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Despite the widespread application of vaccination programs and antiviral drug

treatments, influenza viruses are still among the most harmful human pathogens.

Indeed, influenza results in significant seasonal and pandemic morbidity and mortality.

Furthermore, severe bacterial infections can occur in the aftermath of influenza virus

infection, and contribute substantially to the excess morbidity and mortality associated

with influenza. Here, we review the main features of influenza viruses and current

knowledge about the mechanical and immune mechanisms that underlie post-influenza

secondary bacterial infections. We present the emerging literature describing the

role of “innate-like” unconventional T cells in post-influenza bacterial superinfection.

Unconventional T cell populations span the border between the innate and adaptive arms

of the immune system, and are prevalent in mucosal tissues (including the airways). They

mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells.

We provide an overview of the principal functions that these cells play in pulmonary barrier

functions and immunity, highlighting their unique ability to sense environmental factors

and promote protection against respiratory bacterial infections. We focus on two major

opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae

and Staphylococcus aureus. We discuss mechanisms through which influenza viruses

alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent

fundamental advances and possible therapeutic approaches in which unconventional

T cells would be targeted to prevent post-influenza bacterial superinfections.

Keywords: unconventional T cells, influenza A virus, secondary bacterial infection, Streptococcus pneumoniae,

Staphylococcus aureus, immune suppression, barrier function, immunotherapy

INFLUENZA VIRUS INFECTION AND
BACTERIAL SUPERINFECTION

Respiratory infections are one the biggest health concerns worldwide. They account for a
substantial rate of morbidity and mortality in Western and developing countries (1). Amongst
respiratory pathogens, influenza viruses, commonly known as “the flu,” represent one the
most important concern despite ongoing vaccine campaigns and anti-viral drugs. Each year,
seasonal influenza infection affects 5 to 15% of the population and is a major contributor of
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pneumonia-related death worldwide (500,000 deaths per
year) (2). Seasonal influenza is due to two main subtypes
in humans, H1N1, and H3N2. Antigenic variations due to
mutation in the hemagglutinin (HA) and neuraminidase
(NA) genes, a phenomenon known as the antigenic drift,
occur every year, and result in the circulation of new strains
with sometime enhanced virulence and lethality potential.
In parallel, in general every 10 to 20 years, new influenza
subtypes distinct from circulating seasonal strains can emerge
(due to antigenic shift) and provoke pandemic waves with
sometime devastating consequences (3). Relative to seasonal
influenza, pandemics exhibit a higher transmissibility and a
higher rate of mortality, particularly among younger people
who lack specific immunity against these new strains. Mortality
attributed to influenza infection can be of high incidence
during pandemics. During the Spanish flu (1918–1919), more
than 40 million people died from influenza infection (4, 5).
During the 2009 pandemic, influenza infection had a substantial
impact on human mortality (3, 6). As discussed below, viral-
bacteria pneumonia contribute significantly to morbidity and
mortality during influenza epidemics and pandemics (5). Due
to medical and economical burdens, and considering the threat
of new pandemics and the emergence of antibiotic resistance,
it is urgent to find novel options to fight against influenza
infections and their complications, including secondary
bacterial infections.

Influenza a Virus: Main Characteristics
The influenza viruses (types A, B, and C) are negative sense
single-stranded RNA viruses (7). These enveloped viruses belong
to the family ofOrthomyxoviridae. In humans, the most common
cause of respiratory illness is influenza A virus (IAV) (8). To
reach successful replication, sense messenger RNAs must be
generated from the viral genome, a process due to the viral RNA
polymerase. Sense messengers comprise eight RNA segments
encoding eleven proteins (9, 10). The mature virion contains
eight of these proteins surrounded by a protein envelope, which
mainly includes two viral antigenic determinants: HA, which
binds to terminal sialic acids expressed by airway and alveolar
epithelial cells and NA, a critical enzyme necessary for releasing
the viral progeny from infected cells. Eighteen HA subtypes and
11 NA subtypes have been identified to date. Two IAV subtypes
(H1N1 and H3N2) along with one or two influenza B viruses
co-circulate annually causing influenza epidemics. The primary
targets (and site of replication) of IAV are airway and alveolar
epithelial cells. Shortly after infection, the viral machinery,
with the unintentionally help of host factors, is at work and
generate the release of virions (11). Productive replication in
epithelial cells results in cell death and to epithelial/endothelial
damages leading to barrier rupture and exudation of fluids
and proteins into the airways and alveolar spaces, greatly
impairing gas exchanges (12). Meanwhile, an intense infiltration
of immune cells (neutrophils, monocytes) occurs. Clinically,
severe IAV infection can lead to acute respiratory distress
syndrome, a severe form of respiratory failure associated with
40 % of mortality (5).

IMMUNE RESPONSE TO IAV

Innate immune response is rapidly triggered after IAV infection
(13–18). This relies on the presence of viral RNA in the cytosol
of infected cells and on different and complementary innate
sensors including Toll-like receptors (TLRs; primarily TLR3
and TLR7), retinoic acid inducible gene-1 and inflammasomes.
Activation of these innate sensors results on the production
of massive amounts of type I and type III interferons (IFNs)
as well as interleukin (IL)-1β and IL-18. Type I and type III
IFNs, though autocrine and paracrine (myeloid cells) effects,
elicit the production of a myriad of IFN-stimulated genes that
strongly participate in virus clearance. Meanwhile, activation
of inflammasomes and NF- κB promotes the release of pro-
inflammatory cytokines and chemokines and the subsequent
recruitment and activation of numerous immune cells such
as monocytes/macrophages and neutrophils. These events limit
and/or prevent viral entry and replication and attenuate the
severity of the disease. All of these responses however contribute
to tissue injury. For instance, inflammatory monocytes greatly
participate in epithelial cell damage and death (19, 20). On
the other hand, although they participate in virus clearance,
neutrophils are also strong contributors of lung damage and
lethality (21). While epithelial cells are critical to initiate innate
immunity, other resident sentinel cells also play a role in
virus clearance. Alveolar macrophages promote the elimination
of viruses through the phagocytosis of collectin-opsonised
viral particles or infected apoptotic cells (efferocytosis) and
production of inflammatory cytokines and chemokines (22, 23).
In parallel, other resident and/or recruited innate immune cells,
including natural killer cells, unconventional T cells, and innate
lymphoid cells play a part in disease outcomes (mouse model of
influenza), an effect associated—or not—with effector functions
(24–33). On the other hand, depending on the infectious
dose, some of them (e.g., NK cells) may also participate in
immunopathology (34, 35). Several days after IAV entry and
elicitation of innate immunity, a strong antigen (Ag)-specific
CD8+ T cell response develops in the lungs. In this phenomenon,
the migration of antigen-loaded CD103+ dendritic cells to the
draining lymph nodes is critical. Even though Ag-specific CD8+

T cells are sufficient to contain viruses (e.g., through lysis of
infected cells), they also contribute to alveolar epithelium and
endothelium damage (36, 37).

RESOLUTION OF INFLAMMATION AND
SECONDARY BACTERIAL INFECTION

After the inflammatory burst and pulmonary tissue damage,
a resolving/repair phase takes place, in general 7 to 14 days
after the primary IAV infection. It leads to resolution of
infiltrates and regeneration of damaged lung tissue thus restoring
gas exchange. In this setting, murine studies of influenza
infection suggested that CD8+ T cells, by producing the
anti-inflammatory cytokine IL-10, are important to resolve
inflammation (38). Activated macrophages can also promote the

Frontiers in Immunology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 336

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Paget and Trottein Unconventional-T Cells in Bacterial Superinfection

expansion of Foxp3-expressing regulatory T cells to suppress the
deleterious production of inflammatory cytokines by neutrophils
(39). By suppressing IL-17, a cytokine involved in neutrophil
recruitment, type I IFNs also contribute to resolution of
inflammation post-influenza. Recent data also indicate a role
for M2 macrophages in this process (40). Unconventional T
cells may also play a critical role in recovery from influenza
infection (27, 33, 41, 42). Finally, through amphiregulin
production, innate lymphoid cells restore airway epithelial
integrity and tissue homeostasis during IAV infection (25).
Resolution of inflammation during influenza infection is critical
for lung resiliency and restoration of physiological functions
(which can take several weeks). This regenerating response
corresponds to a period of enhanced susceptibility to respiratory
bacterial (particularly Gram-positive) infections. Indeed, this
process creates a favorable environment to the emergence of
opportunistic pathogens that can eventually result in bacterial
superinfection, bacterial pneumonia and bacterial dissemination
from the lungs. The two later are major contributors to lethality.
Post-mortem examination of autopsy specimens collected during
the last pandemic (as well as the 1918 pandemic) suggests
that a substantial proportion of patients died from bacterial
infections once the virus was cleared (5, 43). The most common
bacteria found in autopsied individuals were Streptococcus
pneumoniae (the pneumococcus) and Staphylococcus aureus, two
major ubiquitous upper respiratory opportunistic pathogens.
Twomain mechanisms (mechanical and immunological) explain
bacterial superinfection post-influenza: loss of the epithelial
barrier function and altered innate immune defense. Before
reviewing the role of “innate-like” unconventional T cells in this
setting, we summarize themainmechanisms by which IAV favors
secondary bacterial infection.

MECHANICAL AND IMMUNOLOGICAL
MECHANISMS LEADING
TO SUPERINFECTION

Several excellent reviews have described the current mechanistic
understanding of how IAV enhances susceptibility to secondary
bacterial infections (44–49). Current data, mostly derived from
experimental (mouse) models, point toward a multifactorial
mechanism. Briefly, IAV disrupts the functions of the respiratory
barrier by inducing, in a direct or indirect (through inflammatory
monocytes) fashion, epithelial cell death, and by degrading
mucins (20, 50). This alteration leads to exposure of new
attachment sites for bacteria and allows bacterial translocation
(51–53). Influenza A virus can also alter respiratory ciliary
function, thereby impairing the clearance of aspirated bacteria
from the lungs (54). As stated above, alteration of the
innate immune response is critical in post-influenza bacterial
superinfections. In particular, poor bacterial control in the
context of prior IAV infection is due to the loss and/or
dysfunction of macrophages and neutrophils (55–59). For these
later, their ability to sense and clear (phagocytosis and killing
activity) bacteria is profoundly altered (60–62). Along with these
effector cells, dysfunction of natural killer cells also depresses

host’s antibacterial capabilities (63). Some cytokines are critical in
bacterial superinfection. The immune-suppressive cytokine IL-
10 inhibits the functions of macrophages and neutrophils (64,
65). IL-27, another immunosuppressive cytokine downstream
of type I interferon receptor (IFNAR) signaling pathway also
impairs innate immune response against secondary bacterial
challenge (66, 67). Type I interferons, which are massively
produced during IAV infection to limit viral replication, are
also detrimental in bacterial superinfection. Mechanistically, they
inhibit the production of chemokines (CXCL1 and CXCL2)
important for the recruitment of macrophages and neutrophils
to the lung and impair their phagocytic responses (57, 68, 69).
Of note, type III IFNs (which share similarities with type I
IFNs) favor bacterial superinfection post-influenza by disrupting
the nasal microbiome, which often includes potential pathogens
(70). The underlying mechanisms are still elusive but may
depend on altered barrier functions of the nasal epithelium and
dysfunctional innate defense. Although IFN-γ is critical in host
defense against respiratory bacterial infections, it might favor
secondary bacterial infection, for instance by decreasing the
expression of the scavenger receptor MARCO on macrophages
(56). In fact, the role of IFN-γ in bacterial superinfection is
controversial since a protective role has also been suggested
(71). Finally, IAV infection reduces, through signal transducer of
activation and transcription-1 (STAT-1), the production of Th17-
related cytokines, a critical family of cytokines involved in the
control of respiratory bacterial infections (66, 72–75). Hence, the
accumulating literature (experimental models) provides a clearer
understanding of mechanisms leading to bacterial superinfection
and suggests several targets to prevent it. In humans, impairment
of innate immunity by pre-existing viral (IAV) infections has also
been shown to hamper the control of carriage load and clearance
of upper respiratory bacteria such as S. pneumoniae (76). This,
along with mechanical defects (respiratory ciliary and barrier
functions), may favor bacterial superinfection and secondary
bacterial pneumonia. While some progresses have been made
recently, much remains to be learned about the way that the virus
alters pulmonary barrier functions and undermines protective
antibacterial immunity during IAV-bacterial (co)infection. As
outlined below, recent evidences suggest that unconventional T
cell functions are targeted during IAV infection, a process that
may be important in secondary bacterial infections.

UNCONVENTIONAL T LYMPHOCYTES

Natural Killer T Cells
Natural killer T (NKT) cells represent a subset of lipid-reactive αβ

T cells. In response to lipid Ags presented by the monomorphic
Ag presenting molecule CD1d, NKT cells swiftly produce a large
amount of cytokines, thus promoting and orientating immune
responses (77). Lipid recognition by NKT cells is mediated by
a conserved T cell receptor (TCR) repertoire. Natural killer T
cells can be divided into two major populations: type I NKT
cells and type II NKT cells. Type I NKT cells express a semi-
invariant TCR α-chain (Vα14-Jα18 in mice and Vα24-Jα18 in
humans) paired with a limited set of TCR β-chains (77, 78). These
cells respond strongly to alpha-galactosylceramide (α-GalCer),
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a glycolipid under clinical development, particularly in cancer
settings (79). Type I NKT cells also recognize endogenous lipids
which are necessary for their selection in the thymus and for
their activation at peripheral sites. Type I NKT cells can also
react to microbial-derived lipids (80). Of importance, type I
NKT cells also activate in response to a wide array of cytokines,
including IL-12 and IL-23. Despite a relatively conserved TCR,
type I NKT cells are heterogeneous and can be further divided
into distinct subsets (81, 82). NKT cells produce a wide range
of cytokines, with sometime opposite functions, a property that
depends on the cell subset activated and on the nature of the
stimulation (e.g., lipids and/or activating cytokines). Through
this unique property, type I NKT cells can influence different
types of immune responses ranging from T helper (Th)1-like,
Th2-like, Th17-like, or T regulatory-like responses (83). This
property is critical in pathological situations during which type I
NKT cells can either exert positive or negative functions. Of note,
type I NKT cells not only produce cytokines and display cytotoxic
functions toward transformed cells and virally-infected cells (84).
Type II NKT cells represent a much broader family of CD1d-
restricted αβ T cells that react to lipids, but not to α-GalCer.
They express a more diverse TCR repertoire that recognizes lipid
Ags of various nature and origin (mammalian and microbial)
(85). Due to the lack of specific tools, the functions of type II
NKT cells have mainly been proposed indirectly by comparing
the phenotypes observed in Jα18-deficient (which lack type I
NKT cells) vs. CD1d-deficient (which lack both type I and type
II NKT cells) mice in various settings. Type II NKT cells appear
to share conserved phenotypic and functional features with type
I NKT cells including an effector memory phenotype, cytotoxic
potential and secretion of numerous cytokines/chemokines (85).
Akin to type I NKT cells, type II NKT cells play important
functions during (bacterial) infections. NKT cells, which are
more abundant in mice relative to humans, populate both
lymphoid tissues and mucosal sites, including the lungs (86, 87).

Mucosal-Associated Invariant T cells
Mucosal-associated invariant T (MAIT) cells present many
common features with NKT cells and γδ T cells including
the capacity to rapidly react to non-peptide Ags. MAIT cells
are defined by their restriction to the major histocompatibility
complex class I-related molecule 1 (MR1) (88, 89). The majority
of MAIT cells (referred to as classical MAIT cells) (90) express
a semi-invariant TCR composed of a canonical TCRα-chain
(Vα19-Jα33 in mice and Vα7.2-Jα33 in humans) associated with
a restricted set of Vβ segments (88, 89, 91, 92). Through their
TCR, MAIT cells recognize small intermediate metabolites from
the riboflavin (vitamin B2) pathway of bacteria, mycobacteria
and yeast (93–95). They can react to products derived from
the non-enzymatic reaction between a riboflavin precursor and
small aldehydes of both microbial and host origin. The high
instability of these ligands has so far limited their use in the
clinics. Reminiscent with NKT cells, MAIT cells can respond to
TCR signals and/or to various activating cytokines, including IL-
12 and IL-18 (96–98). Upon activation, MAIT cells produce large
amounts of Th1- and Th17-related cytokines (99). Additionally,
MAIT cells can kill bacteria-infected cells (100). Unlike NKT

cells, MAIT cells are abundant in the blood (up to 10% of
the T cell compartment) in humans. They are also present at
mucosal sites, including the lungs (10% of respiratory mucosal
T cells) (101), where they sense the environment and exert a
role of sentinels of the immune system. Due to their scarce
representation in common laboratorymouse strains (unlike NKT
cells), understandingMAIT cell biology is challenging even using
Mr1−/− mice. To better assess their role in preclinical models,
transgenic mice (Vα19iTg x Cα−/−) displaying high content of
MAIT cells have been developed (102). Given their cytokine
profile and cytotoxic potential, MAIT cells intuitively emerged
as a specialized cell population in host defense against bacteria.

γδ T Cells
γδ T cells represent approximately 1–10% of peripheral blood
T cells in humans and are important components of both
innate and adaptive immunity. They display vast effector and
immune regulatory functions (103). Akin to other members
of the unconventional T cell family, γδ T cells display a pre-
activated status that allows rapid induction of effector functions
following the detection of tissue stress (104–106). Another
important feature of γδ T cells is their tropism for epithelial
surfaces including lungs, to where they migrate shortly after
development and persist as resident cells. They frequently express
invariant or closely related γδ TCRs in a given tissue site (e.g.,
Vγ1, Vγ4, and Vγ6 in the mouse lung tissue), which confer
them specific Ag recognition capabilities from one tissue to
another (103). Reminiscent to other unconventional T cells,
γδ T cells can kill infected cells and initiate adaptive immune
responses through the release of substantial amounts of Th1-
and Th17-related cytokines (103). Thus, γδ T cells have emerged
as essential constituents of the antimicrobial immunity in both
preclinical and clinical settings (107). While the Ags for mouse
γδ TCRs have not been reported yet, human γδ T cell subsets
(e.g., Vγ9Vδ2+ cells) can recognize both natural (of microbial
and mammalian origins) and synthetic phosphoantigens (108).
However, it is now clear that the phosphoantigens are not directly
sensed by the γδ TCRs but rather require the involvement of
butyrophilin BTN3A as an intermediate. The precise molecular
mechanisms involved in this TCR-dependent γδ T cell activation
are still a matter of debate (109). Whatever the mechanisms
involved, phosphoantigens have been shown to strongly activate
(in vivo and ex vivo) human Vγ9Vδ2 γδT cells to induce their
proliferation and to increase their cytotoxic capacities as well
as their cytokine secretion including IFN-γ and TNF-α. Given
this, harnessing γδ T cell functions in therapeutic protocols is
currently highly considered by clinicians especially in the context
of cancer (110).

ROLE OF UNCONVENTIONAL T CELLS IN
RESPIRATORY PNEUMOCOCCAL AND
STAPHYLOCOCCAL INFECTIONS

Evidence in both preclinical and clinical settings have suggested a
key role for unconventional T cells in host response against lung
bacterial pathogens. Here, we compared their mode of activation
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and functions during respiratory bacterial infections with a focus
on the two major opportunistic pathogen bacteria implicated in
bacterial superinfection post-influenza, namely S. pneumoniae,
and S. aureus.

Streptococcus pneumoniae
Streptococcus pneumoniae (also referred to as the pneumococcus)
is the leading cause of community-acquired bacterial pneumonia
worldwide (2 million deaths per year), with infants and the
elderly exhibiting higher susceptibility. This Gram-positive
bacterium, which comprises a group of more than 90
serotypes, colonizes asymptomatically nasopharynx of healthy
individuals. However, when the immune equilibrium is broken,
pneumococcus carriage can lead to mild disease such as otitis
media or sinusitis and more occasionally turns into severe
complications such as pneumonia, sepsis, and meningitis (111).
Streptococcus pneumoniae is often found in biological fluids of
hospitalized patients diagnosed for influenza infection as well
as patients with exacerbated chronic lung inflammation (112,
113). Despite vaccination prevents pneumococcus spread and
controls infections, the available vaccines have however some
issues (114). In addition, the emergence of antibiotic-resistant
strains represents an important threat for the management of
pneumococcal infections in clinics (115).

In the mouse system, both type I NKT cells and γδT cells
activate in response to S. pneumoniae (Figure 1). While type I
NKT cells produce IFN-γ early after pneumococcal challenge,
γδT cells produce IL-17A (66, 74, 116–118). Activation of
type I NKT cells during S. pneumoniae infection depends
on pneumococcal-derived lipid(s) (α-glucosyldiacylglycerol),
cytokines (IL-12) or both according to the strain studied (86,
116, 119). Of note, we and others have highlighted the role of
CD103+ dendritic cells in the activation of type I NKT cells
during pneumococcal infection (119, 120). The mechanisms
through which murine γδT cells activate (IL-17) mainly depends
on IL-1β and IL-23 (117, 121). The lack of type I NKT cells
(Jα18−/− mice) (119, 122, 123) or γδT cells (Tcrd−/− mice)
(66, 117) results in higher bacterial loads and mortality. The
underlying mechanisms of this protective activity rely on IFN-γ
and IL-17 secretion and on the early recruitment of neutrophils.
Hence, both type I NKT cells and γδT cells play a natural
positive role in host defense against experimental pneumococcal
infection (Figure 1). The potential role of type II NKT cells
and MAIT cells during pneumococcal infection is still elusive.
Of interest, S. pneumoniae expresses enzymes involved in the
synthesis of riboflavin metabolites (124, 125) and human MAIT
cells produce, in an MR1-dependent manner, IFN-γ in response
to dendritic cells and airway epithelial cells exposed to S.
pneumoniae (126, 127). Using Vα19iTg x Cα−/− mice, a small
proportion of lung MAIT cells were shown to produce IFN-
γ and IL-17A during pneumococcal infection (127). Although
a more detailed kinetic analysis is required, these levels were
relatively low compared to those produced by NKT cells and
γδT cells. The use ofMr1−/− or Vα19iTg x Cα−/−Mr1−/− mice
will be instrumental to address the role of MAIT cells during
experimental pneumococcal infection.

The potential effects of exogenous activation of
unconventional T lymphocytes on pneumococcal infection have

been examined. Inoculation of the type I NKT cell superagonist
α-GalCer protects against lethal pneumococcal infection in
the mouse system (123, 128). Mechanistically, this protective
activity relies on respiratory CD103+ dendritic cells and on
both IFN-γ and IL-17A production and neutrophils (128). The
potential effect of exogenous γδ T cell and MAIT cell activation
on host defense against pneumococcal infection is presently
unknown. Despite emerging evidence for a critical role in host
response to pneumococcus in experimental models, information
regarding the phenotype and dynamics of unconventional T
cells in patients with severe S. pneumoniae-driven pneumonia
are rather limited. Of note, the level of circulating MAIT
cells in critically ill patients with severe bacterial infection is
markedly decreased compared to age-matched healthy controls
(129). Although this decrease is less striking in patients with
streptococcal infections, these data suggest that MAIT cells may
migrate into the lungs, and thus may exert a potential role during
pneumococcal infection.

Staphylococcus aureus
Staphylococcus aureus is a Gram-positive bacteriumwith a potent
pathogenic potential to cause a variety of community and
hospital-acquired infections. In normal conditions, it commonly
colonizes the upper airways. Under certain circumstances,
including influenza infection, it can cause localized and serious
invasive infections, as well as a severe septic shock syndrome
(130). The frequency of these infections is increasing. The ability
of S. aureus to form biofilms and the emergence of multidrug-
resistant strains (e.g., methicillin-resistant Staphylococcus aureus)
are the main reasons why their treatment is becoming more
difficult. The capacity of S. aureus to become pathogenic is
related to the expression of virulence factors, among which
the production of a wide variety of toxins. Staphylococcal
superantigens (SAgs) constitute a family of potent exotoxins
secreted by S. aureus (131). They can cross-link MHC class II
molecules with TCRs to stimulate an uncontrolled polyclonal
activation of T lymphocytes (cytokine storm), potentially leading
to severe illnesses including toxic shock syndrome.

Despite a relatively poor literature in the field, unconventional
T cells might play role during S. aureus infection. They also
recently emerged as potential targets of Staphylococcal SAgs.
Indirect evidence suggest that IL-17 production by γδ T cells
might be important in the control of S. aureus lung infection
(72, 73) (Figure 1). Mice lacking γδ T cells have a reduced
ability to clear bacteria and to control pulmonary inflammation
(132). The role of NKT cells and MAIT cells in the control
of S. aureus is still unknown. On the other hand, emerging
evidence suggest that unconventional T cells (at least NKT cells
and MAIT cells) are involved in toxic shock syndrome induced
by Staphylococcal SAgs. Intranasal inoculation of Staphylococcal
enterotoxin B promotes the activation of type I NKT cells
and lung injury (133). Staphylococcal enterotoxin B activates
mouse and human type I NKT cells via a MHC class II
(but not CD1d) Vβ8-dependent pathway (134). More recently,
Szabo et al., using SAg-sensitive HLA-DR4-transgenic mouse
demonstrated that type I NKT cells are pathogenic (toxic shock
syndrome) in response to Staphylococcal enterotoxin B (135).
Of interest, administration of a Th2-polarizing glycolipid agonist
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FIGURE 1 | Mode of activation and role of unconventional T cells during pneumococcal and staphylococcal infections. Early after S. pneumoniae and S. Aureus

infection, Ag presenting cells, including dendritic cells, produce a wide array of cytokines that activate pulmonary γδ T cells (IL-17A) and type I NKT cells (IFN-γ). Lipids

from S. pneumoniae can also directly activate type I NKT cells through their TCR. The protective role mediated by γδ T cells and type I NKT cells comprises activation

of innate effector cells, such as macrophages and neutrophils (IFN-γ, IL-17). The latter are rapidly recruited in response to chemokines produced, amongst other cell

types, by epithelial cells (i.e., IL-17 receptor signaling pathways). Mechanisms leading to bacterial clearance include killing (bactericidal) activity of macrophages and

neutrophils and release of antimicrobial peptides (AMPs). The potential role of MAIT cells in pneumococcal and staphylococcal infections is still unknown.

for type I NKT cells reduced morbidity and mortality. Type
I NKT cells may therefore constitute an attractive therapeutic
target in SAg-mediated illnesses. Mouse and human MAIT
cells can also activate in response to Sags in a largely TCR-
independent, cytokine-driven manner (136). They produce a
huge amount of pro-inflammatory cytokines and thereafter
become unresponsive to stimulation with bacterial Ags. Through
this mechanism, they might participate in cytokine storm and
subsequent immunosuppression. Akin to type I NKT cells, MAIT
cells may therefore provide an attractive therapeutic target for
the management of both early and late phases of severe SAg-
mediated illnesses.

ROLE OF UNCONVENTIONAL T CELLS IN
BACTERIAL SUPERINFECTION
POST -INFLUENZA

As outlined below, mouse models of viral-bacterial infection have
been used to assess the role of unconventional T cells in bacterial
superinfection post-influenza. These cells are activated during
influenza infection (24, 27–33, 137) and, through their ability to
control barrier function, they may limit bacterial superinfection.
On the other hand, although activation during influenza
infection may preset their antibacterial effector functions,

immune suppression arising from influenza counteracts their
antibacterial potentials.

Role of Unconventional T Cells in
Pulmonary Barrier Functions
Disruption of the pulmonary barrier functions strongly
contributes to enhanced bacterial colonization, bacterial
superinfection and bacterial pneumonia in the context of prior
influenza. Emerging evidences suggest that unconventional T
cells play a natural role in the maintenance of tissue integrity
and/or in tissue repair processes (138). Recent studies have
addressed the role of unconventional T cells in tissue homeostasis
and barrier functions during experimental influenza. Type I
NKT cells and γδ T cells produce the tissue protective cytokine
IL-22 (through IL-1β- and IL-23) during the early course of IAV
infection (24, 139). Although IL-22 does not affect viral loads
during influenza, several independent groups have demonstrated
the protective effect of IL-22 against epithelial damages caused
by viral replication (24, 139–143). The mechanisms through
which IL-22 prevents epithelial barrier dysfunction during
influenza infection might include an inhibitory effect on the
recruitment of inflammatory monocytes and a direct effect on
the expression of genes involved in barrier functions (143).
Interleukin-22 might also participate in airway epithelial
regeneration and barrier repair (141, 142). Interestingly, through

Frontiers in Immunology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 336

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Paget and Trottein Unconventional-T Cells in Bacterial Superinfection

its protective effect on barrier functions, IL-22 reduces secondary
bacterial infection (139, 143). Of note, MAIT cells have recently
been reported to accumulate in the lungs and to activate
(through IL-18) during experimental IAV infection, a process
associated with protection against a lethal viral challenge (33).
Although not firmly established, MAIT cell activation during
IAV infection may reduce pulmonary epithelial damage and
reinforce barrier functions. Hence, by rapidly producing tissue
protective factors, unconventional T cells, including NKT cells,
γδ T cells, and MAIT cells, may limit the extent of secondary
bacterial infection post-influenza. It is noteworthy that NKT cells
can also indirectly activate the synthesis of protective barrier
factors by other cells (e.g., amphiregulin by group 2 innate
lymphoid cells) (25, 41). These functions might be exploited for
therapeutic purposes.

Role of Unconventional T Cells in
Pulmonary Innate Responses
Alteration of innate immune defense also strongly contributes
to bacterial superinfection post-influenza. As stated above,
unconventional T cells play a part in host defense against S.
pneumoniae and S. aureus. Here, we summarize host factors
that (may) compromise their protective functions in the context
of double viral and bacterial infection (mouse system). In this
setting, IL-10 and type I IFNs appear to play a relevant role.
During IAV infection, IL-10 is massively produced by innate
and adaptive immune cells. This includes CD4+ (including
regulatory T cells) and CD8+ T cells as well as NK cells and
myeloid cells, mostly inflammatory monocytes (38, 119). Our
data indicate that in the context of prior influenza, type I NKT
cells fail to produce the protective cytokine IFN-γ (Figure 2), an
effect associated with worse secondary pneumococcal infection
(119). Blockade of IL-10 rescues activation of type I NKT cells
(through restoration of IL-12 production by Ag-presenting cells),
reduces bacterial outgrowth and dissemination and improves
disease outcomes. Hence, the lack of type I NKT cell activation
participates, at least in part, to bacterial (pneumococcal)
superinfection post-influenza. Along with IL-10, type I IFNs
favor bacterial superinfection post-influenza (57, 66, 68, 72–
74, 144). γδ T cells appear to be the main target of type I
IFNs. In the context of double IAV-bacterial (both pneumococcal
and staphylococcal) infection, γδ T cells fail to secrete IL-17 in
a type I IFN-dependent manner (66, 72, 74) (Figure 2). This
ultimately leads to altered neutrophil recruitment and activity
and to inhibition of the IL-17 antimicrobial pathway, including
production of antimicrobial peptides. In this setting, the mode
of action of type I IFNs is multiple. Type I IFNs can block the
secretion of Th17-promoting cytokines IL-1β and IL-23 by Ag-
presenting cells (72, 73). On the other hand, type I IFNs can
directly target γδ T cells, via IFNAR, to inhibit IL-17 production
(74) (Figure 2). Finally, type I IFNs indirectly inhibit IL-17
release by γδ T cells by promoting IL-27 production (66, 67).
IL-27 targets γδ T cells to decrease expression of the IL-17-
promoting factors RORγt and IL-23 receptor (66). The later
mechanism is probably dominant as exogenous administration of
IL-27 reverses the resistance phenotype of IFNAR-deficient mice

upon post-influenza bacterial infection via down-regulating IL-
17 production by γδ T cells and neutrophil response. Whether
MAIT cell functions are affected by influenza, for instance
through IL-10 or type I IFNs, is still ignored. Type III IFNs have
also been shown to favor bacterial superinfection post-influenza
(70). Regarding the role of unconventional T cells in barrier
functions and innate antibacterial immunity, one can speculate
that type III IFNs (like type I IFNs) also alter the functions of
these cells to favor bacterial superinfection.

Human Studies
Whilst the use of experimental models suggests a role for NKT
cells and γδ T cells in bacterial superinfection post-influenza (the
potential role of MAIT cells has not yet been appreciated), few
studies have so far investigated unconventional T cells during
human influenza and secondary infections. MAIT cells are more
abundant in the blood relative to NKT cells and, to a lesser
extent, γδ T cells. Compared to healthy donors, the frequency
of circulating MAIT cells decreased in patients hospitalized
for severe pneumonia due to infection with the Asian lineage
avian IAV (H7N9) (96). Of interest, individuals who recovered
from pneumonia had a higher level of circulating MAIT
cells compared with patients who succumbed (96). This study
suggested a protective role of MAIT cells in human influenza.
Another clinical study confirmed the reduced peripheral blood
MAIT cell frequencies (and enhanced granzyme B expression) in
patients with acute IAV infection (2009 H1N1 pandemic) (145).
This decrease was even more pronounced in critically ill patients
admitted in intensive care unit compared to patients with mild
symptoms. Reduction ofMAIT cell numbers during acute human
influenza infection (critically ill patients) could impair protective
anti-bacterial immunity increasing the risk of secondary bacterial
infections, which would enhance disease severity and mortality.
The frequency, number and functional state of NKT cells and
γδ T cells during human influenza have not yet been examined.
In influenza vaccinated individuals, γδ T cells proliferate and
activate although this intensity weakens with age (146).

THERAPEUTIC OPPORTUNITIES

The unique biologic features of unconventional T cells are
now being harnessed in the fight against cancer (79, 110, 147).
Although this field is still in its infancy, exploitation of these cells
in the management of lung infections appears to have therapeutic
promise (148). Targeting unconventional T cells has several
advantages. Firstly, the cells’ restriction to non-polymorphic
Ag-presenting molecules renders most patients eligible for
unconventional T cell-based therapy using universal ligands.
The question of whether unconventional T cells are potential
immune targets in post-influenza bacterial superinfections has
recently been addressed in preclinical models. The results suggest
that these cells can indeed be exploited therapeutically. One
major obstacle is the difficulty in balancing the induction of
effective bacterial clearance and the avoidance of excessive
inflammation. Cytokine-based strategies, neutralizing antibodies,
and treatment with agonists that are specific for unconventional
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FIGURE 2 | Role of unconventional T cells in bacterial superinfection post-influenza. Influenza A virus replicates in epithelial cells, thus leading to cellular damage and

pulmonary inflammation. Along with typical inflammatory cells (neutrophils, inflammatory monocytes), the lungs is infiltrated with various populations of immune

suppressive cells expressing for instance IL-10. The later inhibits the production of IFN-γ by type I NKT cells. Meanwhile, due to reduced IL-1β and IL-23 production,

γδ T cells display a defective ability to release IL-17A. Multiple mechanisms are involved including a direct role for type I IFNs on Ag presenting cells (reduced IL-1β and

IL-23) and γδ T cells (reduced IL-17A) and a promoting effect of type I IFNs on IL-27 synthesis. Interleukin-27 in turn targets γδ T cells to reduce IL-17A production.

During IAV infection, there is also a numeric and/or functional defect of alveolar macrophages and neutrophils. As a result, the development of respiratory bacteria in

the lung compartment is not controlled, leading to severe bacterial pneumonia and bacterial dissemination from the lungs. The potential positive role of γδ T cells and

type I NKT cells (IL-22) in the maintenance of the epithelial barrier is not mentioned. The potential role of MAIT cells in bacterial superinfection is still unknown.

T cells have generated promising results over the last few years
(mouse system).

The overexpression and/or inoculation of IL-23 or IL-1β
restores the defective production of IL-17 by γδ T cells and T
helper cells, and improves the clearance of pneumococci and
staphylococci (72, 73). Furthermore, neutralization of IL-10 and
IL-27 by blocking antibodies during the course of influenza
restores the respective abilities of NKT cells and γδ T cells to
combat secondary bacterial infections (66, 119). It is important
to note that this approach is associated with better disease
outcomes, including higher survival rates. In the mouse system,
it has been suggested that treatment with the superagonist α-
GalCer can enhance the beneficial activity of type I NKT cells.
Inoculation of α-GalCer during IAV infection markedly reduces
the bacterial (pneumococcal) burden in the lungs and bacterial
dissemination from the lungs (149). However, the efficacy of this
type of treatment is limited by its narrow therapeutic window; on
day 7 (when susceptibility to superinfection peaks), α-GalCer has
no effect. This is due to the disappearance of CD103+ dendritic
cells (150)–a critical population involved in activation of type I
NKT cells in the lungs—at this time point (128). In contrast,
α-GalCer treatment early in the IAV infection (on day 4) or
during the resolution phase (day 14) is associated with lower
pneumococcal outgrowth and dissemination. Less intense viral-
bacterial pneumonia and a lower morbidity rate were observed

in superinfected mice treated with both α-GalCer and the anti-
inflammatory corticosteroid dexamethasone (149). However, this
combination therapy was not associated with a lower mortality
rate during secondary bacterial superinfection. In contrast to type
I NKT cells, the potential effects of agonists on γδ T cells and
MAIT cells in the context of post-influenza secondary bacterial
infections have yet to be investigated.

Although the above-mentioned findings (the restoration of
NKT cell and/or γδ T cell functions) have revealed a novel aspect
of immunotherapy against superinfection in animal models, their
clinical relevance remains to be proven. In the search for an
effective balance between effective bacterial clearance and the
avoidance of excessive inflammation, it is likely that additional
therapeutic approaches (e.g., anti-inflammatory drugs) will have
to be implemented. One can also speculate that combination
treatment with antibiotics might enhance the efficacy of
immunotherapy. It was recently shown that the application of a
combination of antibiotics and immune stimulators (e.g., Toll-
like receptor agonists) improved the outcome of post-influenza
bacterial superinfection in a murine system (151). On the same
lines, it would be useful to study the effects of a combination of an
agonist (e.g., α-GalCer) and an antibiotic. Another key challenge
relates to cell targeting. As discussed above, unconventional
T cells are heterogeneous, and comprise subpopulations with
sometime opposite functions. It will be necessary to target
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subpopulations of interest (e.g., IL-17 producers)more accurately
by engineering T-helper-polarizing agonists (which have only
been developed for NKT cells so far) and/or co-factors polarizing
their functions. This would open the way to immunotherapies
tailored to match a patient’s immune profile. Importantly, it
seems that this type of treatment must also take account of
the nature of secondary bacterial infection. As discussed above,
Staphylococcal SAgs have a critical role in the pathogenesis of
S. aureus infections. In this setting, antagonists or T-helper-
polarizing agonists could be used to manipulate type I NKT cells
and MAIT cells—both of which are hyper-responsive to SAgs.

CONCLUSIONS AND PERSPECTIVES

Unconventional T cells have attracted growing interest from
researchers and clinicians. The literature on the cells’ roles in
immune and inflammatory responses has grown tremendously
over the last 10 years. In view of their immunoregulatory
potential, unconventional T cells are well poised to help fight
lung infections and the latter’s complications. However, there
is a paucity of preclinical and clinical research on the cells’
potential roles in the context of influenza and secondary bacterial
infections. Further research into (i) the role of unconventional
T cells in bacterial (super) infections of the respiratory tract and
(ii) how influenza modulates the cells’ functions is now needed.
Furthermore, the use of novel mouse models will be essential for
defining the respective roles of unconventional T cells and their
subsets in influenza and secondary bacterial infections. Given
that the mechanisms of post-influenza bacterial superinfections
are multifactorial (with the exploitation of mechanical and/or
immune alterations in the host), future therapeutics will probably
have to include several components that target several host
factors in addition to the viruses and bacteria themselves.
Although this approach is in its infancy, the manipulation of
unconventional T cells during influenza (cytokines, α-GalCer)
has shown its potential in the fight against secondary infections.
As mentioned above, this strategy is not problem-free, and
must be considered with caution. Research on the effects of
combining immunostimulatory factors with antimicrobial drugs
(e.g., antibiotics) should be encouraged, and might help to lessen
the development of drug resistance. Given the physiological role
of unconventional T cells in tissue repair and barrier functions,
strategies for promoting these functions might also be of value.
Lastly, given the role of type I NKT cells and MAIT cells
in the cytokine storm that follows exposure to Staphylococcal

SAgs, the manipulation of these cells might help to control
the outcomes of secondary staphylococcal infection—including
necrotizing pneumonia. As discussed in this review, there is
also a critical knowledge gap between preclinical and clinical
studies; hence, analyses of the frequency/number and functional
states of patients’ unconventional T cells should be encouraged.
Counts of circulating unconventional T cells are not negligible;
considering the critical role they exert in many diseases, one
can expect to see some major breakthroughs in the near future.
Promising research initiatives might include a complete analysis
of the whole family of unconventional T cells, i.e., NKT cells,
group 1 CD1-restricted T cells, MAIT cells and γδ T cells. High-
throughput RNA sequencing (at the bulk population and single-
cell levels) and the computer modeling of cytokine signatures in
patients should also be encouraged. Although the work will be
time-consuming and arduous, it might translate into improved
clinical outcomes.

In conclusion, we critically analyzed the available evidence
on the potential role of unconventional T cells in post-influenza
bacterial superinfections. In view of these cells’ extraordinary
immunostimulatory and immunoregulatory properties and the
proven safety of unconventional T cell agonists, further research
in this field should be encouraged.
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