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Explanatoriness as a value in mathematics and mathematics teaching 

Eva Müller-Hill 

University of Rostock, Germany; eva.mueller-hill@uni-rostock.de 

In this foremost philosophical paper, I propose a rather holistic idea of (re)establishing 

mathematical proof in school mathematics by explicating and enacting the particular merits of 

mathematical proof with respect to a variety of mathematical activities, e.g.: observation, 

systematic variation of example cases, informal argumentation, defining, hypothesising, inductive 

and abductive reasoning. Such activities are connected naturally to proving in practices of 

mathematics, with “practice” referring both to mathematics as a human endeavor in general, and 

to mathematics a (scientific) discipline. To this end, a concept of “mathematical value” from the 

philosophy of mathematical practice is employed. I focus exemplarily on the value of 

explanatoriness, which is both a core merit of good proof in scientific mathematical practice, and 

an important didactical goal of teaching proof.  

Keywords: explanation, mathematical value, proof, philosophy, mathematical practice. 

Introduction 

From the perspectives of mathematics education research and curriculum development, it is widely 

agreed to date that mathematical proving shall be encouraged and fostered in school mathematics 

throughout all content areas and grade levels. At the same time, at least in Germany, standards of 

rigor and formalization in classroom proving changed rapidly in comparison to, e.g., the traditional 

Euclidean paradigm of proof in elementary geometry, or to algebraic proving in the      

calculus, and developed into content-oriented, depictive, or intuitive ways of argumentation. In spite 

of the efforts to make mathematical proving an integrated core element throughout the curriculum, 

the demand for more proving in German mathematics classrooms frequently produces teachers’ 

complaints: the curriculum is too dense, time is too short, and after all, proof is not that relevant for 

the final exams; pupils don’t like proof, they are afraid they cannot handle it and fall into blockade, 

and after all, proof is not that relevant for students’ future lives. This phenomenon can, probably 

and partly, be explained as an enduring symptom of a perceived “false dichotomy” (Sierpinska, 

2005) of mathematical proving on the one hand, and other kinds of mathematical activities on the 

other. Such a dichotomy may have been over-emphasized by both the traditional university part of 

mathematics teacher education (at least in Germany), and by the former, strong curricular focus on 

proofs in the context of elementary geometry, with a sustainable effect on teaching attitudes and 

beliefs that cannot be simply suppressed by declarations of curricular intent (compare also Knuth, 

2002) for similar aspects of teachers’ proof conceptions and attitudes towards teaching proof in the 

U.S.). Hence, there appears to be an ongoing need for clarification of a reasonable interpretation of 

the call for more proving in mathematics classrooms. This need was already expressed by 

Stylianides (2007), together with the proposal of defining a framing core concept of mathematical 

proof to be explicated and enacted in classroom (pp. 291f.), which can be coherently specified both 

with regard to different loops of the curricular spiral, and to different fields of mathematical 

content, and which allows for a clear distinction from inductive, “empirical“ (p. 298) arguments. In 
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recent years, the awareness of this need has also led to a deep discussion in mathematics education 

about diverging and common aspects of mathematical proof and argumentation (Mariotti et al. 

2018). A substantial part of this debate is devoted to logical or cognitive aspects, including the role 

of deductive vs. other forms of inferential reasoning, of argumentation base, of language, 

symbolism, or other semiotic elements (ibid.), e.g., the analysis of structural and referential aspects 

of argumentations and proofs that provide cognitive unity in conjecturing-and-proving learning 

settings (Fiallo & Gutierrez 2017), or the examination of the coordination of different registers in 

the transition from argumentation to proving (Duval, 2007; with a different reading of “epistemic 

value” than I will use in the following). 

Focus and rationale of this paper 

The approach I want to propose here is, in a way, a complementary one. One main difference is that 

it does not aim at a closed definition of what mathematical proof is, nor at an emphasis of a clear-

cut distinction of proving vs. non-deductive forms of mathematical activities, e.g., inductive or 

abductive argumentation based on variation of example cases. A second main difference is the idea 

that an investigation of mathematical proving and related activities that sticks to the logical and 

cognitive aspects, might not suffice to grasp all epistemologically relevant facets, which may 

partially conform to approaches employing Habermas’ model of rational behavior (reported in 

Mariotti et al. 2018). The term “false dichotomy” cited above refers to Michael Otte’s view of 

complementary facets of proving in mathematics (Otte, 1990, p. 59ff.), and emphasizes intuitive, 

social, and metaphorical facets of proof which cannot be properly modeled with regard to the logic 

and cognitive functioning of proof or argumentation. Several much more recent studies from 

different fields suggest that, in a similar vein, issues of epistemic values essentially connected to 

mathematical proving, like explanatoriness, transcend the scope of logical and cognitive matters, 

due to a discursive character, to non-reducible pragmatic and affective aspects, and also to the 

metaphysics of mathematical proving; compare, e.g., (Müller-Hill, 2011) on the epistemic role(s) of 

formalizability as a feature of discursive proving actions, (Novaes, 2018) on explanatoriness within 

a dialogical conceptualiziation of mathematical proof, (Andersen, 2018) on a socio-empirically 

informed view on acceptable gaps in proofs, (Johansen & Misfeldt, 2016) on argumentation and 

problem choice as mathematical values, or (Dawkins & Weber, 2017) on the integral role of values 

like "increasing mathematical understanding" for the “apprenticeship of students into proving 

practice” (p. 123). Thus, a focus on explanatoriness as an epistemic value does not mean to exclude 

other perspectives than the epistemological one, but is inclusive to, e.g., sociological, 

communicative, and pragmatic perspectives. The following sections aim at indicating first steps into 

the direction of a program which consists of (1) explicating the particular epistemic merits of the 

idea of proof that become manifest in the activity of proving in mathematical practice, (2) 

understanding these coherently in view of the whole process of hypothesizing, generating and 

communicating proof, (3) emphasizing aspects and features of what counts as proof in mathematical 

practice that play a particular role in achieving these merits, and (4) indicating elements of a variety 

of mathematical activities, particularly the generation, operation with, and variation of examples, 

that already correspond to these aspects and features of proof. In the next two sections, a number of 

useful concepts, conceptions and results have to be introduced in quite curtate descriptions. First, I 



 

 

provide conceptual considerations as well as exemplary socio-empirical evidence for an 

understanding of explanatoriness as a core epistemic value of scientific mathematical practice in the 

sense described above. This goes hand in hand with the stance that the epistemic nature of the 

scientific discipline of mathematics, understood as a human practice and endeavor which generates, 

communicates and imparts mathematical knowledge and skills, is relevant to the teaching and 

learning of mathematics for principal reasons. I then sketch a philosophically informed didactical 

model of mathematical explanation, developed in (Müller-Hill, 2017), and a model of the interplay 

of deduction, induction, and abduction in explanation processes. I shortly review the socio-

empirical insights on the background of these models, and finish with a glimpse on future work in 

enacting explanatoriness as a value in school mathematics. 

Explanatoriness as an epistemic value in scientific mathematical practice 

I employ a concept of value here that emerged in recent discussions within philosophy of 

mathematics (see Larvor, 2016). I follow Ernest’s understanding of value as something that is 

“expressed through the action of valuing”, and “manifested in both the prizing of certain 

characteristics and in the making of fundamental choices” (Ernest, 2016, p. 190), including besides 

ontic, aesthetic, and ethical values also epistemic values (p. 191). Ernest discusses the epistemic 

values of truth, provability, universalism, objectivism, and rationalism (pp. 193ff.).  Explanation is 

a well-known and frequently discussed function of mathematical proof, both from the point of view 

of philosophy and of mathematics education. Frequently proposed features of explanatory proofs 

are, e.g., surveyability (Müller-Hill, 2013), reference to characteristic features of the involved 

mathematical entities and structures (Steiner, 1978), or width (Hanna, 2014). These are more or less 

intrinsic features of mathematical proofs as objects. Understanding explanatoriness as a 

fundamental value, which manifests itself particularly in activities related to mathematical proving, 

somehow changes the perspective: Explanatoriness is conceptualized rather dialectically by looking 

for traces of valuing actions (like prizing and choice-making) directed at proving in mathematical 

practice that may indicate this value. The issue of (epistemic) values in mathematics has, with 

exceptions like (Lorenzen, 1974, pp. 152ff.), rather been neglected by philosophy of mathematics 

until recently (Ernest 2016, p. 191) due to the methodological paradigm of classical analytical 

philosophy, which also dominated philosophy of mathematics for quite a long time. Accordingly, 

philosophy can contribute to an epistemology of mathematics by conceptually grasping epistemic 

features of proof through semantic analysis of, e.g., knowledge attributions, resulting in truth-

conditions. Concerning the question of epistemic values in actual mathematical practice, a different 

approach is needed that can take concrete valuing actions like prizing and choice-making of 

practicing mathematicians into account. Valuing actions directed to mathematical proving may 

include the way in which examples are chosen and exploited during a proving process, the prizing 

of alternative hypotheses, the choice of definitions and methods, the degree of formalization and 

abstraction, the representations used, or the fine-grainedness of the argumentation. Philosophy of 

mathematical practice, a transdisciplinary endeavor at the intersection of philosophy and sociology 

of mathematics, has developed conceptual and methodological frameworks that allow appropriate 

investigation of such issues.  

Results from a socio-empirically informed epistemological study 



 

 

In this paragraph, I will review exemplary empirical results from an interview study (Müller-Hill, 

2011) conducted with mathematicians of high standing, from various fields of professional 

specialization areas, under the lenses of explanatoriness as an epistemic value in mathematical 

practice (for further methodological details and results of this study, see also (Müller-Hill, 2013)). 

In general, the interviewees thoroughly point to a strong relation between explanatory proofs and 

understanding why the proven theorem holds (ibid.; particularly aspects (2)-(4)). This is in line with 

the close relationship of explanation and understanding which is widely agreed upon in 

philosophical as well as in didactical discussions (see, e.g., the still prominent, well-differentiated 

discussion in (Sierpinska, 1994), or the very recent (Dawkins & Weber 2017)). Furthermore, 

selected quotes from (Müller-Hill, 2011) display that prizing and choice-making within processes of 

generating, communicating and assessing proofs in mathematical practice happens with respect to 

the robustness of hypotheses and arguments under local and global attacks, e.g., when “try[ing] to 

shoot holes in it” and “ask questions why it is true, why it works this way, not that way” (Interview 

4, p. 246). This appears to be particular relevant in review processes, as “the right way of 

understanding the contribution that [a] new proof brings” is to ask “what is really the new idea” that 

“makes something work that previously did not work”, and to find “the key argument that made the 

proof work”, or instead, “where it breaks”. If the proof is “non breaking” under attacks, one “would 

see the spark of [a] new idea that finally makes it work” (Int. 5, p. 246). It also includes variation of 

perspective or context, to look at a hypothesis or an argument “from different directions, through 

different angles” (Int. 4, p. 246). Also, “in the process of understanding it happens that you have a 

definition, and that you think you understand it, and that you come back to it for one reason, or 

somebody tells you something about it, and that you realize that you never understood it at all” (Int. 

6, p. 246). In prizing and choice-making actions, the balance between establishing a “big picture” 

and “the details” is also valued. The “big picture” conveys “the real understanding of why it is 

true” (Int. 5, S. 199), a “global idea” of “why it works like that”, an “overview of the proof” (Int. 4, 

S. 179), which also affects the consistency with already established results. On the other hand, there 

are “the details, to follow the proof from step to step, the logical consequences” (Int. 4, S. 179), and 

“the process of writing down these details”, which are sometimes not valued as equally important to 

the global picture because “not all people are good in this“ though they “really know mathematical 

truths” (Int. 5, pp. 171, 199). A well-balanced proof, in this sense, also makes it easier to “be able to 

look at it at a later time, and still be able to reproduce the arguments” (Int. 4, p. 179), which is taken 

as an indicator for understanding (see also (Hanna, 2014)). The different aspects have a context-

dependent impact on concrete valuing actions: “So one thing: maths is in a sense something 

personal. […] When do I think I understand something?” (Int. 4, p. 246), which can be influenced 

by “deep personal involvement with [a] proof” (Int. 2, p. 313).  

Explanatoriness within a didactical model of nomic mathematical explanation 

Insights gained from the interview study appear to be in line with the concept of so-called nomic 

mathematical explanation (Müller-Hill, 2017). In this view, an explanation provides a general 

pattern, expressed by a general conditional sentence, from which a phenomenon can be inferred as a 

regular consequence under certain conditions. Moreover, an explanatory, nomic pattern has to fulfill 

certain conditions on form (ibid., p. 181) and content. 



 

 

Conditions on form: Basic structure of an explanatory pattern  

Whenever manifestation condition(s)                 would be fulfilled, the event   would 

take place (as a manifestation of certain properties of the involved objects) and whenever 

manifestation condition(s)                 would not be fulfilled (but condition(s)    

instead), the event   would not take place (but the event   ). 

The second part of the pattern is usually not formulated explicitly. An example pattern discussed in 

(ibid., p. 202) was reconstructed from a student’s explanation of why the sum of three consecutive 

natural numbers is divisible by three: Whenever we would take three consecutive numbers a, b, c, 

and move   from the biggest number   to  , we would get three times  .  

Conditions on content: Basic invariance criteria for an explanatory pattern  

Some philosophical contributions on the concept of mathematical explanation (see Hanna, 2018) 

provide ontic conditions, like reference to “a characterizing property” or “salient feature“ of the 

involved mathematical entities, for an argument to qualify as explanatory. Such conditions serve to 

explicate the conceptual meaning of „explanation“. The account of nomic mathematical explanation 

developed in (Müller-Hill, 2017) complements the ontic conditions by spelling out epistemic 

invariance conditions as search keys, test and quality conditions for explanatory patterns. It is to a 

good extent compatible with ideas of explanatory unification and causal explanation that are at the 

heart of well-established views of scientific explanation (Kitcher 1989). Table 1 reports and 

illustrates conditions that are relevant to grasp the aspects of explanatoriness resulting from the 

interview study. 

Table 1: Invariance criteria for explanatory patterns (Müller-Hill 2017) 

Functional invariance is necessary for an explanatory pattern. However, there can be explanatory 

patterns with different degrees of functional invariance, which affects the pattern’s informativity: 

the more differentiated the intervention relation, the more informative the pattern. Scope invariance 

has different specifities (object, contextual/representational, embedding), each of which can also 

Functional invariance  Invariance under intervention at the manifestation conditions: pattern gives correct 

information, if  is fulfilled or not (e.g., regarding the example pattern above: What 

if I intervene at    by taking non-consecutive numbers a, b, c). 

Scope 

invariance 

  

  

Object 

invariance 

Pattern also gives correct information when the involved objects are varied (e.g., by 

varying the chosen tripel        ). 

Contextual & 

representation-

nal invariance 

Pattern also gives correct information when the used contexts and/or employed 

representations are varied (e.g., by changing from symbolic to figurative 

representations of       . 

Embedding 

invariance 

Pattern is consistent with corresponding patterns for an embedded or expanded pool 

of related phenomena (e.g., with the transition from natural numbers a, b, c to 

integers). 



 

 

occur with different degrees. The degrees of scope invariance affect a pattern’s systematization 

power.   

The process of explanation generation  

The process of generating a nomic explanation can be described as an iterative cycle of phases of 

abduction, deduction and induction (Figure 1), starting with abducting a potential explanatory 

pattern.  

The abduction may be creative, that is, on the basis of experience gained by working with and 

varying test cases, the subject identifies a (by her) formerly unknown pattern to explain the 

phenomenon (e.g., by exploring         

     ). But it may also be rather selective, that 

is, the subject already knows one or several 

alternative patterns that are explanatory for a 

class of somehow related, familiar phenomena, 

and identifies (by partial analogy, e.g., to 

familiar opposite-change task formats on 

addition) one of these that could potentially also 

explain the phenomenon in question (Magnani, 

2001).  

Figure 1: Interplay of abduction, induction and deduction 

The cycle continues with choosing and varying test cases for the pattern (e.g., for “Whenever we 

would take three consecutive natural numbers a, b, c, and take   from the biggest number   and 

pass it to  , we would get three times  ”.) Via hypothetical deduction, instances of the proposed 

pattern are produced for each test case (e.g.,               should be equal to    ,…). 

These test instances are then compared with “reality”, thereby inductively backing or weakening the 

pattern (e.g.,                         ,…). If the pattern appears to be 

sufficiently backed up by inductive evidence, one can exploit the experiences already made to 

collect ideas for a deductive justification of the pattern’s general validity (e.g., by replacing 

concrete test values for a, b, and c by generic figurative or general symbolic representations), or 

enter the cycle again with a variation of the former test cases to find a more general or more 

informative pattern (e.g., by trying out equidistant instead of consecutive number tripels). If not, 

one may iterate the whole cycle.   

Reviewing the results from the interview study 

We can now distinguish between explanatoriness in a situated sense, and explanatoriness in a 

systematic sense (see Table 2), which are complementary.  

  Abduction Quality of invariance Informativity/systematization  

Explanatoriness in 

a situated sense  

creative Emphasis on functional invariance, detailed and 

detailed differentiated manifestation conditions 

More informative, less 

systematizing power 



 

 

Explanatoriness in 

a systematic sense 

selective Emphasis on scope invariance, generalized 

manifestation conditions 

Less informative, more 

systematizing power 

Table 2: Situated and systematic sense of explanatoriness 

Employing this distinction, the interview study results reported above suggest that prizing and 

decision making within mathematical activities related to proving in scientific mathematical 

practice happens with regard to explanatoriness both in the situated and in the systematic sense, 

with context dependent weighting. This includes, particularly, the balancing of informativity and 

systematization power, as two complementing aspects of explanatoriness. 

Outlook and future work: Enacting explanatoriness in class  

Regarding educational issues, the framework presented in this paper is meant both as a model and 

tool for researchers to reconstruct, analyze and understand explanation and valuing processes in 

mathematics and mathematics teaching, and as a basis for task design, and for initiating such 

processes in classroom. In this sense, the program formulated at the beginning of this paper entails 

at least two core messages: under an epistemic reading, „mathematical proof” in any strong sense is 

an ideal construct that is paradigmatic regarding the virtues and validity claims of the discipline of 

mathematics (that is one reason why we should still teach about it). However, various kinds of 

actual mathematical activities directed to providing proofs can and should already be driven and 

regulated with respect to these virtues and validity claims (that is why they work effectively in 

mathematical practice, and that is how we should teach them). The paper provides a rough 

impression of how these programmatic aims can be pursued, regarding exploratoriness as an 

epistemic value connected to proving. Though tersely presented, the reported results already 

indicate some opportunities and types of activities related to mathematical proving that can be 

appropriate to enact explanatoriness as a value in class. As a simple example, think of tasks like the 

following that could be tackled when introducing the concept of mean value (in German 

Gymnasium, e.g., in grade six): Starting with a given data set of natural numbers, think of ways to 

vary the set in order to increase, lower, or leave invariant its mean value. Justify your answers. 

Pilot runs with corresponding learning environments in the form of written tasks produced data that 

we actually evaluate to revise the learning environment design. However, it needs well-trained 

teachers to exploit such opportunities properly (compare, e.g., Lesseig, 2016a; 2016b). The next 

step in our work is to gain and analyse video-data from implementations of the revised learning 

environments. The results will also be used for developing a video-vignette based teacher training 

for secondary in-service teachers. 
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