brief
summary on realization theory of GB–SS representations in
Section III. Then, in Section IV, the main results on GB–
Granger causality and GB–SS representations are presented.

Finally, the proofs of the results can be found in Appendix.

II. PRELIMINARIES AND NOTATIONS

This section presents the terminology adopted from [6] that
general bilinear state-space (GB–SS) representations rely on.

We consider discrete-time, square-integrable, multivariate,
wide-sense stationary stochastic processes with real entries.
Throughout the paper, we fix a probability space (Ω,F , P ) and
all the random variables and stochastic processes are under-
stood with respect to (Ω,F , P ). The random variable of a pro-
cess z at time t is denoted by z(t), where t is from the discrete-
time axis of integers Z. Using standard notation, the expected
value of a random variable z(t) is written as E[z(t)] and the
covariance matrix between two random variables z1(t) and
z2(t) is denoted by E[(z1(t)−E[z1(t)])(z2(t)−E[z2(t)])T ].
Note that if the processes z1 and z2 are zero-mean, the latter
simplifies to E[z1(t)zT2 (t)]. The conditional expectation of a
random variable z to a σ-algebra F is denoted by E[z|F ].
When a process z or a random variable z(t) takes its values
from Rn then we write z ∈ Rn and z(t) ∈ Rn. Consider a
process z and a present time t ∈ Z. The σ-algebras generated
by the random variables in the present, past, and future of
z are denoted by Fz

t = σ (z(t)), Fz
t− = σ

(
{z(k)}t−1

k=−∞
)
,

and Fz
t+ = σ ({z(k)}∞k=t) respectively, where for a set Z of

random variables, σ(Z) denotes the smallest σ-algebra which
contains each σ-algebra generated by an element of Z.

In the rest of this section, we will introduce tools that will
help us to define GB–SS representations in Section III.

Throughout the paper, we denote the finite set {1, 2, . . . , d}
by Σ, where d is a positive integer.

Let Σ+ be the set of finite sequences of elements of Σ, i.e.,
an element of Σ+ is a sequence of the form w = σ1 · · ·σk,
where σ1, . . . , σk ∈ Σ. We define the concatenation operation
on Σ+: if w = σ1 · · ·σk ∈ Σ+ and v = σ̂1 · · · σ̂l ∈ Σ+,
then the concatenation of w and v, denoted by wv, is defined
by wv = σ1 · · ·σkσ̂1 · · · σ̂l. It will be convenient to extend
Σ+ by a formal unit element ε /∈ Σ+. We denote this set by
Σ∗ = Σ+ ∪ {ε}. The concatenation operation is extended to
Σ∗ as follows: εε = ε, and for any w ∈ Σ+, εw = wε = w.
We define the length of a sequence w = σ1 · · ·σk ∈ Σ+ by
|w| = k and the length of ε by |ε| = 0. Consider a set of
matrices {Mσ}σ∈Σ, where Mσ ∈ Rn×n, n ≥ 1 for all σ ∈ Σ
and let w = σ1 · · ·σk ∈ Σ+. Then, we denote the matrix
Mσk · · ·Mσ1

by Mw and we define Mε = I . In addition, for
a set of processes {uσ}σ∈Σ and for w = σ1 · · ·σk ∈ Σ+, we
denote the process uσk(t) · · ·uσ1

(t − |w| + 1) by uw(t) and
define uε(t) ≡ 1.

In order to define GB-SS representations, we introduce the
following processes:

Definition 1. Consider a process r and a set of processes
{uσ}σ∈Σ. Let σ ∈ Σ and w = σ1 · · ·σk ∈ Σ+. Then, we
define the process zrw(t) = r(t − |w|)uw(t − 1), which we
call the past of r with respect to {uσ}σ∈Σ along w, and we
define the process zr+

w (t) = r(t+ |w|)uw(t+ |w| − 1), which
we call the future of r with respect to {uσ}σ∈Σ along w.

Note that for w = ε, both the past zrε(t) and the future
zr+
ε (t) of r w.r.t. {uσ}σ∈Σ equal r(t).
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Next, we define admissible sets of processes, see [6, Def-
inition 1], which will help us to formulate a Markovian-like
property of the input processes of GB–SS representations.

Definition 2 (admissible set of processes). A set of processes
{uσ}σ∈Σ is called admissible if
• [uTv ,u

T
w]T is wide-sense stationary for all v, w ∈ Σ∗

• there exist {ασ}σ∈Σ ∈ R such that
∑
σ∈Σ ασuσ(t) ≡ 1

• there exist (strictly) positive numbers {pσ}σ∈Σ, such that
E[uv1σ1(t)uv2σ2(t)| ∨

σ∈Σ
Fuσ
t− ] ={

pσ1uv1(t− 1)uv2(t− 1) σ1 = σ2 and v1v2 ∈ Σ+

0 σ1 6= σ2

for any σ1, σ2 ∈ Σ and v1, v2 ∈ Σ∗, where ∨
σ∈Σ
Fuσ
t− is

the smallest σ-algebra, s.t. ∨
σ∈Σ
Fuσ
t− ⊇ F

uσ
t− for all σ ∈ Σ.

The next definition introduces a class of processes that the
output, state, and noise processes of GB–SS representations
belong to. The definition involves the concept of conditionally
independent σ-algebras: Two σ-algebras F1, F2 are condition-
ally independent w.r.t a third one F3, if for every event A1 ∈
F1 and A2 ∈ F2, P (A1∩A2|F3) = P (A1|F3)P (A2|F3) with
probability one [20].

Definition 3 (ZMWSSI process). A stochastic process r is
called zero-mean wide-sense stationary w.r.t. an admissible
set of processes {u}σ∈Σ (ZMWSSI) if Fr

(t+1)− and Fu
t+ are

conditionally independent w.r.t. Fu
t−, and [rT , (zrv)

T , (zrw)T ]T

is zero-mean wide-sense stationary for all v, w ∈ Σ+.

Definition 4. SII A process r is said to be square integrable
with respect to {uσ}σ∈Σ (SII), if for all w ∈ Σ+, the process
zr+
w is square integrable.

Below, we sum up the notations of this section.

TABLE I: Summary of notation

Σ {1, 2, . . . , d}
Σ∗,Σ+ the set of all finite sequences of elements

of Σ with resp. without the empty sequence
Mw the product of matrices {Mσ}σ∈Σ along

the elements of the sequence w
rw(t) product of the processes indexed by the

elements of the sequence w
zrw(t),zr+

w (t) the past and future processes of r
w.r.t. {uσ}σ∈Σ along the sequence w

ZMWSII, SSI class of stochastic processs to
which outputs of GB-SS have to belong

uσ(t) input process indexed by σ ∈ Σ

III. GB–SS REPRESENTATIONS

This section introduces general bilinear state-space (GB–
SS) representations and some results on their realization theory
from [6]. To begin with, we define GB–SS representations.

Definition 5 (GB–SS representation). A system of the form

x(t+ 1) =
∑
σ∈Σ

(Aσx(t) +Kσv(t))uσ(t)

y(t) = Cx(t) +Dv(t),

(1)

where Aσ ∈ Rn×n,Kσ ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
x(t) ∈ Rn, v(t) ∈ Rm, y(t) ∈ Rp, and uσ(t) ∈ R, σ ∈ Σ is
called generalized bilinear state-space (GB–SS) representation
of ({uσ}σ∈Σ,y) if the following holds:
• {uσ}σ∈Σ is admissible
• [xT ,vT ] is ZMWSSI with respect to {uσ}σ∈Σ

• for w ∈ Σ+, E[zvw(t)vT (t)] = 0 and E[zxw(t)vT (t)] = 0
• for σ̂, σ ∈ Σ, E[zxσ̂(t) (zvσ(t))

T
] = 0

•
∑
σ∈Σ pσAσ ⊗Aσ is stable.

We refer to a GB–SS representation (1) as GB–SS rep-
resentation ({Aσ,Kσ}σ∈Σ, C,D,v, {uσ}σ∈Σ,y) or as GB–
SS representation ({Aσ,Kσ}σ∈Σ, C,D,v) of ({uσ}σ∈Σ,y),
where note that {Aσ,Kσ,uσ}σ∈Σ and v determine the state
process. Furthermore, notice that y is the linear combination
of x and v and thus it is also ZMWSSI w.r.t. {uσ}σ∈Σ.

Depending on the choice of the input processes, the be-
haviour of a GB–SS representation can significantly vary. The
constraint on the input, formulated in Definition 2, gives scope
to choosing {uσ}σ∈Σ, for example, in the following ways:
• If Σ = 1 and u1(t) ≡ 1, then u1 is admissible and the

GB–SS representation defines an LTI–SS representation.
• If uσ(t) is zero-mean, square-integrable, iid process for

all σ ∈ Σ and uσ1
(t), uσ2

(t) are independent for all
σ1, σ2 ∈ Σ, σ1 6= σ2, then {uσ}σ∈Σ is admissible.

• If uσ(t) = χ(Θ(t) = σ), where Θ is an iid process taking
values in Σ, then {uσ}σ∈Σ is admissible.

More examples can be found in [6]. Note that Definition 2
gives a stricter definition of admissible set of processes than
[6, Definition 1].2 The results of the paper remain valid with
the definition of admissible set of processes in [6]; however,
we use Definition 2 in order to avoid technicalities.

A. GB–SS representations in forward innovation form

Below, we define innovation processes and innovation GB–
SS representations. The latter class of representations plays a
key role throughout the rest of the paper.

To this end, we recall from [6] the following notation. The
real valued zero-mean square integrable random variables form
a Hilbert space H with the covariance as the inner product
(see [21] for details). Let r be a ZMWSSI process w.r.t. a set
of admissible processes {uσ}σ∈Σ. Then, the one-dimensional
components of r(t) and zrw(t) (see Definition 1) belong to
H for all t ∈ Z. We denote the Hilbert spaces generated by
the one-dimensional components of r(t) and of {zrw(t)}w∈Σ+

by Hz
t and Hzr

w

t,w∈Σ+ , respectively. The (orthogonal) linear
projection of r(t) onto a closed subspace M of H is meant
element-wise and it is denoted by El[r(t)|M]. If all the
components of r(t) are in M⊂ H, then we write r(t) ∈M.

Definition 6 (GB–innovation process). The GB–innovation
process of a ZMWSSI process y w.r.t. the processes {uσ}σ∈Σ

is defined by e(t) = y(t)− El[y(t)|Hzy
w

t,w∈Σ+ ].

Definition 7 (innovation GB–SS representation). A GB–SS
representation (1) is called innovation GB–SS representa-
tion if the noise process v is the GB–innovation process

2the set of admissible words used in [6] is here the trivial Σ+ set
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e(t) = y(t)−El[y(t)|Hzy
w

t,w∈Σ+ ] of y with respect to the input
{uσ}σ∈Σ and the matrix D of (1) is the identity matrix.

In the specific case, when Σ = {1} and u1(t) ≡ 1,
innovation GB–SS representations define innovation LTI–SS
representations (called Kalman representation in [1]).

Finally, we make a technical assumption that requires the
definition of full rank processes.

Definition 8. An output process y of a GB–SS representation
is called full rank if for all σ ∈ Σ and t ∈ Z, the matrix
E[e(t)eT (t)u2

σ(t)] is strictly positive definite, where e is the
GB–innovation process of y w.r.t the input {uσ}σ∈Σ.

The next assumption will be in force in the rest of the paper:

Assumption 1. The output process y is ZMWSII, SII and it
is full rank.

We define the dimension of a GB–SS representation as the
dimension of its state process. A GB–SS representation is
called minimal if it has minimal dimension among all GB–
SS representations of the same input-output processes.
Remark 1 (Realization theory). According to [6, Theorem
3,5,6],if Assumption 1 holds ({uσ}σ∈Σ,y) has a GB-SS
representation, then there exists a minimal GB-SS representa-
tion of ({uσ}σ∈Σ,y) in forward innovation form. The latter
GB-SS representation can be calculated from any GB-SS
representation of ({uσ}σ∈Σ,y), using [6, Algorithm 1], or
from suitable high-order moments of ({uσ}σ∈Σ,y) using [6,
Algorithm 2]. Finally, any two are minimal innovation GB–
SS representations of are isomorphic ({uσ}σ∈Σ,y), see [6,
Section III.B] for the formal definition of isomorphism. That
is, without loss of generality, we can restrict attention to
minimal GB-SS representations in forward innovation form.

IV. GB–GRANGER CAUSALITY IN GB–SS
REPRESENTATIONS

In this section, we present the main results of this paper
on relating an extended form of Granger causality, called
GB–Granger causality, to properties of GB–SS representa-
tions. First, we introduce GB–Granger causality, and then,
we present its characterization by properties of GB–SS repre-
sentations. Throughout the rest of the paper, y = [yT1 ,y

T
2 ]T

is a ZMWSSI process w.r.t. an admissible set of processes
{uσ}σ∈Σ, where yi ∈ Rpi for some pi > 0, i = 1, 2.

A. Extending Granger causality

Informally, y1 does not Granger cause y2, if the best linear
predictions of y2 based on the past values of y2 are the same
as those based only on the past values of y. Recall that Hz

t−
denotes the Hilbert space generated by the past {z(t−k)}∞k=1

of z. Then, Granger causality is defined as follows:

Definition 9 (Granger causality). [1, Definition 5] Consider
a zero-mean square integrable, wide-sense stationary process
y = [yT1 ,y

T
2 ]T . We say that y1 does not Granger cause y2 if

for all t, k ∈ Z, k ≥ 0 El[y2(t+k)|Hy2

t−] = El[y2(t+k)|Hy
t−].

Otherwise, we say that y1 Granger causes y2.

In contrast to innovation LTI–SS representation, the out-
put process of innovation GB–SS representations cannot be
expressed by the linear combination of its own past values.
In fact, an innovation GB–SS representation defines a linear
relationship between the future of its output w.r.t. the inputs,
denoted by zy+

v (t) and on the past of its output w.r.t. the
inputs, denoted by zyw(t), see Definition 1. This motivates
our extension of Granger causality, where we use the process
zy+
v (t) rather than y(t+|v|) and zy−v (t) rather than y(t−|v|):

Definition 10 (GB–Granger causality). Consider the processes
({uσ}σ∈Σ,y = [yT1 ,y

T
2 ]T ), where {uσ}σ∈Σ is admissible and

y is ZMWSSI w.r.t. {uσ}σ∈Σ. We say that y1 does not GB–
Granger cause y2 w.r.t. {uσ}σ∈Σ if for all v ∈ Σ∗ and t ∈ Z

El[z
y2+
v (t)|Hzy

w

t,w∈Σ+ ] = El[z
y2+
v (t)|Hzy2

w

t,w∈Σ+ ]. (2)

Otherwise, y1 GB–Granger causes y2 w.r.t. {uσ}σ∈Σ.

Informally, y1 does not GB–Granger cause y2, if the best
linear predictions of the future of y2 w.r.t. {uσ}σ∈Σ based on
the past of y w.r.t. {uσ}σ∈Σ are the same as those based only
on the past of y2 w.r.t. {uσ}σ∈Σ.
Remark 2. If a process y1 does not GB–Granger cause y2

then it implies that y1 does not Granger causes y2. Moreover,
in the specific case, when Σ = {1} and u1(t) ≡ 1, zy+

v (t) =
y(t+|v|) and zyw(t) = y(t−|w|) and thus Definitions 9 and 10
coincide. The relationship between GB–Granger causality and
other concepts of causality, such as conditional independence
[5], seems to be more involved and remains a topic of future
research.

B. Main results
Next, we present the main results of this paper on the

relation of GB–Granger causality and network graphs of GB–
SS representations. The representations in question are mini-
mal innovation GB–SS representations that can be constructed
algorithmically (see Algorithm 1 later on in this section).

Theorem 1. With Assumption 1, consider a GB–SS represen-
tation of ({uσ}σ∈Σ, y = [yT1 ,y

T
2 ]T ) and let e = [eT1 , e

T
2 ]T

be the GB–innovation process of y w.r.t. {uσ}σ∈Σ, where
ei ∈ Rpi ,i = 1, 2. Then, y1 does not GB–Granger cause y2

w.r.t. {uσ}σ∈Σ if and only if there exists a minimal innovation
GB–SS representation ({Aσ,Kσ}σ∈Σ, C, I, e), {uσ}σ∈Σ,y)
such that for all σ ∈ Σ

Aσ =

[
Aσ,11 Aσ,12

0 Aσ,22

]
Kσ =

[
Kσ,11 Kσ,12

0 Kσ,22

]
, C =

[
C11 C12

0 C22

]
,

(3)

where Aσ,ij ∈ Rni×nj , Kσ,ij ∈ Rni×pj , Cij ∈ Rpi,nj for
some n1 ≥ 0, n2 > 0 and ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is
a minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2).

The proof can be found in Appendix. If Σ = {1} and
u1(t) ≡ 1, the GB–SS representation reduces to an LTI–SS
representation and Definitions 9 and 10 coincide. As a result,
Theorem 3 reduces to earlier results on LTI–SS representations
and Granger causality (see [1, Theorem 1]).
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S2 S1
x2, e2

e2 e1

y2 y1

{uσ}σ∈Σ y

Fig. 2: Cascade interconnection in a GB–SS representation
({Aσ,Kσ}σ∈Σ, C, I, e) with system matrices as in (3).

An innovation GB–SS representation ({Aσ,Kσ}σ∈Σ, C,
I, e, {uσ}σ∈Σ,y) that satisfies (3) can be viewed as a cascade
interconnection of two subsystems. Define the subsystems

S1


x1(t+ 1) =

∑
σ∈Σ(Aσ,11x1(t) +Kσ,11e1(t))uσ(t)

+
∑
σ∈Σ(Aσ,12x2(t) +Kσ,12e2(t))uσ(t)

y1(t) =
∑2
i=1 C1ixi(t)) + e2(t)

S2

{
x2(t+ 1) = (Aσ,22x2(t) +Kσ,22e2(t))uσ(t)

y2(t) = C22x2(t) + e2(t)

Notice that S2 sends its state x2 and noise e2 to S1 as an
external input while S1 does not send information to S2. The
corresponding network graph is illustrated in Figure 2.

The necessity part of the proof of Theorem 1 is constructive,
and it is based on calculating an innovation GB–SS represen-
tation described in Theorem 1. For this calculation, we present
Algorithm 1 below, along with the statement of its correctness.

In order to present Algorithm 1, we define a (complete)
lexicographic ordering (≺) on Σ∗: v ≺ w if either |v| < |w|
or if v = ν1 . . . νk, w = σ1 . . . σk then ∃ l ∈ {1, . . . , k} such
that νi = σi, i < l and νl < σl. Let the ordered elements of
Σ∗ be v1 = ε, v2 = σ1, . . . and define M(j) as the number of
words of length at most j. We then define the observability
matrix Ok up to k of a tuple of matrices ({Ãσ}σ∈Σ, C̃) as
Ok = [(C̃Ãv1)T · · · (C̃Ãvk)T ]T ., where Aσ , σ ∈ Σ is an n×n
matrix, and C is a p× n matrix.

Algorithm 1 Block triangular minimal innovation GB–SS
representation

Input Ãσ ∈ Rn×n,K̃σ ∈ Rn×m, σ ∈ Σ, C̃ ∈ Rp×n

Output ({Aσ,Kσ}σ∈Σ, C)

Step 1 Define the sub-matrix consisting of the last p2 rows
of C̃ by C̃2 ∈ Rp2×n and take the observability matrix
ÕM(n) of ({Ãσ}σ∈Σ, C̃2) up to n. If ÕM(n) is not of full
column rank then define the non-singular matrix T−1 =[
T1 T2

]
such that T1 ∈ Rn×n1 spans the kernel of ÕM(n).

If ÕM(n) is of full column rank, then set T = I .
Step 2 Define the matrices Aσ = TÃσT

−1, Kσ = TK̃σ

for σ ∈ Σ and C = C̃T−1.

Lemma 1. Denote the GB–innovation process of y by e.
Assume that ({Ãσ, K̃σ}σ∈Σ, C̃, I, e) is a minimal innovation
GB–SS representation of ({uσ}σ∈Σ,y) of dimension n. Let
{Aσ,Kσ}σ∈Σ and C denote the matrices returned by Algo-
rithm 1

Then ({Aσ,Kσ}σ∈Σ, C, I, e) is a minimal innovation GB–
SS representation of ({uσ}σ∈Σ,y), and the matrices {Aσ}σ∈Σ

and C are in the form

Aσ =

[
Aσ,11 Aσ,12

0 Aσ,22

]
C =

[
C11 C12

0 C22

]
(4)

where Aσ,ij ∈ Rni,nj , Cij ∈ Rpi,nj , i, j = 1, 2 for some
n1 ≥ 0, n2 > 0. In addition, if y1 does not GB–Granger
cause y2, then the matrices {Kσ}σ∈Σ are in the form

Kσ =

[
Kσ,11 Kσ,12

0 Kσ,22

]
, (5)

where Kσ,ij ∈ Rni×pj , i, j ∈ {1, 2} and S2 =
({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a minimal innovation GB–
SS representation of ({uσ}σ∈Σ,y2).

The proof of Lemma 1 can be found in Appendix.

Remark 3. From Lemma 1, it follows that if y1 does not GB–
Granger cause y2, then Algorithm 1 calculates the system
matrices of the GB–SS representation described in Theo-
rem 1. As it was mentioned in Remark 1, a minimal GB-
SS representation in forward innovation form serving as the
input of Algorithm 1 can be calculated from any GB–SS
representation of ({uσ}σ∈Σ,y) using [6, Algorithm 1]. Hence,
Algorithm 1 provides a constructive proof of the necessity part
of Theorem 1, by calculating a minimal innovation GB–SS
representation that characterizes GB–Granger non-causality.

Remark 4 (Checking GB-Granger causality). Algorithm 1
can be used for checking GB-Granger causality as follows.
Assume we know the matrices of a minimal GB-SS represen-
tation of ({uσ}σ∈Σ,y) in forward innovation form along with
the covariance matrices. Qσ = E[e(t)eT (t)u2

σ(t)], σ ∈ Σ.
Check if the matroces {Aσ,Kσ}σ∈Σ and C returned by Algo-
rithm 1 satisfy (4) and (5), and if S2 = ({Aσ,22,Kσ,22}σ∈Σ,
C22, I, e2) is a minimal innovation GB–SS representation of
({uσ}σ∈Σ,y2). By Lemma 1 and Theorem 1 both tests are
positive, if and only if y1 does not GB–Granger cause y2. In
order to check that S2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a
minimal GB-SS representation in innovation form, we proceed
as follows. It is clear that S2 is a realization of ({uσ}σ∈Σ,y2),
hence using [6, Algorithm 1] we can compute a minimal GB-
SS representation S̄2 of ({uσ}σ∈Σ,y) in forward innovation
form and the covariances Q̄σ = E[v(t)vT (t)u2

σ(t)], σ ∈ Σ
of the innovation process v of y2. S2 is a minimal GB-SS
representation in forward innovation form, if and only if S2

and S̄2 have the same dimension and the same noise process,
i.e., v = e2. For checking the latter, we can use the following
lemma.

Lemma 2. v(t) = e2(t) if and only if for all i = 1, . . . , p2,∑
σ∈Σ α

2
σ(t)(Q̄σ)i,i =

∑
σ∈Σ α

2
σ(t)(Qσ)p1+i,p1+i, where

{ασ}σ∈Σ are as in Definition 2.

The proof of Lemma 2 is presented in Appendix. Since
a minimal GB-SS representation in forward innovation form
can be calculated from suitable high-order moments of
({uσ}σ∈Σ,y) using [6, Algorithm 2], and the latter moments
could be estimated from sampled data, the procedure above
could be a starting point of a statistical test for checking GB-
Granger causality, similar to the one of [22] for LTI systems.
This remains a topic of future research.
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Example 1 (Numerical example). Consider a GBS-SS rep-
resentation ({Āσ, K̄σ}σ∈Σ, C̄, D̄, v̄) with d = 2, uσ(t) =
χ(θ(t) = σ), χ is the characteristic function, θ(t) ∈ {1, 2} i.i.d
process with P (θ(t) = 1) = 0.3. Then p1 = 0.3, p2 = 0.7.
Assume that the matrices are of the following form.

Ā1 =


0.8 0.9 −0.8 0.3
1.9 0.4 −1.4 1.5
2.9 1.7 −2.3 0.9
0.9 0.4 −0.6 0

 , K̄1 =


1.1 1.5
1.1 0.9
2.3 3
0.6 0.7



Ā2 =


−1.38 −0.42 1.24 −1.64
−0.66 −0.58 0.68 −0.52
−2.76 −1.08 2.48 −2.84
−0.68 −0.32 0.6 −0.56

 , K̄2 =


0.2 1.24
0.2 0.84
0.44 2.52
0.12 0.56


C̄ =

[
8.5 5.5 −8 11
3.5 −1.5 −2 4

]
D̄ = I2, E[v(t)vT (t)u2

σ(t)] = pσI2, σ = 2, and v(t) is a
Gaussian white noise process with covariance I2. The output
of this GB-SS representation is y =

[
yT1 yT2

]
, yi ∈ R.

We transform this GB-SS representation to a minimal GB-SS
representation in forward innovation form using [6, Algorithm
1] and then we apply Algorithm 1. The matrices of resulting
GB-SS representation ({Aσ,Kσ}σ∈Σ, C, I, e) are

A1 =


−1.72 −2.64 −2.75 −0.68
0.86 1.42 2.45 0.76

0 0 −0.62 −0.03
0 0 1.11 −0.18

],

A2 =


0.98 1.53 4.23 1.32
−0.56 −0.9 −2.47 −0.89

0 0 −0.26 −0.02
0 0 1.04 0.14

 ,

K1 =


2.33 3
−1.63 −1.83

0 −0.09
0 0.45

 , K2 =


0.45 2.5
−0.3 −1.59

0 −0.02
0 0.32


C =

[
−2.24 −5.39 −14.41 −6.76

0 0 −5.86 0.43

]
and Qσ = E[e(t)eT (t)u2

σ(t)] = pσI2, and hence they satisfy
(4) and (5) with n1 = n2 = 2. Following Remark 4, we
can check that ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a minimal
innovation GB–SS representation of ({uσ}σ∈Σ,y2): e2(t) is
scalar valued and E[e2

2(t)] = α2
1(Q1)22 +α2

2Q22 = 1, and the
minimal GB-SS representation of y2 in forward innovation
form has dimension 2 and the variance of its noise process is
1. From this, we can conclude that y1 does not GB-Granger
cause y2.

V. CONCLUSIONS

In this paper, we proposed a new concept, called GB–
Granger causality for defining causality in a statistical manner
between processes that are outputs of GB–SS representations.
We showed that GB–Granger causality can be characterized
by structural properties of GB–SS representations, namely,
absence of GB-Granger causality is equivalent to existence
of a GB-SS representation which is a cascade interconnection

of two subsystems. Moreover, we proposed an algorithm for
calculating such a GB-S representation. When applied to LTI–
SS representations, these result boil down to the known corre-
spondence between Granger causality and structural properties
of LTI–SS representations [1], [13], [16].

The results could be used for developing statistical hypoth-
esis testing for the presence of GB–Granger causality, in a
similar manner as it was done for linear systems and Granger
causality [22]. This extension, which would have potential
applications in e.g. neuroscience and econometrics, remains
a future work.

Acknowledgment This work was partially funded by CPER
Data project, co-financed by European Union, European Re-
gional Development Fund (ERDF), French State and the
French Region of Hauts-de-France, and by PEPS Blanc INS2I
2019 project financed by CNRS, France.

APPENDIX - PROOFS

Proof of Lemma 1: In order to prove Lemma 1, we use the
following result:

Lemma 3. Consider an innovation GB–SS representation
({Aσ,Kσ}σ∈Σ, C, I, e, {uσ}σ∈Σ,y) with state process x.
Then, El[zy+

v (t)|Hzy
w

t,w∈Σ+ ] = CAvx(t), for all v ∈ Σ+.

Proof. Recall that Hzy
w

t,w∈Σ+ is the Hilbert space generated by
the past {zyw}w∈Σ+ of y w.r.t. {uσ}σ∈Σ. From [6, Eq. (38)],
we know that E[zy+

v (t)(zyσw(t))T ] = E[y(t)(zyσwv(t))
T ] =

CAvAwGσ for all σ ∈ Σ, v ∈ Σ+, w ∈ Σ∗, where for σ ∈ Σ
Gσ = AσPσC

T + KσQσ and Pσ = E[x(t)(x(t))Tu2
σ(t)].

Also, from [6, Lemma 12] we know that E[x(t)(zyσw(t))T ] =
AwGσ for all σ ∈ Σ, w ∈ Σ∗. Hence, E[zy+

v (t)(zyσw(t))T ] =
CAvE[x(t)(zyσw(t))T ] for all v, σw ∈ Σ+. Considering
that x(t) ∈ Hze

w
t,w, and that Hze

w
t,w ⊆ H

zy
w
t,w, we obtain that

El[z
y+
v (t)|Hzy

w

t,w∈Σ+ ] = CAvx(t).

Cont. proof of Lemma 1: The following statements should
be proven: 1) C is of the form (4), 2) Aσ is of the form (4), 3)
if y1 does not GB–Granger cause y2, then first, Kσ is of the
form (5), and second, 4) ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a
minimal innovation GB–SS representation of ({uσ}σ∈Σ,y2).
Below, we prove statements 1)–4) one by one.Throughout the
proof, T =

[
T1 T2

]−1
denotes the matrix defined in Step 1.

of Algorithm 1.
1) Since the first p2 rows of ÕM(n) equal C2 and the

columns T1 span ker ÕM(n), it follows that C2T
−1 =[

0 C22

]
with some C22 ∈ Rn2×n2 , 0 < n2 ≤ n.

2) We first show that ker ÕM(n) = ker ÕM(n+1). Define
Xk = ker ÕM(k) for k = 0, ......n + 1, where ÕM(k) is
the observability matrix of ({Ãσ}σ∈Σ, C̃2) up to k. Then,
either C̃2 = 0, in which case ker ÕM(n) = ker ÕM(n+1)

trivially holds, or dim(X0) = dim(ker C̃2) < n. Notice that
Xk−1 ⊇ Xk for k = 1, ......n + 1. This and dim(X0) < n
imply that there exists an l ∈ {1, . . . , n}, such that dim(Xk) =
dim(Xk+1) and Xk = Xk+1 for all l ≤ k. By using that Xn =
Xn+1 and that the rows of ÕM(n) and ÕM(n)Ãσ are rows of
ÕM(n+1), we obtain that Xn is Aσ-invariant for all σ ∈ Σ.
Since the columns of T1 span Xn, we obtain that ÃσT1 =
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T1N ∈ Xn for a suitable matrix N ∈ Rn1×n1 . Let Aσ =

TÃσT
−1 =

[
Aσ,11 Aσ,12

Aσ,21 Aσ,22

]
, where Aσ,ij ∈ Rni×nj and

notice that TÃσT−1 =
[
TÃσT1 ÃσT2

]
=
[
TT1N ÃσT2

]
.

Then, (TT1N)T = [N 0] implies that Aσ,21 = 0.
3) In order to see that the matrices {Kσ}σ∈Σ are as in (5),

we prove a sequence of statements (i)–(ii)–(iii)–(iv)–(v) and
(vi), below, where (vi) states that {Kσ}σ∈Σ satisfy (5).

(i) x2(t) ∈ Hzy2
w

t,w∈Σ+

(ii) E[zyw(t)(zev(t))
T ] = 0 for all |v| < |w|, w, v ∈ Σ+

(iii)
Hzy2

w

t,w∈Σ+ = ⊕
σ∈Σ

(
Hzy2

wσ

t+1,w∈Σ+ ⊕H
ze2
σ
t+1

)
,

where ⊕ denotes the direct sum of orthogonal closed
subspaces and Hzy2

wσ

t+1,w∈Σ+ denotes the Hilbert space
generated by {zy2

wσ(t+ 1)}w∈Σ+ , see also (iv) below.
(iv) There exist {Nσ}σ∈Σ ∈ Rn2×p2 , r ∈ ⊕

σ∈Σ
Hzy2

wσ

t+1,w∈Σ+ ,

such that x2(t+ 1) = r +
∑
σ∈Σ

Nσz
e2
σ (t+ 1).

(v) Let Kσ = [Kσ,21Kσ,22], such that Kσ,21 ∈ Rn2×p1 ,
Kσ,22 ∈ Rn2×p2 . Then for σ ∈ Σ, [Kσ,21Kσ,22]E[zeσ(t+
1)(zeσ(t+ 1))T ] = NσE[ze2

σ (t+ 1)(zeσ(t+ 1))T ].
(vi) Kσ,21 = 0 for all σ ∈ Σ.

Next, we prove (i)–(vi), one-by-one.
(i): By using (4), for any v ∈ Σ+

CAv =

[
C11(Av)11 N

0 C22(Av)22

]
, (6)

where (Av)11 ∈ Rn1×n1 and (Av)22 ∈ Rn2×n2 are the
upper and lower block diagonal sub-matrices of Av , and
N ∈ Rp1×n2 is an appropriate matrix. Notice that for a
suitable permutation matrix P , it holds that POM(n) =[
N1 N2

0 OM(n)

]
, where OM(n) is the observability matrix of

({Aσ,22}σ∈Σ, C22) up to n and N1, N2 are appropriate ma-
trices. Notice now that x(t) = O+

M(n)El[Z
y
n (t)|Hzy

w
t,w], where

Zy
n (t) = [(zy+

v1 (t))T , . . . , (zy+
vM(n−1)

(t))T ]T , where zy+
vi (t) is

the future of y(t) w.r.t. the input along vi, i = 1, . . . ,M(n−
1), (see Definition 1). Since PTP = I , (POM(n))

+ =

O+
M(n)P

T . Hence, x(t) = (PO+
M(n))El[PZ

y
n (t)|Hzy

w
t,w].

Note that PZy
n (t) =

[
(Zy1

n (t))T (Zy2
n (t))T

]T
, where

Zyi
n (t) = [(zyi+v1 (t))T , . . . , (zyi+vM(n−1)

(t))T ]T , i = 1, 2

and thus x2(t) = O+
M(n)El[Z

y2
n (t)|Hzy

w

t,w∈Σ+ ]. Then, the

GB–Granger non-causality condition El[Z
y2
n (t)|Hzy

w

t,w∈Σ+ ] =

El[Z
y2
n (t)|Hzy2

w

t,w∈Σ+ ] implies that x2(t)Hzy2
w

t,w∈Σ+ .
(ii): From [6, Lemma 14] it follows that [yT , eT ]T is

ZMWSSI. Hence, we can apply [6, Lemma 7] for [yT , eT ]T :
Let w = w1 . . . wk ∈ Σ∗ and v = v1 . . . vl ∈ Σ∗, s.t.
|v| < |w|. If wk−i 6= vl−i for some i = 0, . . . , l − 1, then
[6, Lemma 7] implies that the covariance E[zyw(t)(zev(t))

T ] =
0. If wk−i = vl−i for all i = 0, . . . , l − 1, then
E[zyw(t)(zev(t))

T ] = pv2...vlE[zyw1...wk−l−1
(t)(zev1(t))T ] =

pvE[zyw1...wk−l−1
(t)eT (t)] = 0, where for the last equation

we used that from Definition 5 E[zyw1...wk−l−1
(t)eT (t)] = 0.

(iii): Consider an innovation GB–SS representation of

({uσ}σ∈Σ,y2) and note that by the GB–Granger non-causality
condition, the GB–innovation process of y2 is e2. Then, by
[6, Lemma 16] we can decompose Hzy2

w

t,w∈Σ+ as in (iii).

(iv): From (i), we have that x2(t+ 1) ∈ Hzy2
w

t+1,w∈Σ+ . Then,
by using (iii), x2(t+ 1) = r +

∑
σ∈ΣNσz

e2
σ (t+ 1) for some

r ∈ ⊕
σ∈Σ
Hzy2

wσ

t+1,w∈Σ+ and {Nσ}σ∈Σ ∈ Rn2×p2 .

(v): To shorten the expressions, define k = t+1. Notice that
by using the block triangular form of {Aσ}σ∈Σ, we obtain
that x2(k) =

∑
σ∈Σ

Aσ,22z
x2
σ (k) + [Kσ,21Kσ,22]zeσ(k). From

[6, Lemma 14], it follows that [eT ,yT ,xT ]T is ZMWSSI,
and hence [eT ,xT2 ]T is also ZMWSSI w.r.t. {uσ}σ∈Σ. By
applying [6, Lemma 7] for [eT ,xT2 ]T , we have that if
σ 6= σ∗, then E[zeσ(k)(zx2

σ∗(k))T ] = E[zeσ(k)(zeσ∗(k))T ] =
0. Also, by Definition 5, E[zeσ∗(k)(zxσ(k))T ] = 0 for
σ = σ∗, and since for any σ ∈ Σ, zx2

σ is formed
by a component of zxσ , we have that for σ = σ∗,
E[zeσ∗(k)(zx2

σ (k))T ] = 0. Hence, E[x2(k)(zeσ(k))T ] =
[Kσ,21Kσ,22]Qσ, where Qσ = E[zeσ(k)(zeσ(k))T ]. By
using (iv), we also obtain that E[x2(k)(zeσ∗(k))T ] =
E[rzeσ∗(k))T ] +

∑
σ∈ΣNσE[ze2

σ (zeσ∗(k))T ]. Notice that from
(ii) and from r ∈ ⊕

σ∈Σ
Hzy2

wσ

k,w∈Σ+ , we know that E[rzeσ∗(k))T ] =

0. Hence, E[x2(k)(zeσ(k))T ] = NσE[ze2
σ (k)(zeσ(k))T ], which

equals [Kσ,21Kσ,22]Qσ . Substituting k = t+1, we obtain (v).
(vi): Since e2 is formed by the last p2 components of e,

we have that NσE[ze2
σ (t + 1)(zeσ(t + 1))T ] =

[
0 Nσ

]
Qσ

and hence
[
0 Nσ

]
Qσ =

[
Kσ,21 Kσ,22

]
Qσ . By Assump-

tion 1, Qσ is positive definite which implies that
[
0 Nσ

]
=[

Kσ,21 Kσ,22

]
, hence Kσ,21 = 0.

4) Denote the state process of the minimal innovation GB–
SS representation G of ({uσ}σ∈Σ,y), that the output matrices
of Algorithm 1 define, by [xT1 ,x

T
2 ]T , where x1 ∈ Rn1 ,

x2 ∈ Rn2 . To see that G2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2),
with state process x2, defines a minimal innovation GB–
SS representation of ({uσ}σ∈Σ,y2), notice that from the
GB–Granger non-causality condition, and from Definition 5,
it follows that G2 is an innovation GB–SS representation.
Assume indirectly that G2 is not minimal, i.e. that there
exists a minimal innovation GB–SS representation G̃2 =
({Ãσ,22, K̃σ,22}σ∈Σ, C̃22, I, e2) of ({uσ}σ∈Σ,y2) with state
x̃2 ∈ Rñ2 , where ñ2 < n2.

From Lemma 3, it follows that El[Zy2
n2

(t)|Hzy2
w

t,w∈Σ+ ] =

ÕM(n2)x̃2(t), where ÕM(n2) is the observability matrix
of ({Ãσ,22}σ∈Σ, C̃22) up to n2. Then, by defining
L = O+

M(n2)ÕM(n2), where OM(n2) is the observability
matrix of ({Aσ,22}σ∈Σ, C22) up to n2, we have that
x2 = Lx̃2. By using L, we can transform G into an
innovation GB–SS representation G̃ of ({uσ}σ∈Σ,y)
with state process [xT1 , x̃

T
2 ]T . However, G̃ has dimension

n1 +ñ2 < n1 +n2 = n, which is a contradiction since n is the
dimension of a minimal innovation GB–SS representation.

Proof of Theorem 1: The sufficiency part of the proof
follows Lemma 1.

To prove the necessity part, let ({Aσ,Kσ}σ∈Σ, C, I, e)
be a minimal innovation GB–SS representation of
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({uσ}σ∈Σ,y = [yT1 ,y
T
2 ]T ), such that (3) holds and

that G2 = ({Aσ,22,Kσ,22}σ∈Σ, C22, I, e2) is a minimal
innovation GB–SS representation of ({uσ}σ∈Σ,y2). To prove
that y1 does not GB–Granger causes y2, we need to see that

El[z
y2+
v (t)|Hzy

w

t,w∈Σ+ ] = El[z
y2+
v (t)|Hzy2

w

t,w∈Σ+ ] (7)

for all v ∈ Σ∗. For v = ε, (7) directly follows form that e2 is
the GB–innovation process of y2 w.r.t. {uσ}σ∈Σ. By (3), the
matrices {Aσ}σ∈Σ and C are block triangular, hence CAv is
as in (6). It then follows from Lemma 3 that

El[z
y2+
v (t)|Hzy

w

t,w∈Σ+ ] = C22(Av)22x2(t). (8)

By projecting both side of (8) onto Hzy2
w

t,w∈Σ+ , and by using

that x2(t) ∈ Hzy2
w

t,w∈Σ+ (see [6, Theorem 5]), we get that

El[z
y2+
v (t)|Hzy2

w

t,w∈Σ+ ] = C22(Av)22x2(t). By considering (8),
the latter implies (7), i.e. that there is no GB–Granger causality
from y1 to y2.

Proof of Lemma 2. Note that Hzy2
w

t,w∈Σ+ ⊆ Hzy2
w

t,w∈Σ+ , and

v(t) = y2(t) − El[y2(t) | Hzy2
w

t,w∈Σ+ ], e2(t) = y2(t) −
El[y2(t) | Hzy

w

t,w∈Σ+ ], hence by the minimal distance property
of orthogonal projections, E[(v(t))2

i ] = E[(e2(t))2
i ], i =

1, . . . , p if and only if e2(t) = v(t), where (v(t))i, (e2(t))i
denote the ith entry of v(t) and e2(t) respectively. Note that
e2(t) =

∑
σ∈Σ ασe2(t)uσ(t), v(t) =

∑
σ∈Σ ασv(t)uσ(t).

As e2,v are ZMWSII processes, E[e2(t)eT2 (t)uσ(t)uσ′ (t)] =
0, E[v(t)vT (t)uσ(t)uσ′ (t)] = 0 for all σ 6= σ

′
, σ, σ

′ ∈ Σ.
Hence, E[(v(t))2

i ] =
∑
σ∈Σ α

2
σ(t)(Q̄σ)i,i, E[(e2(t))2

i ] =∑
σ∈Σ α

2
σ(t)(Qσ)p1+i,p1+i.
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[6] M. Petreczky and V. René, “Realization theory for a class of stochastic
bilinear systems,” IEEE Transactions on Automatic Control, vol. 63,
no. 1, pp. 69–84, 2017.

[7] H. Chen and J. M. Maciejowski, “A new subspace identification method
for bilinear systems,” 2001, CB2 1PZ U.K.

[8] P. DAlessandro, A. Isidori, and A. Ruberti, “Realization and structure
theory of bilinear dynamical systems,” SIAM Journal on Control, vol. 12,
no. 3, pp. 517–535, 1974.

[9] W. Favoreel, B. D. Moor, and P. V. Overschee, “Subspace identification
of bilinear systems subject to white inputs,” IEEE Transactions on
Automatic Control, vol. 44, no. 6, pp. 1157–1165, 1999.

[10] A. Isidori, “Direct construction of minimal bilinear realizations from
nonlinear input-output maps,” IEEE Transactions on Automatic Control,
vol. 18, no. 6, pp. 626–631, 1973.

[11] U. Desai, “Realization of bilinear stochastic systems,” IEEE Transac-
tions on Automatic Control, vol. 31, no. 2, pp. 189–192, 1986.

[12] M. Jozsa, M. Petreczky, and M. K. Camlibel, “Towards realization
theory of interconnected linear stochastic systems,” in 22nd International
Symposium on Mathematical Theory of Networks and Systems, 2016, pp.
120–122.

[13] P. E. Caines, R. Deardon, and H. P. Wynn, “Bayes nets of time series:
Stochastic realizations and projections,” in Optimal Design and Related
Areas in Optimization and Statistics, ser. Springer Optimization and Its
Applications, L. Pronzato and A. Zhigljavsky, Eds. Springer New York,
2009, vol. 28, pp. 155–166.

[14] M. Jozsa, M. Petreczky, and M. K. Camlibel, “Causality based graph
structure of stochastic linear state-space representations,” in 56th IEEE
Conference on Decision and Control, 2017.

[15] ——, “Relationship between causality of stochastic processes and zero
blocks of their joint innovation transfer matrices,” in 20th IFAC World
Congress, 2017, pp. 4954–4959.

[16] P. E. Caines and H. P. Wynn, “An algebraic framework for bayes
nets of time series,” in Modeling, Estimation and Control, ser. Lecture
Notes in Control and Information Sciences, A. Chiuso, S. Pinzoni, and
A. Ferrante, Eds. Springer Berlin Heidelberg, 2007, vol. 364, pp. 45–
57.

[17] L. Barnett and A. K. Seth, “Granger causality for state space models,”
Physical Review E, vol. 91, no. 4, pp. 737–739, 2015.

[18] C. A. Sims, “Money, income, and causality,” The American Economic
Review, vol. 62, no. 4, pp. 540–552, 1972.

[19] P. E. Caines, “Weak and strong feedback free processes,” IEEE Trans-
actions on Automatic Control, vol. 21, no. 5, pp. 737–739, 1976.

[20] J. Pearl, Causality: Models, Reasoning and Inference, 1st ed. Cam-
bridge University Press, 2000.

[21] I. Gikhman and A. Skorokhod, The Theory of Stochastic Processes II,
ser. Classics in Mathematics. Springer Berlin, 2004, vol. 1.

[22] M. Jozsa, “Relationship between granger non-causality and network
graphs of state-space representations,” Ph.D. dissertation, University of
Groningen, 2019.
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