
HAL Id: hal-02398483
https://hal.science/hal-02398483

Submitted on 7 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof, reasoning and logic at the interface between
Mathematics and Computer Science : toward a

framework for analyzing problem solving
Simon Modeste, Sylvain Beauvoir, Jonathan Chappelon, Viviane

Durand-Guerrier, Nicolás León, Antoine Meyer

To cite this version:
Simon Modeste, Sylvain Beauvoir, Jonathan Chappelon, Viviane Durand-Guerrier, Nicolás León, et
al.. Proof, reasoning and logic at the interface between Mathematics and Computer Science : toward
a framework for analyzing problem solving. Eleventh Congress of the European Society for Research
in Mathematics Education (CERME11), Utrecht University, Feb 2019, Utrecht, Netherlands. pp.284-
291. �hal-02398483�

https://hal.science/hal-02398483
https://hal.archives-ouvertes.fr

Proof, reasoning and logic at the interface between Mathematics and

Computer Science : toward a framework for analyzing problem

solving
1

Simon Modeste
1
, Sylvain Beauvoir

1
, Jonathan Chappelon

1
, Viviane Durand-Guerrier

1
, Nicolás

León
1
 and Antoine Meyer

2

1
IMAG, University of Montpellier, CNRS, Montpellier, France; simon.modeste@umontpellier.fr,

sylvain.beauvoir@ac-lyon.fr, jonathan.chappelon@umontpellier.fr, viviane.durand-

guerrier@umontpellier.fr, nicolas.leon@umontpellier.fr

2
LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, Université Paris-Est, Marne-la-Vallée, France;

antoine.meyer@u-pem.fr

After analyzing the relation between mathematics and computer science and the place given to

proof, logic and reasoning, we propose and discuss a framework for the study of their interactions

based on the ck¢ model. Then, we exemplify this model in the analysis of a problem, making explicit

a mathematical solution and an algorithmic solution.

Keywords: Mathematics, computer science, proof, reasoning, problem solving.

The research presented in this paper is part of a research project funded by the French National

Research Agency, called DEMaIn (Didactics and Epistemology of the interactions between

Mathematics and Informatics). This project, started in 2017, aims at better understanding the

relations between mathematics and computer science, from an epistemological view, in order to

tackle didactical issues (Modeste, 2016). It follows from two observations. On the institutional side,

computer science enters many curricula at different levels and in many countries (for France, see

Gueudet, Bueno-Ravel, Modeste, & Trouche, 2017). On the epistemological side, computer science

and mathematics share many concepts and methods (Modeste, 2016) and their frontier is rather

blurry. One of the main topics of the project deals with logic, language, proof and reasoning in

mathematics, computer science and their interactions. In this paper, we provide epistemological

insights regarding this topic and a framework for analyzing proof and reasoning in problem-solving

situations in mathematics and computer science, suited to analyze students activities in these fields,

including computer-assisted situations.

Proof, reasoning and logic in mathematics and computer science

Mathematics and computer science share common foundations, based on logic. Logic makes

explicit the language and the validation rules in both disciplines. This directly relates to the nature

of proof and reasoning in mathematics and computer science. In previous works we have shown

that the role of proof and reasoning is rather similar in mathematics and computer science, but with

an emphasis on different kinds of properties (Meyer & Modeste, 2018; Ouvrier-Buffet, Meyer, &

Modeste, 2018). Some specific types of proofs are particularly important at the interface of the two

disciplines, like mathematical induction, and its variations.

1
 Communication supported by the French National Research Agency <ANR-16-CE38-0006-01>.

mailto:simon.modeste@umontpellier.fr
mailto:sylvain.beauvoir@ac-lyon.fr
mailto:jonathan.chappelon@umontpellier.fr
mailto:viviane.durand-guerrier@umontpellier.fr
mailto:viviane.durand-guerrier@umontpellier.fr
mailto:nicolas.leon@umontpellier.fr
mailto:antoine.meyer@u-pem.fr

We consider that the activities in mathematics and computer science share common aspects, in

particular the central role of problem solving. Various models in logic can be used to describe and

structure the activities in mathematics or computer science. Following Durand-Guerrier (2008), we

consider that First-order logic (namely Predicate Calculus) is a relevant epistemological reference

for analyzing mathematical activity in a didactic perspective, allowing to take in consideration the

articulations between syntax and semantics. We have provided evidence in (Durand-Guerrier,

Meyer, & Modeste, to appear) that it is also the case for computer science.

In this paper, we will focus on four concepts and their relations: proof, formal proof, algorithm and

program.

Proof. We call proof (in mathematics or computer science) a finite sequence of statements organized

according to some determined rules (explicitly or implicitly) in order to convince someone of the

truth of a statement (Balacheff, 1987). The level of details of the proof generally depends on the

source and the recipient of the proof.

Formal proof. A formal proof is a text consisting of a finite sequence of statements, expressed in a

well defined formal language, where the statements are deduced from the previous ones or from

axioms following predefined deduction rules. Most of the proofs could be expressed as formal

proofs (if the axioms and deduction rules were made explicit). Nowadays, formal proofs are often

produced by or for software called proof checkers which can automatically validate a proof.

Algorithm. An algorithm is a finite sequence of organized instructions, that describes how to solve a

problem, that is, how to obtain a defined goal starting from given data. The steps must be

considered as elementary by the recipient of the algorithm, and the algorithm must not be

ambiguous. In other words, the producer of the algorithm and its recipient must agree on the

granularity of the details of the algorithm.

Program. A program is a text consisting of a finite sequence of instructions, written in a well

defined (programming) language, that is, having a precise syntax (structure of the language) and

semantics (effect of each instruction). An algorithm can be described with a program.

These definitions make clear the fact that the relations between proof and formal proof and between

algorithm and program are pretty similar, with, on one side, an informal description, more suitable

to human interactions (but also driven by some rationality) and on the other side, a formal language

with a precise syntax and semantic, that can be interpreted and checked by computer.

In previous work about algorithmics (Modeste, 2012; Modeste & Ouvrier-Buffet, 2011), we have

made explicit the links between algorithm and proof. In particular, any (constructive) proof can be

interpreted as an algorithm. In a more formal context, the Curry–Howard isomorphism states there

is a strict correspondence between programs and formal proofs.

We hypothesize that it is valuable taking into consideration these four concepts for questioning the

place of proof and reasoning in mathematics, computer science and their interactions.

Finally, let us precise what we will consider as reasoning. We enclose in reasoning, in mathematics

and computer science, all the human activities that permit to solve problems and increase the

epistemic value of properties or problem solutions. Reasoning is clearly at the origin of the building

of proofs, formal proofs, algorithms and programs, and is strongly related to logic. Indeed, logic is

built in order to model the way of reasoning and reasoning is based on a (not completely explicit)

set of logical rules (e.g. Mesnil, 2017).

This leads us to formulate the following research questions: What place and role do proof, formal

proof, algorithm and program have in the teaching and learning of mathematics, computer science

and their interactions? What is the nature of reasoning in computer science in comparison to

mathematics and how can we analyze this reasoning in problem-solving and proving activities?

To answer these questions, we are currently developing a framework that permits to analyze

problems, problem-solving and proving activities in mathematics and computer science. We will

first introduce our framework and then illustrate its possible use by an example. Finally, we will

briefly discuss the future development of this framework, in relation with our project’s goals.

A framework for analyzing reasoning and proving in problem-solving activity

Our framework is based on a specific definition of problem, on a framework called concept-

problem and on the ck¢ model.

The central notion of problem

The notion of problem and problem solving is central in mathematics and computer science. In the

literature, problems attest of the questions of the two fields and, in practice, they structure the

research activity. The notion of problem also carries the issue of generality, important in

mathematics and computer science. For our purpose, we will use a definition of problem, based on

theoretical computer science and computability and complexity theory (see, for instance, Garey &

Johnson, 1979). We consider a problem as a pair (I, Q) where I is a set of instances and Q a question

that can be instantiated on any of the element of I (Modeste, 2013). Solving a problem P=(I,Q) is

finding the answer to the question Q for any element i of I. This answer can be given by a formula

depending on i, any characterizations of the subsets of I for which the answer is a given value, an

algorithm that permits to construct the answer for any i, etc. In all cases, a proof can be given that

the proposed solution to P is correct, that is, for all i in I, the answer given to Q(i) is correct. This

definition is general enough to describe any problem.

In Modeste (2012, 2013) we have shown that this definition allows to conveniently analyze

curricula, textbooks and activities in algorithmics, in particular concerning the place given to proof.

Giroud (2011), has used a similar definition to develop what he called the “concept-problem”, in

order to study the problem-solving activities of students, mainly based on the Theory of Conceptual

Fields (Vergnaud, 2009). We will rely on Giroud’s idea that different problems can be related to the

main problem p studied (called by Giroud the situations “giving meaning to p”) and follow his idea

of representing problem solving with flowcharts between related problems.

The ck¢ model to analyze proof and reasoning

The ck¢ model (Balacheff, 2013) is an enrichment of Vergnaud’s Theory of Conceptual Fields. It

considers a concept as composed of four elements: a set P of the problems that give meaning to the

concept and a representation system L (the signifier), similarly to the model of Vergnaud; but it

separates the invariants in two types: a set R of operators that permit to transform a problem in

another one; and a set Σ of controls that permit to decide whether an operator r applies to a given

problem p, and to determine whether or not a problem is solved.

The ck¢ model has been designed to study proof and reasoning (this motivated the separation

between operators and controls) and to be appropriate for analyzing computer-assisted learning

situations. This leads us to use it in our research project for describing concepts and conceptions.

Description of the framework for analyzing problems

We use the ck¢ model, to describe concept-problems. For us, a concept-problem on a given problem

p will be described with:

 a set P of the problems that give meaning to the problem p, that is having a link with p,

 a set R of operators that transform a problem in another problem, we will denote p2=r(p1) if

the operator r transforms p1 in p2 or p1 →r p2,

 a set Σ of controls that describe if an operator r is relevant to apply on a problem or if a

problem is solved;

 a representation system L, that permits to describe elements of P, R and Σ.

In (Durand-Guerrier et al., to appear; Modeste, 2012) we have used such a framework to analyze

the concept “algorithm” and its relation to proof. We proposed to distinguish two levels of

problems, to bring to light a tool-object dialectic, and to differentiate the situations where proof

concerns the controls level (elements of Σ) and the situations where the studied problem p consists

in proving something. In this second case, the operators concern proving strategies and the controls

of Σ concern logic rules

(Σ can remain mostly implicit while controlling the use of the operators).

In this paper, we extend this framework to any situation in mathematics and computer science,

including problem-solving and proving situations, assisted or not with a computer. The framework

will allow us to focus on proof and reasoning in these activities.

Finally, we consider that the operators and controls occur at two (intertwined) levels: syntactic and

semantic. It is clear that the presence of a computer (programming tool, proof assistant or many

other tools
2
), brings some new controls (including feedback) that have a strong syntactic dimension.

For example, a very basic control can come from what is called syntactical analysis which checks if

an expression (formula, program, logic statement…) is well-formed with respect to the grammar of

the language. This kind of feedback from the computer can be considered as a purely syntactic

control. On the other hand, any interpretation (by the user) of the expression in terms of the objects

represented or for specific values of the variables would be considered as a semantic control.

Example of problem analysis

Tin this section, we illustrate the use of our framework for problem analysis, focusing on analyzing

the problem itself, the a priori analysis (analysis of students’ solving of the problem is one of our

next perspectives). We have selected a problem from a well-known website called Project Euler:

“Project Euler is a series of challenging mathematical/computer programming problems that will

require more than just mathematical insights to solve. Although mathematics will help you arrive at

elegant and efficient methods, the use of a computer and programming skills will be required to

solve most problems.” (https://projecteuler.net/). These problems, at the interface between

2
 For example CAS or softwares like Aplusix: www.aplusix.com/

https://projecteuler.net/
http://www.aplusix.com/

mathematics and computer science, seem interesting to us to confront our framework. We will

consider the following problem:

Problem 1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6

and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000.

In our framework, the problem can be described as an instance of the general problem P3-5=(I,Q)

with I the set of all natural numbers and Q(i) the question “What is the sum of all the multiples of 3

or 5 below i?”. Although the problem consists in solving P3-5(1000), the value 1000 is large enough

to require to think about the general problem while solving it.

Here, we will describe with flowcharts two ways of solving the problem3, one considered as more

“mathematical” and the other considered as more “algorithmic”. In the flowcharts, problems are

represented in blue and arrows between them represent the transformations under the action of an

operator (in green) selected according to a control in red (controls on operators and on the status of

problems). Sometimes, an operator can generate several problems. We will not give details about

the representation system L in this paper.

A “mathematical” solution

This solution is based on the observation that if we want to sum all the multiples of 3 and 5 under

1000, we can count the multiples of 3 and the multiples of 5, and only multiples of 15 will be

counted twice. Since we can derive from the formula of the sum of the first integers a formula for

the sum of the first multiples of any n, we can solve P3-5(1000). In the end, we can write:

The solving process is described more precisely by the flowchart in figure 1.

An “algorithmic” solution

This solution is based on an enumeration of the numbers below n, a test of the property “being a

multiple of 3 or 5” and an accumulation of the values satisfying the property. This can lead to this

algorithm (in a pseudo-code, close to the programming language Python):

3

 Due to space constraints, we cannot show all the solutions that we have identified in our a priori analysis.

The solving process is described more precisely by the flowchart in figure 2.

Figure 1: A mathematical solving

Discussion and comparison of the 2 solutions

The two solving processes analyzed show two very different (correct) strategies. We can clearly

distinguish the types of operators and controls that take part in the solutions. In the mathematical

solving process, we can notice how the use of algebraic operators (factorization, formula...) are

controlled and chosen regarding the sub-problem studied. In the algorithmic solving process, we

can notice operators and controls that make clearer the way decisions can be taken about choosing

algorithmic tools (“for” loop, “if” structure). Although operators and controls are different between

the two solving processes, we can notice that the framework allows to describe finely both of them.

This supports our claim that there are many common aspects of the problem-solving process in

mathematics and computer science.

Conclusion and perspectives

Or framework permits to analyze problem-solving strategies in mathematics and computer science,

with an emphasis on proof and reasoning. On the epistemological side, it puts light on the controls

in mathematics and computer science and will permit to discuss their differences and common

points, which can be taken into account in a didactical perspective. The framework should also

permit to describe and analyze problem-solving strategies developed by students, in particular faced

with problems that can be solved with mathematics and computer science. Another goal is to be

able to use this framework for situations that integrate formal tools (computer-assisted situations) –

by detailing syntactic controls and their use, which needs to detail the role of the system of

representations L – and for situations of proof and proving (by taking into account different levels

of control, as aforementioned). In the next step of the DEMaIn project, we will use this framework

in the design, analysis and experimentation of didactical situations at the interface of mathematics

and computer science.

Figure 2: A algorithmic solving

References

Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in

Mathematics, 18, 147–176.

Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. Martinez & A. Castro

Superfine (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the

International Group for the Psychology of Mathematics Education (pp. 2–15). Chicago, IL:

University of Illinois at Chicago. Retrieved from https://hal.archives-ouvertes.fr/hal-00853856/

Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM The International

Journal on Mathematics Education, 40/3, 373–384.

Durand-Guerrier, V., Meyer, A., & Modeste, S. (to appear). Didactical issues at the interface of

mathematics and computer science. In G. Hanna, D. Reid, & de V. Michael (Eds.), Proof

Technology in Mathematics Research and Teaching. Springer. Postprint at https://hal.archives-

ouvertes.fr/hal-01912885v1

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman.

Giroud, N. (2011). Étude de la démarche expérimentale dans les situations de recherche pour la

classe. Université de Grenoble. Retrieved from http://tel.archives-ouvertes.fr

Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France. A national

frame in transition. In D. R. Thompson, M. A. Huntley, & C. Suurtmamm, International

Perspectives on mathematics Curriculum. IAP.

Mesnil, Z. (2017). A reference for studying the teaching of logic. In CERME 10. Dublin, Ireland.

Retrieved from https://hal.archives-ouvertes.fr/hal-01865656

Meyer, A., & Modeste, S. (2018). Recherche binaire et méthode de dichotomie, comparaison et

enjeux didactiques à l’interface mathématiques - informatique. EMF Conference 2018, Paris.

Modeste, S. (2012). Enseigner l’algorithme pour quoi ? Quelles nouvelles questions pour les

mathématiques ? Quels apports pour l’apprentissage de la preuve ? (Manuscrit de thèse).

Université de Grenoble. Retrieved from https://tel.archives-ouvertes.fr/tel-00783294/

Modeste, S. (2013). Modelling algorithmic thinking : the fundamental notion of problem. In

proceedings of CERME 8. Antalya (Turkey).

Modeste, S. (2016). Impact of Informatics on Mathematics and Its Teaching. In F. Gadducci & M.

Tavosanis (Eds.), History and Philosophy of Computing (pp. 243–255). Springer.

Modeste, S, & Ouvrier-Buffet, C. (2011). The appearance of algorithms in curricula, a new

opportunity to deal with proof? In Proceedings of CERME 7. Poland: University of Rzeszów.

Retrieved from http://www.cerme7.univ.rzeszow.pl/index.php?id=wg1

Ouvrier-Buffet, C., Meyer, A., & Modeste, S. (2018). Discrete mathematics at university level.

Interfacing mathematics, computer science and arithmetic. Presented at the Second INDRUM

Conference. Retrieved from https://hal.archives-ouvertes.fr/hal-01849537

Vergnaud, G. (2009). The Theory of Conceptual Fields. Human Development, 52(2), 83–94.

https://doi.org/10.1159/000202727

https://hal.archives-ouvertes.fr/hal-00853856/
https://hal.archives-ouvertes.fr/hal-01912885v1
https://hal.archives-ouvertes.fr/hal-01912885v1
http://tel.archives-ouvertes.fr/
https://hal.archives-ouvertes.fr/hal-01865656
https://tel.archives-ouvertes.fr/tel-00783294/
http://www.cerme7.univ.rzeszow.pl/index.php?id=wg1
https://hal.archives-ouvertes.fr/hal-01849537
https://doi.org/10.1159/000202727

