
HAL Id: hal-02398362
https://hal.science/hal-02398362v1

Submitted on 7 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modal Analysis of Anapoles, Internal Fields and Fano
Resonances in Dielectric Particles

Rémi Colom, Ross Mcphedran, Brian Stout, Nicolas Bonod

To cite this version:
Rémi Colom, Ross Mcphedran, Brian Stout, Nicolas Bonod. Modal Analysis of Anapoles, Internal
Fields and Fano Resonances in Dielectric Particles. Journal of the Optical Society of America B, 2019,
�10.1364/JOSAB.36.002052�. �hal-02398362�

https://hal.science/hal-02398362v1
https://hal.archives-ouvertes.fr


Modal Analysis of Anapoles, Internal Fields and
Fano Resonances in Dielectric Particles
RÉMI COLOM,1,2,* ROSS MCPHEDRAN,2 BRIAN STOUT,1 NICOLAS
BONOD,1,*

1Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
2Institute for Photonics and Optical Science (IPOS), University of Sydney NSW 2006 Australia
*remi.colom@fresnel.fr;nicolas.bonod@fresnel.fr

Abstract: All-dielectric nanostructures have aroused strong interest because of their potential
to trap light at subwavelength scales and to yield strong internal electric or magnetic field
enhancements. Optimizing the internal fields appears as a crucial challenge for enhancing light
matter interactions in all-dielectric nanostructures. Mie resonators host radiationless states called
anapoles associated to a pronounced minimum of light scattering. However, the question is to
know whether these radiationless states maximize the internal field intensities. Here we use a
modal expansion of the internal and external fields to demonstrate that anapoles in dielectric
Mie resonators result from a Fano resonance produced by the interference between two mode
contributions with low and high quality factors plus an additional non-resonant term. A modal
expansion of the internal field enhancement averaged over the whole scatterer volume shows
that the maximum of the internal field enhancement does not occur at the anapole frequency but
at the real part of the eigen-frequency associated with the high quality factor. This analysis is
carried out for both electric and magnetic modes of the dielectric scatterer and evinces that a
larger internal field enhancement is found for the first magnetic dipole resonance even though
this resonance does not feature an anapole behavior.

1. Introduction

The field of resonant nanophotonics aims at enhancing light matter interactions at nanometer
scales due to the resonant coupling of light with subwavelength sized particles [1–3]. The
excitation of plasmonic and Mie resonances in such particles permits the enhancement of light
scattering as well as the near field in the direct vicinity of the particle [4]. In the case of
dielectric particles, the internal field can be strongly enhanced without loss, which opens unique
opportunities in non-linear optics to generate second or third harmonics with semi-conductor
particles [5–9]. It was shown in particular that the magnetic modes yield stronger confinement of
the electric field intensity inside the resonant particles than the electric modes [5, 10]. Recently,
a very interesting phenomenon was also identified in the field of all-dielectric nanophotonics
with anapoles [11–17]. Anapoles are classically defined in physics as non-radiating sources
of current [18–20]. They have aroused a keen interest on account of their potential ability to
enhance the light absorption in the context of dielectric resonators with promising applications in
non-linear optics, light absorption and enhanced Raman scattering [21–29].
In many studies, the choice has been made to forsake the multipolar theory in spherical

coordinates, a theory that is widely used for explaining Mie resonances in high refractive
index materials, in favor of the multipolar theory in cartesian coordinates including the toroidal
multipoles introduced by Zel’dovitch in 1958 [18–20]. In fact, the toroidal-type currents are the
higher-order terms appearing in the power series expansion of the spherical electric multipoles
with respect to the size of the current source. [30, 31]. In this framework, anapoles occur when
the electromagnetic field radiated by these toroidal multipoles cancels the field radiated by the
electric cartesian multipoles. This phenomenon can also be understood by using a Quasi-Normal
Mode (QNM) expansion. A QNM analysis associated with a multipolar decomposition pointed
out the destructive interference between the first two modes of the electric dipolar coefficient that



drives to a dip in the scattering spectrum [32]. The role of the first two electric modes of the
electric dipolar coefficient in the excitation of anapoles in silicon scatterers was confirmed in
the framework of a multipolar analysis [33]. Lastly, a toy model was developed on the analogy
between optical resonators and the dynamic of a forced pendulum to study the transient internal
field yielded by anapoles [15].

Here we use a modal expansion of the internal and scattered fields to demonstrate that anapoles
in sphericalMie resonators arise from the fact that the scattered field features Fano-type resonances
while the internal field features Lorentzian responses only. We perform the modal analysis for
both electric and magnetic cases and explain why anapoles are not observed for the first resonance
of the magnetic dipole. It is also pointed out that the internal electric field enhancement is larger
for the first magnetic dipole resonance than for its electric dipole counterpart. The fact that the
strongest field enhancement is observed in absence of anapole condition is properly predicted
by our modal analysis. Results are obtained by carrying out a modal analysis of the T-matrix
scattering operator in the multipolar Mie basis [33–35]. We believe that determining the anapole
conditions in high refractive index scatterers in a widely used multipolar theory facilitates the
understanding of the origin of this phenomenon.

2. Pole expansion of the T-matrix coefficients

2.1. T-matrix coefficients

Here, we are studying the anapole condition for a spherical scatterer located in vacuum with a
radius R and a dielectric perimittivity εs . Since only non-magnetic materials are considered, the
refractive index possesses the following definition ns =

√
εs . When studying light-scattering in

3D, in particular for spherically-symmetric scatterers, it is convenient to make use of the set of
Vector Partial Waves (VPWs) as a basis for the fields of the problem [36–38]. In this section, we
shall consequently start by introducing the definitions used throughout this paper for the Vector
Partial Waves. The outgoing VPWs are defined as follows:

M(+)n,m(kr) = h(+)n (kr)Xn,m(θ, φ),

N(+)n,m(kr) =
1
kr

(√
n(n + 1)h(+)n (kr)Yn,m(θ, φ) + ξ

(+)′

n (kr)Zn,m(θ, φ)
)
,

(1)

where Xn,m(θ, φ), Yn,m(θ, φ) and Zn,m(θ, φ) are the Vector Spherical Harmonics [39], k = 2π
λ , λ

being the wavelength in the embedding medium and ξ(+)
′

n (kr) is the derivative with respect to kr .
n and m are the total and projected angular momentum of the VPW, n is classically called the
multipolar order. h(+)n (x) and ξ

(+)
n (x) are respectively the spherical Hankel and the associated

Ricatti-Hankel functions of the first kind. The regular VPWs are defined as follows:

M(1)n,m(kr) = jn(kr)Xn,m(θ, φ),

N(1)n,m(kr) =
1
kr

(√
n(n + 1) jn(kr)Yn,m(θ, φ) + ψ

′

n(kr)Zn,m(θ, φ)
)
,

(2)

where jn(x) and ψn(x) are respectively the spherical Bessel and associated Ricatti-Bessel
functions. In the T-matrix framework, the total field outside the scatterer is split into the excitation
and scattered field contributions. The expansions of the excitation and scattered electric fields



read as follows:

Eexc(kr) = E0

∞∑
n=1

n∑
m=−n

e(h)n,mM(1)n,m(kr) + e(e)n,mN(1)n,m(kr)

Escat(kr) = E0

∞∑
n=1

n∑
m=−n

f (h)n,mM(+)n,m(kr) + f (e)n,mN(+)n,m(kr)
(3)

The internal field takes the following expression:

Eint(ksr) = E0

∞∑
n=1

n∑
m=−n

u(h)n,mM(1)n,m(ksr) + u(e)n,mN(1)n,m(ksr) (4)

where ks = nsk. The T-matrix coefficients are defined as follows T (i)n (z) =
f
(i)
n ,m(z)

e
(i)
n ,m

where i = e, h

and z = kR. For spherical scatterers, the T-matrix coefficients can be computed using the

continuity conditions leading to the following expression T (i)n (z) = −
N
(i)
T,n(z)

D
(i)
n (z)

in terms of the
following numerator and denominator functions [33]:

N (e)T,n(z) = z
εs jn(nsz)ψ

′

n(z) − ψ
′

n(nsz) jn(z)
ins

,

D(e)n (z) = z
εsξ
(+)′

n (z) jn(nsz) − ψ
′

n(nsz)h(+)n (z)
ins

,

N (h)T,n(z) = −iz
(
ψ
′

n(z) jn(nsz) − ψ
′

n(nsz) jn(z)
)
,

D(h)n (z) = −iz
(
ξ
(+)′

n (z) jn(nsz) − ψ
′

n(nsz)h(+)n (z)
)
,

(5)

It is also necessary to introduce the Ω-matrix coefficients linking the internal field to the
incident field, Ω(i)n (z) =

u
(i)
n ,m(z)

e
(i)
n ,m

. These coefficients can also be simply expressed by use of the

denominator functions Ω(i)n (z) = 1
D
(i)
n (z)

.

2.2. Modal expansion of the scattered efficiency and internal field enhancements

QNM analysis is common in wave physics [40,41] and has attracted a strong interest in photonics
when studying resonant light interactions with nanocavities [34, 35, 42–49]. QNMs are the
eigen-vector solutions of the Maxwell equations without sources and are associated with the
complex eigenvalue frequencies p(i)n,α that also correspond to the poles of the scattering operators
introduced in the previous section. For each multipolar order n, an infinite number of poles α
exists. Poles associated with positive α have a positive real part while poles associated with
negative α have a negative real part and are associated via the relation, pn,−α = −p∗n,α. In this
study, we determine the eigen-frequencies p(i)n,α by calculating the poles of the scattering matrix.
We use root-finding methods to locate the position of these poles starting from the asymptotic
formulas of these poles provided in ref. [33]. We plot the real and imaginary parts of the first
eigen-frequencies α = [−5; 5] of the electric dipole (Fig. 1a) and magnetic dipole (Fig. 1b) in the
case of a spherical particle made of dielectric permittivity εs = 16. The fundamental mode is
α = 0 for the magnetic case and α = ±1 for the electric case. It is characterized by a much larger
leakage, i.e. a larger imaginary part in absolute value since poles in passive media have negative
imaginary parts, than higher order modes.



Following the derivation of the scattering operator by Grigoriev et al . [34], the modal
expansions of the T (i)n and Ω(i)n coefficients were recently derived [33, 35]:

T (i)n (z) =
S(i)nr,ne−2iz − 1

2
+

e−2iz

2

+M∑
α=−M

r (i)n,α

z − p(i)n,α
,

Ω
(i)
n (z) =

1
2

+M∑
α=−M

r (i)
Ξ,n,α

z − p(i)n,α
,

(6)

where r (i)n,α is the residue of T (i)n at the poles p(i)n,α, r (i)
Ξ,n,α is the residue of Ω(i)n (z) and

S(i)nr,n = 1 +
∑+M
α=−M

r
(i)
n ,α

p
(i)
n ,α

.
It can be shown that the convergence of this truncated series can be improved for a given truncation
order M by approximating the higher order tem α > M [35]. At the first order, the term that is
removed when truncating the sum can be approximated by −

∑∞
α=M+1

r
(i)
n ,α

p
(i)
n ,α

−
∑−∞
α=−(M+1)

r
(i)
n ,α

p
(i)
n ,α

.

This term is actually equal to −
∑∞
α=M+1

r
(e)
n ,α

p
(e)
n ,α

+
r
(e)
n ,−α

p
(e)
n ,−α

= −
(
(−1)n+1 − 1

)
+

∑M
α=−M

r
(e)
n ,α

p
(e)
n ,α

and

−
∑∞
α=M+1

r
(h)
n ,α

p
(h)
n ,α

+
r
(h)
n ,−α

p
(h)
n ,−α

= − ((−1)n − 1)+
∑M
α=−M

r
(h)
n ,α

p
(h)
n ,α

[35]. The contribution from higher order

poles |α | > M is then included in the term S(i)nr,n in order to improve the accuracy of the truncated

expansion. The notation A(i)n (z) =
S
(i)
nr,ne

−2iz−1
2 will be used in what follows.

Pole expansions in Eqs. (6) thus show the existence of a non-resonant term for the T−matrix
coefficient only. The existence of a non-resonant contribution is also predicted by the Temporal
Coupled Mode Theory (TCMT) [50–52]. However, TCMT is a phenomenological model that
requires fitting parameters while Eqs. (6) derived here are free from fitting parameters and only
rely on energy conservation principle [34, 35]. This pole expansion permits us to derive the
modal expansion of the multipolar scattering coefficients and therefore also the modal expansion
of the scattering efficiency Q(i)scat ,n and internal field intensities averaged over the volume of
the particle 〈|E (i)int ,n |

2〉. The analytical expression of the residues for spherical scatterers can be
obtained from the analytical expressions of the Ω and T matrices [33, 35]:

r (e,h)
Ξ,n,α =

1
d
dz D(e,h)n (z)|

z=p
(e ,h)
n ,α

(7)

that yields the following expression for r (e,h)
Ξ,n,α:

r (e)
Ξ,n,α =

1
εs − 1

×

2ins

ξ
(+)′

n

(
p(e)n,α

)
ψ
′

n

(
nsp(e)n,α

)
+ n(n + 1)h(+)n

(
p(e)n,α

)
jn

(
nsp(e)n,α

)
r (h)
Ξ,n,α =

2i

(εs − 1)
(
p(h)α

)2
jn

(
nsp(h)α

)
h(+)n

(
p(h)α

)
where the following identities of the Ricatti-Hankel and Ricatti-Bessel functions have been

used: ξ(+)
′′

n (z) = n(n+1)−z2

z h(+)n (z) and ψ
(+)′′

n (z) = n(n+1)−z2

z jn(z). r (e,h)n,α can also be analytically
determined for spherically-symmetric scatterers from:



a)

b)

c)

Fig. 1. a) Position of the first poles of the dipolar electric and magnetic scattering coefficients
in the complex frequency plane. b) Modulus of the associated residues of T (h)n :|r(e)1,α | and

|r(h)1,α |. c) Modulus of the associated residues of Ω(h)n : |r(e)
Ξ,1,α | and |r

(h)
Ξ,1,α |.

r (e,h)n,α = −
e2ip(e ,h)n ,α N (e,h)n

(
p(e,h)n,α

)
d
dz D(e,h)n (z)|

z=p
(e ,h)
n ,α

(8)

The set of r (e,h)n,α consequently takes the following expression:

r (e)n,α =
jn

(
nsp(e)n,α

)
h(+)n

(
p(e)n,α

) 1
εs − 1

×

2iεse2ip(e)n ,α

ξ
(+)′

n

(
p(e)n,α

)
ψ
′

n

(
nsp(e)n,α

)
+ n(n + 1)h(+)n

(
p(e)n,α

)
jn

(
nsp(e)n,α

)
r (h)n,α =

jn
(
nsp(h)n,α

)
h(+)n

(
p(h)n,α

) 2ie2ip(h)n ,α

(εs − 1)
(
p(h)n,α

)2
jn

(
nsp(h)n,α

)
h(+)n

(
p(h)n,α

)
The scattering efficiency Qscat of a scatterer can be calculated with respect to the electric



and magnetic scattering Mie coefficients an and bn that are simply the opposite of the T-matrix
coefficients an = −T (e)n and bn = −T (h)n :

Q(e)scat ,n =
2(2n + 1)

z2 |an |2 =
2(2n + 1)

z2 |T (e)n |
2

Q(h)scat ,n =
2(2n + 1)

z2 |bn |2 =
2(2n + 1)

z2 |T (h)n |
2

(9)

A similar approach can be followed with the internal Mie coefficients dn and cn that can be
derived from the Ω matrix elements: dn = Ω

(e)
n , cn = Ω

(h)
n . The average of the electric field

intensity over the volume inside the spherical particle 〈|Eint |
2〉 can be calculated with respect to

the multipolar components of the electric field E (i)int,n [33]:

〈|Eint |
2〉 =

∑
n

〈|E (e)int,n |
2〉 + 〈|E (h)int,n |

2〉 (10)

where :

〈|E(e)i,n |
2〉

|E0 |2
=

3(2n + 1)
2z2 In(εs, z)|Ω

(e)
n |

2,

〈|E(h)i,n |
2〉

|E0 |2
=

3(2n + 1)
2z2 Jn(εs, z)|Ω

(h)
n |

2,
(11)

with:

In(εs, z) =
z

n2
s

×

ψ
′

n(nsz)
(
ψ
′

n(nsz) + jn(nsz)
)
+

(
(nsz)2 − n(n + 1)

)
j2
n(nsz)

Jn(εs, z) =
z

n2
s

×

ψ
′

n(nsz)
(
ψ
′

n(nsz) − jn(nsz)
)
+

(
(nsz)2 − n(n + 1)

)
j2
n(nsz).

The modal expansion of the internal field enhancement in the whole scatterer allows to determine
the mode of each multipolar order that yields the strongest field enhancement inside the particle.
Combined with the modal expressions of the scattered efficiency (Eq. 9), we can compare the
spectra of the internal and external fields and analyze the origin of the scattering anomalies in
terms of QNMs.

3. Results and discussions

Let us first compare the spectra of the averaged field enhancement with the scattering efficiencies
in the case of a spherical particle of dielectric permittivity ε = 16, value closed to the dielectric
permittivity of silicon in visible and near infrared spectrum (see Fig. 2). For that purpose, we plot
in Fig. 2(a-b) the scattering efficiency associated with the electric Q(e)

scat ,1 and magnetic Q(h)
scat ,1

dipolar contributions, and of the averaged field intensity inside the particle 〈|E (i)
int ,1 |

2〉, with
respect to the size parameter z = kR when the particle is illuminated by a plane wave. Q(i)

scat ,1 and
〈|E (i)

int ,1 |
2〉 both exhibit a resonant behavior with the presence of several peaks when increasing

the parameter size z. These plots are obtained using conventional multipolar formalism and



a)

b)

c)

Fig. 2. (a,b) Multipolar partial scattering efficiencies versus internal field enhancement.
Left scale, black full line : dipolar scattering efficiencies calculated with Eqs. 9, right scale,
blue dashed line: averaged internal field intensity 〈|Eint ,1 |

2〉 calculated with Eqs. 10 with
respect to the parameter size z. Vertical dashed lines indicate the minimum of the scattering
efficiency. (a) Electric dipole, (b) Magnetic dipole. (c) Scattering spectrum. Blue line:
total scattering (with N=10); grey dashed line: electric dipole (N=1,e); green dashed line:
magnetic dipole (N=1,h).

will be compared later in Figs. 3,4 with results calculated with our modal expansion. As can be
seen in Fig. 2(a-b), the peaks associated with Q(i)

scat ,1 and 〈|E
(i)
int ,1 |

2〉, for both the electric i = e
(Fig. 2a) and magnetic i = h (Fig. 2b) cases occur at nearby frequencies. A careful analysis
reveals that the peak frequencies are slightly different for the electric case, while they are almost
equal for the magnetic case.
A more fundamental difference can be noticed when observing the shape of the resonances:

while 〈|E (e)
int ,1 |

2〉 and 〈|E (h)
int ,1 |

2〉 feature pure Lorentzian shapes, the scattering efficiencies Q(i)
scat ,1

(i = e, h) feature resonances with asymmetric line shapes referred as Fano resonances [6, 53–59].
In particular, for the electric case, the maximum of Q(e)

scat ,1 is closely followed by a minimum
of the scattering efficiency. For the magnetic case, the first peak at z ≈ 0.75 features an almost
perfect Lorentzian shape while the second peak at z ≈ 1.5 is associated with a strong minimum.
As the different multipolar contributions are well separated, these minima of Q(e)

scat ,1 and
Q(h)

scat ,1 correspond to low total scattered fields as can be seen in Fig. 2(c). Importantly, position
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Sum resonant terms M=100
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Fig. 3. Analysis of the different terms in the modal expansion of the T (i)1 (z)-matrix element.

(a,d): Non-resonant term A(i)1 (z) =
S
(i)
nr,1e

−2iz−1
2 with i = e (a) and i = h (d); (b,e): Resonant

term | e
−2iz

2
r
(i)
1,α

z−p
(i)
1,α
|2 with: blue line+shadow α = 1 (b) and α = 0 (e), orange line+shadow

α = 2 (b) and α = 1 (e), green line+shadow α = 3 (b) α = 2 (e); Grey line: resonant term

with summation over poles: e−2iz

2
∑M
α=−M

r
(e)
α,1

z−p
(e)
α,1

with M = 100. (c,f): non-resonant +

resonant terms with summation and M = 100 (complete pole expansion of the T (i)1 (z)-matrix
element): black dashed line, full calculations: red full line.

of the anapole condition, corresponding to a minimum of Q(e)
scat ,1 and Q(h)

scat ,1 and indicated
by vertical dashed lines in Fig. 2(c), can be well predicted when considering only dipolar
contributions. The minimum is more pronounced for the electric dipole coefficient than for the
magnetic dipole due to the presence of non-negligible contributions from higher order modes.
The higher order modes are at the origin of the narrow peaks observed in Fig. 2c between
z = [1; 1.5]. It is also observed that at these minimum frequencies, the average field intensity
remains enhanced by the resonances which means that, at certain frequencies, the scattering
efficiency can be strongly minimized while the internal field is enhanced by a resonant behavior
of the internal scattered field coefficients: this condition is commonly referred as an anapole
condition [11, 21, 23–25].
The different terms of the modal expansion of T (e)1 (z) (top line) and T (h)1 (z) (bottom line)

(Eq. 6) are plotted in Fig. 3. Two types of terms can be distinguished: there is (i) a non-resonant
term associated with A(i)n (z) =

S
(i)
nr,ne

−2iz−1
2 that corresponds to a slowly varying background (see

Fig. 3a,d) [34, 57] and (ii) a resonant term e−2iz

2
∑M
α=−M

r
(i)
n ,α

z−p
(e)
n ,α

associated with the poles p(i)n,α
(see Fig. 3b,e). The plot of the non-resonant term in Fig. 3(a,d) highlights the π phase shift
between the electric and magnetic cases: while this non-resonant term is maximum at z = 0
and null at z = 1.5 for the magnetic case, it is null at z = 0 and maximum at z = 1.5 for the
electric case. Therefore the non-resonant contribution plays a larger role for the electric low
order resonances than for the magnetic ones.

Let us now investigate the role of the resonant terms by plotting in Fig. 3(b,e) the contributions



of the first three modes separately: α = [1; 3] for the electric case and α = [0; 2] for the magnetic
case. In all cases, it can be seen that they correspond to pure Lorentzian shapes. For both electric
and magnetic cases, the first mode (α = 1 for electric, α = 0 for the magnetic) has a very poor
quality factor which means that it overlaps with the higher order modes. An important question
arises now: can a minimum of the far-field spectrum arise when taking into account the sum of
the mode contributions only, i.e. without taking into account the A(i)1 (z) term? To answer this

question, we plot in grey line the resonant term | e−2iz

2
∑+M
α=−M

r
(i)
1,α

z−p
(i)
1,α
|2 in Fig. 4b,e (see Eq.6)

while considering a large number of poles (e.g. M = 100), but neglecting the non-resonant term
A(i)1 (z). The sum of the different pole contributions does not lead to Lorentzian responses but
to asymmetric Fano-like shapes featuring strong minima. This result is a direct consequence
of the fact that the different modes interfere. In fact, the QNM are not orthogonal in the sense
of the usual conjugated scalar product. This means that energy can be exchanged between
different modes leading to a phenomenon of interference. That is the reason why interference
between modes may appear in the scattering efficiency spectrum. However, let us point out that
an unconjugated scalar product can also be defined for which QNM become orthogonal even
though they can exchange energy [46,49,60]. In Fig. 3b, we see that, in the electric case, the first

minimum of | e−2iz

2
∑+M
α=−M

r
(e)
1,α

z−p
(e)
1,α
|2 occurs when the modes α = 1 and α = 2 that have the same

real frequency are in phase opposition. The difference of phase between the modes involved in
the destructive interference are plotted in Fig. 4e-f, i.e. φ1 − φ2 in the electric case and φ0 − φ2

in the magnetic case where φα = Arg
[
e−2iz

2
r
(i)
1,α

z−p
(i)
1,α

]
. We can see in Fig. 4e-f that the difference

of phase turns out to be equal to π near the destructive interference between the modes. For these
two modes to destructively interfere, not only should they be in phase opposition but they also
need to have the same amplitude. The amplitude is quantified by the expression | r

(i)
α,n

z−p
(i)
α,n

|2, which

shows that a resonant contribution is proportional to the residue r (i)α,n and requires poles p(i)α,n
with small imaginary parts to maximize 1

z−p
(i)
α,n

. Here the pole α = 1 is characterized by a much
larger imaginary part than the pole α = 2 but this weak quality factor is compensated by a larger

residue r (e)
α=1,1 leading to |

r
(e)
1,1

z−p
(e)
1,1
| ≈ |

r
(e)
1,2

z−p
(e)
1,2
| (residues are plotted with respect to α in Fig.1). This

condition is fulfilled near<
[
p(e)1,1

]
≈ <

[
p(e)1,2

]
.

In the electric case, the sum of the resonant terms |
∑

r (h)1,α/(z − p1,α)
(h) | displayed in Fig. 3(e)

shows that a minimum is associated with both α = 1 and α = 2 modes since they both interfere
destructively with the low quality α = 0 mode. Minima always occur at the vicinity of the real

part of one pole,<
[
p(i)1,α

]
, since the function e−2iz

2
r
(i)
1,α

z−p
(i)
1,α

experiences an abrupt change of phase.

The resonant contribution from this mode can thus become out of phase with the contribution of
the low quality mode. A similar explanation holds for the appearance of minimum scattering
in the magnetic case: it results from the destructive interference between the wide resonance
associated with pole α = 0 with a narrow resonance associated with poles α = 1 and α = 2.
However, in this case, the first minimum close to the pole α = 1 disappears when the non-resonant
contribution is taken into account. Moreover, concerning the minimum associated with α = 2,
the shift due to the non-resonant contribution is minor as A(h)1 (z) is almost null in the vicinity of
the peak due to the pole α = 2 (see Fig.3d).
At this stage, it has been established that minima in the scattering spectra result from the

interference between a low and a high quality factor mode. We now study the influence of the
non-resonant contribution on the spectral location of such minima. For that purpose, the spectrum
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Fig. 4. Spectra of the average internal field compared with the spectra of the scattering
efficiencies for the magnetic and electric cases. (a) and (b) are taken from Fig. 3(b,c,e,f).
Grey line: resonant contribution only in Eq. 6 with M = 100, red dotted line: resonant +
non resonant contributions with M = 100. (c) and (d): Square of the norm of the internal
electric field averaged over the volume of the particle < |E (i)

int ,n
|2 >, i = e for (c) and i = h

for (d). Orange and green lines+shadow: modal expansion calculated with Eqs.10-11 when
taking into account a single pole: α = 2 (orange), α = 3 (green) or when summing 2M
poles (blue dashed line with M = 5). Full red line: full calculations. The vertical dashed
lines indicate the spectral position of the anapole condition. (e) and (f): Difference of phase
between the modes φ1 − φ2 in the electric case and φ0 − φ2 in the magnetic case with

φα = Arg
[
e−2iz

2
r
(i)
1,α

z−p
(i)
1,α

]
.

of the resonant contribution only is compared with exact calculations and modal calculations
that include both resonant and non-resonant terms in Fig. 3(c,f). A spectral shift between these
spectra with or without non-resonant contribution can be observed, especially for the electric
case. The spectral shift is less pronounced for the magnetic case (Fig. 3(f)) as the magnetic
non-resonant term A(h)n (z) is almost null when z ≈ 1.6, i.e. close to the frequency where the
modes destructively interfere (Fig. 3(c)). In all cases, it is necessary to add up the non-resonant
contribution A(i)n (z) in order to accurately retrieve the position of the peaks and dips of |T (i)1 |

2.
Let us now explain why the first resonance of |T (h)1 | at z ≈ 0.75 is not associated with an anapole.
Indeed, a strong minimum is observed near<

[
p(h)1,2

]
when the resonant contributions only are

summed. This minimum completely disappears when the non-resonant contribution is included
as shown in Fig. 3(f). This shows that the non-resonant contribution destructively interferes
with the contribution from α = 0. For the first peak of |T (h)1 |

2, the contribution from the mode
α = 1 is predominant and a peak with almost a Lorentzian shape is observed in Fig. 3(f). In
Fig. 3(c,f), it is shown that a near perfect agreement with exact calculations (Mie theory) is found
while taking into account both resonant (M = 100) and non-resonant contributions. Minima
of the scattering spectrum therefore result not only from (i) the interference between the mode
contributions (the eigenfields associated with complex frequencies are not orthogonal) but also



from (ii) the presence of a non-resonant term.
The internal field can also be studied in the framework of the modal expansion in Eqs. 10-11.

The accuracy and the convergence of this pole expansion of the internal field are illustrated in
Fig. 4 where the exact value of 〈|E (i)

int ,1 |
2〉 is compared to the pole expansions in Eqs. 10-11 when

considering one or two poles, i.e. M = 5 (top line: electric case (i = e); bottom line: magnetic
case (i = h)). Each of the Lorentzian-type resonances appearing in the spectrum of the internal
field is associated with one complex resonance frequency. Remarkably, it can be observed that
the modal expansion fits perfectly the rigorous calculations with a very limited number of poles.
While a large number of poles was required to match the rigorous calculations of the scattered
field, the convergence is much more rapidly achieved in the case of the internal field.
In Fig. 4(a,c), we focus on the first resonance of the electric dipolar scattering coefficient

that exhibits an anapole behavior. The explanation of the dip in the spectrum of the scattering
coefficient was earlier explained at length. Just as in the electric case, the resonance of the internal
field is mostly due to the resonant contribution associated with the mode α = 2. The mode α = 1
only contributes weakly to the internal field enhancement; its contribution is too weak to be
visible in Fig. 4 whereas it played a key role in the appearance of a dip in the scattering coefficient
spectrum. This is the main difference between external and internal fields: the fundamental
modes, α = 0 in the magnetic case and α = 1 in the electric case, contribute only for the external
field, and not for the internal field. This is due to the fact that the residues of the fundamental
modes in the internal fields are much smaller than those of higher order modes. The first poles of
the dipolar electric Mie coefficients and the modulus of the associated residues r (i)

Ξ,1,α and r (i)1,α for
an ε = 16 particle in air are plotted in Fig 1.
As the quality factor associated with the fundamental mode is also much weaker than that of

higher order modes (see Fig.1), we get the relation:
r
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.

Physically, this means that in the external field, the fundamental mode with low quality fac-
tor can therefore interfere with the higher order modes of higher quality factor leading to
Fano resonances, while in the internal field, this fundamental mode does not interfere with
higher order modes and the averaged internal field only exhibits Lorentzian-like resonances
driven by higher order modes that are spectrally well separated. Fig. 4(a,c) also show that
the position of the maximum internal field enhancement would correspond to the position of
the dip of the scattering coefficients without the additional blue-shift due to the non-resonant
term. However, this minimum shifts when the non-resonant contribution is added so that the
minimum of the scattered field does not correspond in general to the maximum of the internal field.

In Fig. 4(b,d), we focus on the second resonance of T (h)1 . We do not concentrate on the first
resonance since it does not exhibit an anapole behavior as explained earlier. The mode α = 0
that interfered with the mode α = 2 to yield the dip in the spectrum of T (h)1 (z) contributes only
weakly to the internal field. The resonance of the averaged internal field is then almost entirely
due to the mode α = 2 and thus possesses a Lorentzian shape.
The distributions of the electric field intensity in the dielectric Mie scatterer are plotted in

Fig. 5 at frequencies that maximize the average internal field intensity (z = 1.065) and minimize
the scattering efficiency (z = 1.160). The field distributions are significantly different and we
remark (i) the anapole-like field distribution at the minimum of the scattering efficiency and (ii)
the stronger field enhancement at a frequency different from the anapole frequency. These results
highlight the fact that anapoles do not necessarily lead to an optimal internal field enhancement
in average inside the scatterer. Also, when comparing the averaged field intensity enhancement
between the electric dipole, electric anapole and magnetic dipole, it is clear that the maximum of
field enhancement is achieved for the first magnetic dipolar mode (see also Fig. 2).
After having thoroughly analyzed the anapole conditions for the important case of ε = 16,



Fig. 5. Internal field enhancement log|E (e)
int ,1 |

2 in the plane containing the incident electric

field plotted inside the spherical scatterer at the electric dipole resonance, z = <(p(i)1,α) =
1.065 (left), and at the anapole condition z = 1.160 (right). The field enhancement is stronger
at the electric dipole resonance (left).

Fig. 6. Trajectories of the 5 first dipolar eigen-frequencies in the complex frequency plane
when increasing the dielectric permittivity ε of the scatterer. Real and imaginary parts of the
eigen-frequencies p(i)1,α of the electric (i = e, a and b) and magnetic (i = h, c and d) dipolar
modes n = 1 with respect to the dielectric permittivity of the scatterer embedded in air. The
5 first dipolar modes are plotted: α = [1; 5] for the electric case (a and b); α = [0; 4] for the
magnetic case (c and d). The imaginary part of the first mode (α = 0 for i = (h) and α = 1
for i = (e)) is plotted in inset.

one now aims at generalizing this analysis for arbitrary dielectric permittivities. As anapole
conditions can be predicted by calculating the poles of the resonant scatterer, the trajectories
of the first 5 poles of the electric and magnetic dipolar Mie coefficients p(e)1,α, p(h)1,α, α = [1; 5]
are plotted in the complex frequency planes when increasing the dielectric permittivity of the
resonant scatterer. For both magnetic and electric cases, it turns out that the real and imaginary
parts of the eigen-frequencies p1,α of the first poles (α = 0 for the magnetic case and α = 1 for
the electric case) are almost insensitive to the dielectric permittivity and that the imaginary part
is much higher in magnitude than all the other poles. p(h)1,0 features the peculiarity of having a
real part equal to 0. On the other hand, all the other poles depend strongly on the dielectric
permittivity of the scatterer. Their real parts decrease, meaning that resonances occur for smaller
size parameters z, and their imaginary parts decrease in magnitude and tend toward zero. The
high quality factor of the higher order modes will prohibit any significant interference effect
between them but the low quality factor of the fundamental mode leads to interference effects with
higher order modes. The anapole location on the spectrum is therefore driven by the high quality
factor resonance, i.e. the scattering spectrum features sharp minima close to the real parts of the
high quality modes. For the electric case, the blue-shift of the anapole due to the non-resonant
term decreases with increasing ε since the non-resonant term A(e)1 (z) → 0 when z → 0. The



contrary happens for the magnetic mode since the electric and magnetic non-resonant terms are
in phase opposition as illustrated in Fig.3(a,d). Regarding the internal field, it should be first
noticed that the internal field enhancement depends on the quality factor that describes the ability
of the cavity to trap light. Therefore, the internal field associated with the fundamental modes
characterized by large values of =(p(i)n,α) do not lead to significant internal field enhancements.
As all the higher order modes (α > 0 for the magnetic case and α > 1 for the electric case) do not
overlap due to their narrowness, and due to the absence of a non-resonant term for the internal
coefficients, the averaged field inside the scatterer features almost pure Lorentzian shapes.

4. Conclusion

To conclude, anapoles in Mie resonators result from the existence of electric and magnetic
fundamental modes characterized with a weak quality factor that interfere with higher order
modes associated with much higher quality factors. The interference is also affected by a
non-resonant term that can shift the spectral position of the scattering minimum. The destructive
interference leads to a Fano resonance associated with a minimum of the scattering efficiency.
This modal analysis also clarifies the link between Fano resonances, anapole conditions and
internal field enhancements. We used a modal expansion of the light intensity enhancement
over the whole volume of the scatterer to identify the conditions that yield the maximum of the
internal field enhancement in spherical Mie scatterers. The maximum of the field enhancement
does not occur at the anapole condition but at the real part of the eigen-frequencies of high
quality factor modes. The field inside the scatterer does not feature any minimum since it is only
weakly affected by the fundamental modes with low quality factor and the modal expansion of
the internal field coefficients does not possess a non-resonant term. Consequently, the internal
field spectrum shows peaks associated with eigenmodes (except the fundamental low Q mode)
and features almost pure Lorentzian shapes. This also means that the internal field associated
with an anapole signature in the far field does not yield a particular field confinement inside the
scatterer since it results simply from the excitation of a given mode in the dielectric particle. This
modal analysis is carried out in the framework of a multipolar expansion of the field and could be
further extended to non-spherical objects using appropriate multipolar decompositions.
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