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Abstract. River discharge plays an important role in earth’s
water cycle, but it is difficult to estimate due to un-gauged
rivers, human activities and measurement errors. One ap-
proach is based on the observed flux and a simple annual wa-
ter balance model (ignoring human processes) for un-gauged
rivers, but it only provides annual mean values which is in-
sufficient for oceanic modelings. Another way is by forcing
a land surface model (LSM) with atmospheric conditions. It
provides daily values but with uncertainties associated with
the models.

We use data assimilation techniques by merging the mod-
eled river discharges by the ORCHIDEE (without human
processes currently) LSM and the observations from the
Global Runoff Data Centre (GRDC) to obtain optimized dis-
charges over the entire basin. The “model systematic errors”
and “human impacts” (dam operation, irrigation, etc.) are
taken into account by an optimization parameter x (with an-
nual variation), which is applied to correct model interme-
diate variable runoff and drainage over each sub-watershed.
The method is illustrated over the Iberian Peninsula with
27 GRDC stations over the period 1979–1989. ORCHIDEE
represents a realistic discharge over the north of the Iberian
Peninsula with small model systematic errors, while the
model overestimates discharges by 30–150 % over the south
and northeast regions where the blue water footprint is large.
The normalized bias has been significantly reduced to less
than 30 % after assimilation, and the assimilation result is not
sensitive to assimilation strategies. This method also corrects
the discharge bias for the basins without observations assim-
ilated by extrapolating the correction from adjacent basins.
The “correction” increases the interannual variability in river
discharge because of the fluctuation of water usage. The E

(P −E) of GLEAM (Global Land Evaporation Amsterdam
Model, v3.1a) is lower (higher) than the bias-corrected value,
which could be due to the different P forcing and probably
the missing processes in the GLEAM model.

1 Introduction

River discharge is an essential component of the earth’s wa-
ter cycles, which can be used as an indicator of the hydro-
logical cycle intensification (Munier et al., 2012). It is im-
portant not only for water resources management, climate
studies and ecosystem health over land (Syed et al., 2010;
Sichangi et al., 2016) but also for providing freshwater in-
flow to ocean (Dai and Trenberth, 2002). The freshwater flux
at the sea surface has significant influence on the climate
system (e.g., ENSO, ocean dynamics) and on ocean salinity
(Kang et al., 2017). The fresh water inputs for ocean models
usually require high-frequency data (e.g., daily or 10-daily;
Scherbakov and Malakhova, 2011). Besides, as the ocean
models with high spatial resolution (e.g., < 10 km) demon-
strate better skills than coarse resolution model (Bricheno
et al., 2014; Wang et al., 2018), there is also a requirement
of high-resolution fresh water fluxes. Although great efforts
have been made for gridded river discharge data at the global
scale (e.g., RivDIS v1.1; Vorosmarty et al., 1998; Dai and
Trenberth, 2002; Fekete et al., 2002), these data are usually
at monthly or annual timescales and have not been updated
with time. Therefore, it is of great interest to estimate large-
scale river discharge over the long-term at high temporal and
spatial resolutions and low uncertainty.
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Estimating the river discharge input to ocean is a difficult
endeavor for several reasons. First, there are many un-gauged
rivers that are difficult to evaluate. Second, most large rivers
are gauged by national agencies, and these data are difficult
to access for public users. Besides, the number of operational
gauging stations is decreasing worldwide (Syed et al., 2010;
Sichangi et al., 2016). Third, even though the observations
are available, the observed river flow at the outlet is not well
known because it is difficult to get gauging stations close to
the river mouth and many observations are affected by human
activities especially in semiarid regions (Jordà et al., 2017).

One approach to estimate the freshwater inflow into ocean
is based on the observed water fluxes over data-rich regions
and a simple annual water balance model, precipitation in-
puts minus the evaporation, which ignore human usage and
other processes over un-gauged basins (e.g., Szczypta et
al., 2012; Peucker-Ehrenbrink, 2009; Mariotti et al., 2002;
Struglia et al., 2004; Boukthir and Barnier, 2000; Ludwig
et al., 2009). This method is the basis of most water balance
studies and oceanic modeling activities but it has several lim-
itations. First, there are uncertainties in observations related
to the measurement method and post-processing method.
These uncertainties are difficult to quantify due to incom-
plete information (Jordà et al., 2017). Second, only annual
mean values are available over un-gauged basins (about 40 %
for the Mediterranean; 42 % over globe, excluding Greenland
and Antarctica; Clark et al., 2015) by simple runoff models,
which are not sufficient for oceanic modelings.

Riverine input can also be obtained through forcing a state-
of-the-art land surface model (LSM) or global hydrological
model (GHM) with bias-corrected atmospheric conditions
(e.g., aus der Beek et al., 2012; Bouraoui et al., 2010; Jin et
al., 2010; Sevault et al., 2014). These numerical models can
estimate river discharge at higher frequency and over more
un-gauged basins (Jordà et al., 2017), but they are associated
with modeling uncertainties. First, models are designed and
have proved the ability to capture the natural water cycles,
but relatively less progress has been made in parameteriz-
ing human processes (Pokhrel et al., 2017). The water flow
of many catchments has been strongly regulated by humans
through irrigation use, dam operation, etc. (e.g., the south-
ern shores of the Mediterranean). Second, there are large
discrepancies among models resulting from the differences
in model inputs, parameterizations and atmospheric forcing
data (Ngo-Duc et al., 2007; Wang et al., 2016; Liu et al.,
2017).

The objective of the present study is to illustrate a novel
approach based on assimilation techniques applied to LSMs
to estimate continental water cycles (riverine fresh water).
The data assimilation, a specific type of inverse problem,
is generally applied for different cases: (1) to correct initial
condition (correcting state variable) which is mostly used for
numerical weather prediction; (2) to correct the state vari-
able during the data assimilation period (i.e., in this case
both the trajectory of the model and the initial conditions

are corrected) and (3) to correct the parameter of a model
by optimization. In the current study, the data assimilation
refers to the third case. This assimilation approach merges
the data from the model (ORCHIDEE LSM) and the ob-
served river discharge from the Global Runoff Data Cen-
tre (GRDC, 56068 Koblenz, Germany). This will allow us
to compensate for model systematic errors or missing pro-
cesses and provide estimates of the riverine input into the sea
at high temporal and spatial resolutions. Although previous
works exist on assimilation of river discharge (e.g., Li et al.,
2015; Bauer-Gottwein et al., 2015; Pauwels and De Lannoy,
2009), these studies mainly focus on the stream flow predic-
tion over individual catchments. They are difficult to extend
to long-term timescales and large catchments due to the ob-
servations and computing time limitations.

This paper focuses on the methodology and its illustra-
tion in a Mediterranean region (the Iberian Peninsula) which
is considered one of the most vulnerable regions to climate
change due to its geographic and socio-economic charac-
teristics (Vargas-Amelin and Pindado, 2014). Although the
amount of river discharge is relatively small (about one-
third to half of precipitation amount; Tixeront, 1970; Shaltout
and Omstedt, 2015), it is an important source of fresh wa-
ter entering the Mediterranean Sea and it plays an important
role in sustaining the marine productivity (Bouraoui et al.,
2010) and overturning circulation (Verri et al., 2017). The
river discharges to the Mediterranean Sea underwent impor-
tant changes during recent decades. This variation is partic-
ularly important for this region because of its scarce water
resource with increasing water demand for domestic, indus-
trial, irrigation and tourism activities, as well as its drier and
warmer conditions under climate change (Romanou et al.,
2010). Considering the high stress on the water resources in
the Mediterranean region, accurate estimation of the actual
resources is important.

The methods (including the model, datasets and numerical
experiment) are described in Sect. 2. The results and discus-
sions are given in Sect. 3. Conclusions are drawn in Sect. 4.

2 Methods

2.1 The theoretical background

The theoretical basis of the LSM assimilation for the study is
the vertical and lateral water balance. The precipitation (P)
input of a basin is transferred into either evaporation, surface
runoff (R), deep drainage (D) (eventually theR andD reach-
ing the channel and leaving in the form of river discharge) or
stored in the ground.

dW
dt
= P − (R+D)−E (1)
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Figure 1. (a) Illustration of correcting river discharge (Q) simulation (simulation in blue solid dot, observation in red star) by applying
correction factors (x) to runoff and drainage over different basins. Basin 1 and basin 2 are represented in yellow and blue, respectively. (b) The
model framework of the river discharge assimilation. The blue and red parts are run for “First Guess” and for assimilation, respectively.

Over a long period, the change in water storage dW
dt is small(

dW
dt ≈ 0

)
, thus

P −E ≈ R+D. (2)

The lateral water balance over a basin (e.g., the sub-
catchment 2 in blue in Fig. 1a) is given by

dA2

dt
=

∫
S2

(R2+D2)ds

−Q2+Q1, (3)

where S2 is the area of sub-catchment 2; A2 is the water
stored in the aquifers of area S2; Q2 and Q1 are the river
discharge at outlet of each sub-catchment, and they are cal-
culated by the integral of runoff and drainage over the sub-
catchment area S1 and S2. We assume the A2 variation at
the annual timescale is small

(
dA2
dt ≈ 0

)
due to its slow vari-

ability, although it can be nonzero due to human intervention
(e.g., over the Indo-Gangetic basin, MacDonald et al., 2016).
TheW andA terms refer to water storage and water stored in
the aquifers, respectively. The Eqs. (1)–(3) describe the basic
water cycle processes in the LSMs.

Despite the fact that the LSMs have developed rapidly dur-
ing the last few decades, few models take into account the hu-
man water usage processes. Due to this limitation, LSMs are

usually accompanied with errors in reproducing discharge
and evaporation in areas where these processes are domi-
nant. Assuming the P forcing is known in the LSM, the
modeled water continuity imposes a balance of errors be-
tween E, R and D. However, the R and D are conceptual
variables, and their errors are impossible to evaluate by ob-
servations directly. The field measurements of E over large
area are also scarce due to land surface heterogeneity (Kalma
et al., 2008). Fortunately, the observations of river discharge
(Qobs) are available. By fitting modeled discharge withQobs,
we can correct model intermediate variables in Eqs. (1)–(3)
(e.g., correct R andD by a correction factor x, Fig. 1a) in
order to get bias-corrected river discharge (Qcorr).

Qcorr =

∫
catchment

(x ·R+ x ·D)dS (4)

Recalling the dW
dt is small and P is known, we then trans-

fer the x into vertical water balance and close the horizontal
water balance by the corrected evaporation (Ecorr):

Ecorr ≈ P − x · (R+D), (5)

The impacts of assimilation on E (1E) can be derived from
the optimal x, R and D:

1E = Ecorr−E ≈ (1− x) · (R+D). (6)
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The key problem remains to determine the optimal x (de-
scribed in Sect. 2.2.2). Each discharge observation station
corresponds to an optimal correction factor x since the dis-
charge is the only representative of the integral over the
basin. The total number of x depends on the number of avail-
able stations. The optimal x over each observation station is
applied to its entire upstream area. Over each upstream area
(dashed box in Fig. 1a), the optimal x of these model grid
cells are the same. The “R+D” and E are corrected at the
same grid cell level by x and Eq. (5), respectively.

2.2 The models

2.2.1 Assimilation strategy and ORCHIDAS

The optimal x is obtained from the ORCHIDEE Data As-
similation System (ORCHIDAS; https://orchidas.lsce.ipsl.fr,
last access: 4 July 2018). It was designed to optimize the
variables related to water, energy and carbon cycles in OR-
CHIDEE (Organising Carbon and Hydrology in Dynamic
Ecosystems; Krinner et al., 2005; De Rosnay et al., 2002)
LSM by using various observations (in situ, satellite, etc.).
The ORCHIDAS has been applied over different regions
for various variables and demonstrated good performance
(Santaren et al., 2007; Kuppel et al., 2012; MacBean et al.,
2015). More details of ORCHIDAS are presented by Peylin
et al. (2016).

In this work, the ORCHIDAS drives the ORCHIDEE
routing scheme which is computationally less expensive
than the full ORCHIDEE model (Fig. 1b). The data as-
similation approach relies on the minimization of a mis-
fit function J (x) (a.k.a. cost function) by successive calls
to “gradient-descent” minimization algorithm L-BFGS-B
(Limited-memory Broyden–Fletcher–Goldfarb–Shanno al-
gorithm with simple box constraints; Byrd et al., 1995).

A new vector of parameter values x is estimated at each it-
eration. The J (x)measures the mismatch between the vector
of observed river discharges Qobs and corresponding simu-
lated values Qsim(x), as well as between the optimized cor-
rection factors x and its prior information xprior:

J (x)=
[
Qobs−Qsim (x)

]tR−1 [Qobs−Qsim (x)
]

+
(
x− xprior

)tB−1 (x− xprior
)
, (7)

where R and B represent the prior error covariance matrices
for observations and parameters, respectively. Diagonal ele-
ments of the R matrix represent the data uncertainties, which
include both the measurement errors (systematic and ran-
dom) and model errors, we have defined it as the root mean
squared error (RMSE) between the prior model simulations
and the observed river discharges. Non-diagonal elements
describe correlations between the data, which are difficult to
presume correctly, and are usually neglected. The prior pa-
rameter uncertainties (matrix B) have been set to 40 % of the
range of variation in correction factors obtained from the ra-
tio Qobs and first guess value of river discharge simulation

(Qfg) obtained from xprior. The matrix B was determined
based on the expert knowledge of ORCHIDEE model (Kup-
pel et al., 2012; Santaren et al., 2014). Correlations between
prior parameter values have not been considered. The gradi-
ent of the J (x) is calculated for all the parameters by a finite
difference approach at each iteration (Kuppel et al., 2012).

2.2.2 ORCHIDEE LSM with high-resolution river
routing model

The ORCHIDEE LSM is the land component of Institut
Pierre Simon Laplace Climate Model (IPSL-CM), which
simulates energy, water and carbon cycles between the soil
and atmosphere. The unsaturated water flow is described at
each land point by the one-dimensional Richards equation
with 2 m soil discretized to 11 levels. The surface runoff and
deep drainage at bottom layer are computed by Horton over-
land flow and free drainage (equals to hydraulic conductiv-
ity), respectively. In other words, the ORCHIDEE LSM as-
sumes that the aquifer level is below the model bottom, and
it neglects the upward water flow through capillary forces
from its underlying aquifer. The evaporation is partitioned
into transpiration, bare soil evaporation, interception loss and
snow sublimation.

The ORCHIDEE is coupled with the ocean model through
the river routing scheme (Polcher, 2003; Ducharne et al.,
2003; Guimberteau et al., 2012), which computes river dis-
charge by integrating the surface runoff and deep drainage
over the basin. A high-resolution river routing scheme was
developed recently, which better describes catchment bound-
aries, flow direction and water residence time (Nguyen-
Quang et al., 2018; Zhou et al., 2018). It is based on the
HydroSHED (Hydrological data and maps based on SHut-
tle Elevation Derivatives at multiple Scales; http://www.
hydrosheds.org, last access: 4 July 2018; Lehner et al., 2008)
map with 1 km spatial resolution. There are several hydro-
logical transfer units (HTUs) in one ORCHIDEE grid-cell
(e.g., 100 in the current study). The HTU is constructed
based on the Pfafstetter topological coding system and user-
defined size. Each HTU represents the section of the river
basin within the grid box, and many HTUs forms a river
basin (Nguyen-Quang et al., 2018). Therefore, the relative
locations of HTUs in each grid cell are not fixed.

In each HTU, the water is routed through a cascade of
three linear reservoirs characterized by their residence times:
the groundwater, overland and stream reservoirs. The runoff
and drainage are the inputs into the overland reservoir and
groundwater reservoir, then they flowed into the stream reser-
voir of the downstream sub-grid basin. The residence times
are determined by multiplying a constant reservoir factor
(g) with a slope index (k). The g for stream, overland and
groundwater reservoirs are 0.24, 3 and 25 days km−1, respec-
tively (Ngo-Duc et al., 2007). The slope index is a function
of distance (d) and slope (S) between a pixel and its down-
stream pixel (k = d/S1/2 defined by Ducharne et al., 2003).

Hydrol. Earth Syst. Sci., 22, 3863–3882, 2018 www.hydrol-earth-syst-sci.net/22/3863/2018/
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The water can flow either to the next HTU within the same
grid cell or to the neighboring cell. The river discharge is
diagnosed at the HTU level in the assimilation. The river dis-
charge is linear with R and D at an annual timescale over a
small basin. In the case of more than one observation station
being assimilated in a river basin (e.g., x1 and x2 in Fig. 1a),
the river discharge downstream is affected by the discharge
of upstream, thus it is not a linear system anymore. There-
fore, the optimization is needed to deal with the x over the
non-linear sub-basins.

The time steps for the ORCHIDEE model and routing
scheme are 30 min and 3 h, respectively. The spatial reso-
lution of the model depends on the resolution of the atmo-
spheric forcing, and it is 0.5◦ for the current study (given
in Sect. 2.3.2). The soil texture map is from United States
Department of Agriculture (USDA) with 12 soil textures
(Reynolds et al., 2000). The vegetation map is from the Eu-
ropean Space Agency Climate Change Initiative (ESA CCI,
https://www.esa-landcover-cci.org, last access: 4 July 2018)
reduced to the 13 plant functional types represented by the
model.

2.3 The study domain and the datasets

2.3.1 Study domain

The assimilation system is applied over the Iberian Penin-
sula. This region is dominated by two climate types:
the oceanic climate in the Atlantic coastal region and
the Mediterranean climate over most of Portugal and Spain.
The annual precipitation is extremely unevenly distributed
with more than 1500 mm over northeastern Portugal, much
of coastal Galicia and along the southern borders of the Pyre-
nees but less than 300 mm over southeast Spain (Estrela et al.,
2012). Over Spain, agriculture occupies approximately 50 %
of the land area (e.g., year 2014, https://data.worldbank.org/
indicator/AG.LND.AGRI.ZS, last access: 4 July 2018), and
with around 1200 large dams (European Working Group on
Dams and Floods, 2010).

2.3.2 The meteorology forcing

In order to study the sensitivity of the optimization results
to different forcing data, three meteorology forcings are
used: WFDEI_GPCC, WFDEI_CRU and CRU_NCEP.
The WFDEI_GPCC and WFDEI_CRU (3-hourly, 0.5◦)
are based on the WFDEI meteorological forcing data
which was produced using WATCH (WATer and global
CHange) Forcing Data (WFD) methodology applied
to ERA-Interim data at 0.5◦ (Weedon et al., 2014;
http://www.eu-watch.org/data_availability, last access:
4 July 2018). The WFDEI is from 1979 and updates
until now with eight meteorological variables at 3-hourly
time steps. The precipitation of WFDEI_GPCC and
WFDEI_CRU is corrected by GPCC (Global Precipitation

Climatology Centre) and CRU (Climatic Research Unit),
respectively. The CRU_NCEP (6-hourly, 0.5◦) combines
the CRU TS.3.1 (0.5◦, monthly) climatology covering
1901–2012 and the NCEP (National Centers for Envi-
ronmental Prediction) reanalysis (2.5◦, 6 h) beginning in
1948 (https://vesgint-data.ipsl.upmc.fr/thredds/fileServer/
IPSLFS/igcmg/IGCM/INIT/SRF/IPSLCM5CHS/METEO/
CRU-NCEP/README_CRUNCEP.txt, last access: 4 July
2018). The precipitation of the three forcings is compared
with the IB02 which is a gridded daily rainfall dataset for
the Iberian Peninsula with 0.2◦ resolution and covers 1950
to 2003 (Belo-Pereira et al., 2011). It is generated by using
ordinary kriging from more than 2400 quality-controlled
stations.

2.3.3 The GRDC dataset

The Global Runoff Database collects the monthly river dis-
charge from most basin agencies around the world (more
than 9300 stations) with an average record length of 43 years.
Although the quality of the observations is unknown (e.g.,
monitoring the river transect, velocity measurements, etc.),
the GRDC datasets are the most complete river discharge
dataset available today. It is hosted by the German Federal
Institute of Hydrology (Bundesanstalt für Gewässerkunde
or BfG; https://www.bafg.de/GRDC/EN/Home/homepage_
node.html, last access: 4 July 2018).

2.3.4 Integration of GRDC into ORCHIDEE

The location of some stations in the GRDC dataset might
be incorrect for either the longitude or latitude coordinate
due to simple typos, logical errors in the original coordinates
or a swapped order of the coordinate digits (Lehner, 2012).
Due to this uncertainty, a quality control is applied for GRDC
when matching it with the corresponding HTUs in the river
routing model. For each GRDC station, the corresponding
catchment surface in the model is estimated. The matching
process is stringent, and the GRDC qualification is restricted
by two matching criteria: (1) the difference in upstream area
between GRDC and the model is less than a pre-defined per-
centage and (2) the distance between GRDC and the model
is less than a pre-defined distance. The higher the two thresh-
olds are, the more the matched GRDC stations can be posi-
tioned on the model’s basin representation. Meanwhile, the
high threshold increases the uncertainties in the GRDC data
due to the errors in location and upstream area. By com-
promising between the two contradictory requirements (the
number of GRDC stations and the precision of the data), we
choose the threshold for upstream area difference and dis-
tance to be 10 % and 25 km, respectively. Under this con-
straint, 27 GRDC stations are qualified among all 65 stations
over the Iberian Peninsula domain (34◦ N–45.5◦ N, 10◦W–
5.5◦ E; Fig. 2). It should be noted that one GRDC station
can match with several model HTUs that locate in different
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Figure 2. The river network (blue lines) and the GRDC stations
(solid dots represent the 27 qualified stations and the gray triangles
represent unqualified stations) over the study domain.

model grids. In this case, the HTU with the lowest upstream
area difference is chosen. Therefore, the GRDC station is not
necessarily in the same model grid as the model HTU.

2.3.5 The evaporation products

The bias-corrected evaporation deduced from the assimila-
tion is compared with the GLEAM (Global Land Evapora-
tion Amsterdam Model; Martens et al., 2017; https://www.
gleam.eu, last access: 4 July 2018) product. GLEAM pro-
vides daily evaporation from 1984 to 2011 at 0.25◦. The
evaporation is estimated by a minimalistic Priestley–Taylor
potential evaporation model with the majority of inputs es-
timated from remote sensing. It uses the microwave-derived
soil moisture, land surface temperature and vegetation den-
sity, and the detailed estimation of rainfall interception loss.
The rainfall interception loss is estimated separately using
the Gash analytical model which considers the canopy stor-
age capacity, coverage and the ratio of mean evaporation rate
from wet canopy. There are several versions of GLEAM data
available, and we choose the latest version v3.1a. The pre-
cipitation forcing of GLEAM v3.1a is from the Multi-Source
Weighted-Ensemble Precipitation (v1.2).

2.4 Experiments design

An ORCHIDEE simulation is performed to obtain the Qfg
and the corresponding R and D. The ORCHIDAS with L-
BFGS-B algorithm explores the full space of x by perturb-
ing a separate x (xi) over the ith upstream catchment (i =
1,2, . . . , Nopt; Nopt is the total number of optimized x de-
pending on the number of observation stations) in each itera-
tion. To save computing time, the river routing parameteriza-
tion (forced by corrected R and D) rather than the full OR-
CHIDEE is executed. The total execution time depends on
the number of parameters to be optimized, the length of sim-

ulation years and the number of iterations. Multi-level par-
allelisms of the assimilation are implemented to achieve the
high computational efficiency. In each iteration, the assim-
ilation can run with Nopt “river routing” simulations, with
each “river routing” model parallelized with Nrouting CPUs
(Nopt = 27, Nrouting = 16 over the study domain). Over the
Iberian Peninsula, the range of x is defined between 0 and 20
which is determined by Qfg and Qobs.

In order to check the impacts of prior information xprior on
the optimization convergence time, the xprior is set to a con-
stant value “1” (xprior_1) or a “pre-estimated prior” (xprior_ref,
defined as the ratio of Qobs/Qfg), separately. The optimal x
values are assigned over the whole study domain. The x of
the sub-catchment without the GRDC station available is set
to 1 (no correction). The climatology values (e.g., over 1979–
2014) are applied to fill the missing observation values over a
certain period. In the case of more than one GRDC station lo-
cated in the same model grid, the averaged correction factor
is used.

The optimization results are not sensitive to the choice of
xprior, but the convergence time indeed depends on xprior.
Figure 3a shows that the xprior_ref method requires less itera-
tion to converge than xprior_1 (7 and 15–20 iterations, respec-
tively). The value of the cost function of xprior_ref method is
lower than that of xprior_1 for all iteration steps. The normal-
ized bias (Norm_BIAS) of discharge after 7 iterations is less
than 0.3 for the xprior_ref method, while it is larger than 0.6
over most southern regions for xprior_1 (Fig. 3b and c). The
oscillation of J at the steps 3 and 5 could be due to the fact
that the calculation of the gradient of J by finite difference is
not optimal. It is also possible because the L-BFGS-B partly
explores the physical range during the first few iterations to
estimate the Hessian of the cost function for convergence.

Norm_BIAS=
Qsim−Qobs

Qobs
. (8)

We choose xprior set by xprior_ref for n years (n= 10, 1980–
1989) experiment with iteration number k being 15 and num-
ber of correction factor m (i.e., the number of GRDC sta-
tion) being 27. The x values vary with different years. Due
to the slow variation in aquifer levels, a spin-up is neces-
sary before optimization to get the equilibrium of aquifer lev-
els in the LSM. The spin-up creates the aquifer initial states
(A0

corr,A
1
corr,A

2
corr, . . . , A10

corr) at the start of the assimilation
cycles over each ORCHIDEE model grid (Fig. 4), making it
adapt to the bias-corrected aquifer states.

dAicorr
dt
= (9)∫
S

x(R2+D2)

−Qcorr,2+Qcorr,1, 0≤ i ≤ 10

To test different assumptions of errors in initial conditions,
we implemented different optimization methods with each
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Figure 3. (a) The variation in cost function J (unit: 1; logarithmic y axis) with iterations for xprior_1 (“xprior = 1”, in blue) and for xprior_ref
(“xprior = pre-estimated prior”, in red). The iterations 6–15 are enlarged in the window (normal y axis). The Norm_BIAS of optimized river
discharge after 7 iterations for xprior_1 (b) and for xprior_ref (c).
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Figure 4. The setup of assimilation experiments for n years (n= 10, 1980–1989) and k iterations (k = 10) with m(m= 27) correction
factors (x) each year (x is different over years). (a) The ith year (Yi) optimization is initialized by the end of Yi−1 optimization; (b) the
initial condition of Yi optimization is obtained by running Yi−1 optimization fed with the same x as Yi ; (c) optimizing n years together with
1-year spin-up at the beginning of n years. The Y1SP0 and Y1SP1 perform the optimization year by year. The blue and red colors mean
optimization and spin-up simulations, respectively.
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Table 1. The assimilation and simulation experiments.

Name Atmospheric forcing Method

FG(WFDEIG) WFDEI_GPCC no assimilation
FG(WFDEIC) WFDEI_CRU no assimilation
FG(CRUN) CRU_NCEP no assimilation
Y1SP0(WFDEIG) WFDEI_GPCC Y1SP0 assimilation
Y1SP1(WFDEIG) WFDEI_GPCC Y1SP1 assimilation
Y10C(WFDEIG) WFDEI_GPCC Y10C assimilation
Y1SP0(WFDEIC) WFDEI_CRU Y1SP0 assimilation
Y1SP0(CRUN) CRU_NCEP Y1SP0 assimilation

Note: all runs are from 1980 to 1989 with 0.5◦ spatial resolution; FG stands for “First
Guess”.

method results in a group (m× n) of optimal x (Fig. 4, Ta-
ble 1). In method 1, the optimization is carried out year by
year with 1-year spin-up for each iteration (“Y1SP1” here
after). The x of the optimization year is applied during sim-
ulation. Method 2 is similar with Y1SP1 except that it uses
optimized aquifer levels from the previous year (“Y1SP0”
here after). This method assumes the final state variables
(aquifer levels) of the optimal solution at the current opti-
mization year is the best initial condition for the following
assimilation year. In method 3, the optimization is done con-
tinuously over 10 years with 1-year spin-up at the beginning
of each 10-year simulation (“Y10C” here after). The Y10C
optimizes 270 correction factor x over 10 years together,
while the Y1SP1 and Y1SP0 optimize the 10 years separately
with 27 x each year. The “river routing” model running years
required by the three methods are 8100 (=m× 2× n× k),
4050 (=m× n× k) and 44 550 [=m× n× (n+1)× k], re-
spectively. Take the Y1SP0 for example, in each iteration
the correction factor x is perturbed by m times. For each
perturbation, the ORCHIDEE river routing model runs once
with one x (e.g., xi at the ith sub-catchment) being perturbed
while the x of other sub-catchments are kept the same. There-
fore, the total number of years required form stations, n iter-
ations and k years assimilation is m× n× k. For all experi-
ments, the optimization is carried out at daily timescale, and
the diagnostics are performed for annual averages where we
assume the water storage variation is neglectable.

In order to further identify the impacts of atmospheric
forcing on optimizations (e.g., optimal correction factor x),
we measure the “Uncertainty” in the variable (“var” in
equation; “var” refers to x, corrected evaporation, etc.) by
Eq. (10). The higher the “Uncertainty” is, the larger the un-
certainty is. The 0 value means that all three “var” values are
equal.

Uncertainty(var)= (10)
|var1− var2| + |var2− var3| + |var1− var3|

3

3 Results and discussions

3.1 Evaluation of river discharge without assimilation

Figure 5 displays the first-guess simulation forced with
different atmospheric forcing: WFDEI_GPCC (Fig. 5a–b),
WFDEI_CRU (Fig. 5c–d) and CRU_NCEP (Fig. 5e–f). The
Norm_BIAS and correlation coefficient (computed by the
annual mean values) are used to measure the qualities of
the simulated discharge. The diagnostics at each GRDC sta-
tion are spread to the entire upstream basin which con-
tributes to the errors in discharge downstream. The correla-
tion coefficient between FG (forced by WFDEI_GPCC and
WFDEI_CRU) and observation is greater than 0.6 over most
regions, but it is less than 0.2 over certain regions (e.g., mid-
dle and southeast of the Iberian Peninsula, Fig. 5a and c).
The correlation coefficient obtained by using CRU_NCEP
forcing is less than 0.2 for most regions (middle and west
of the Iberian Peninsula), which is worse than the simulation
from WFDEI_GPCC and WFDEI_CRU. Wang et al. (2016)
also show the relatively poor performance of CRU_NCEP
in simulating global land surface hydrology and heat fluxes
by using the the Community Land Model (CLM4.5). The
spatial pattern of the absolute bias in river discharge varies
with the atmospheric forcing (not shown). The normalized
bias is then applied to measure the river discharge simula-
tion. The Norm_BIAS in discharge shows consistent spa-
tial distribution for simulations of the three forcings. The
Norm_BIAS (positive) is higher than a factor of 1.5 over the
south and northeast of the Iberian Peninsula, which means an
overestimation of river discharge. The Norm_BIAS is small
(within±0.3) over the north, west and southeast of the region
(Fig. 5b, d and f).

3.2 Comparison of the three optimization strategies
forced by WFDEI_GPCC

We apply the three assimilate approaches (Y1SP1, Y1SP0,
Y10C) to ORCHIDEE simulations to correct the bias in dis-
charge simulation by WFDEI_GPCC forcing. Figure 6 (left
column) displays the geographical distribution of the aver-
age correction factor x obtained after the assimilation. The
x values range between 0 and 1.5 over the study domain.
The perfect discharge simulation corresponds to x equal to
1. The x value lower than 1 means the discharge in FG
(WFDEI_GPCC) is overestimated and thus a decrease in R
and D is required, and vice versa for x being higher than
1. The further x is away from 1, the larger the corrections
of runoff and drainage are. The three methods display sim-
ilar spatial distribution pattern with x being less than 0.5
over the south and east of the Iberian Peninsula and x being
higher than 1 over the north of the Iberian Peninsula. This
spatial distribution of x is highly consistent with the pattern
of Norm_BIAS in FG (discharge overestimated in south and
northeast, underestimated in north).
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Figure 5. The river discharge simulations from 1980 to 1989 using WFDEI_GPCC (1st row), WFDEI_CRU (2nd row) and CRU_NCEP
(3rd row) forcings. Left column: the correlation coefficient of river discharge between observations and simulations; Right column: the
Norm_BIAS of simulated river discharge.

Figure 6 (central column) shows the correlation coefficient
between corrected discharge and GRDC observations. Af-
ter assimilation, the correlation of the optimized discharge
and observations is larger than 0.8 over most regions. The
correlation coefficient for assimilated discharge and observa-
tion is less than 0.6 (but higher than 0.4) over some regions
and seems very dependent on the forcing. This is probably
because there is a contradiction of x between the upstream

and downstream stations and thus the method has difficulties
finding a compromise (e.g., over the Ebro Basin). In gen-
eral, the regions with low correlation coefficient are forcing
dependent, while the regions with high correlation coeffi-
cient are very consistent among different forcing. Figure 6
(right column) gives the Norm_BIAS in discharge between
assimilations and observations. After assimilation, this pos-
itive bias in river discharge has been significantly reduced
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Figure 6. The optimization results from 1980 to 1989 using the three methods (1st row: Y1SP1; 2nd row: Y1SP0; 3rd row: Y10C) forced
by WFDEI_GPCC. Left column: the optimized correction factor x; Middle column: the correlation coefficient of river discharge between
observations and optimizations; Right column: the Norm_BIAS of optimized river discharge.

(within ±0.3). It should be mentioned that the xprior_ref is
able to capture the general distribution pattern of optimal x,
but the performance of river discharge estimation is signifi-
cantly improved through optimization. The role of optimiza-
tion is to find an appropriate correction factor when there are
several basins (with observations) overlaps at upstream

A common validation approach is to compare the assim-
ilated river discharge with other independent data sources.
However, the river discharge observations are limited, and
the GRDC is the only comprehensive river discharge datasets
at global scale so far. To overcome this limitation, the as-
similated river discharges are also validated over the catch-
ments where the GRDC stations are discarded during assim-
ilation. Figure 7 shows the annual mean of river discharge
over the Alcala Del Rio station (37.52◦ N, −5.98◦W) on
the Guadalquivir river (located in the southwest of Spain)
before and after correction. The observation of this station

Figure 7. The annual cycles of river discharge for “First Guess”
(FG) forced by WFDEI-GPCC (black), Y1SP1 (blue), Y1SP0
(green), Y10C (yellow) and GRDC observations (red) over the Al-
cala Del Rio station (37.52◦ N, −5.98◦W) on the Guadalquivir
river. The dotted lines show the trend.
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is not assimilated due to its large upstream area difference
(18.39 % > 10 %) between model (55 635 km2) and GRDC
(46 995 km2). The overestimated discharge simulated by the
model at this station is also corrected because it benefits
from the correction factor estimated at the Cantillana station
(37.59◦ N, −5.83◦W; 44 871 km2) which is located 15.3 km
upstream of Alcala Del Rio station of the Guadalquivir river
(southwest of the Iberian Peninsula). Between the two sta-
tions, there are several tributaries that flow to Alcala Del Rio
station, which leads to different annual mean river discharges
at Cantillana (49.7 m3 year−1) and Alcala Del Rio stations
(94.8 m3 year−1). This result illustrates that this approach is
able to correct the river discharge over the entire basin. The
discharges for certain sub-basins without assimilated obser-
vations (e.g., observation unavailable or GRDC stations dis-
carded) are corrected by x as well. Although the validation
datasets are from the same GRDC source, they are from other
independent observation stations thus can be seen as an inde-
pendent validation (“first order validation”).

In summary, all three methods (Y1SP1, Y1SP0 and Y10C)
are able to improve the river discharge simulation by OR-
CHIDEE LSM. The correlation coefficient and Norm_BIAS
in discharge obtained from the three methods are generally
consistent. The correlation coefficient of the Y10C method
in the northeast is lower than that of Y1SP0 and Y1SP0,
which is probably resulting from its poor quality of atmo-
spheric forcing. The Y1SP0 consumes less computing time
than Y1SP1 and Y10C, and it does not worsen the optimiza-
tion results. By compromising between the accuracy of re-
sults and the computing time, we choose the Y1SP0 method
for further assimilation.

The above assimilations are performed with the same forc-
ing (WFDEI-GPCC) by assuming the errors in discharge are
caused by model defect (e.g., model parameterization, model
structure, etc.). The uncertainties in simulated discharge also
result from the atmospheric forcing. The role of atmospheric
forcing in assimilation is discussed in the following section.

3.3 The sensitivity of the optimizations to atmospheric
forcing

In order to understand the response of the optimizations
to different atmospheric forcing with different precipitation
sources, the ORCHIDAS was also run with WFDEI_CRU
and CRU_NCEP forcing using the Y1SP0 optimization strat-
egy. Using two other different forcings for the assimilation
can allows us to understand how important the forcing un-
certainty affects the correction factor. The multi-year mean
correction factor x obtained from WFDEI_CRU (Fig. 8a),
CRU_GPCC (Fig. 8b) and WFDEI_GPCC (Fig. 8c) displays
quite consistent spatial patterns. The coverage of low cor-
rection factor (blue in Fig. 8a–c, corresponds to large cor-
rection) obtained from CRU-NCEP is larger than that ob-
tained from WFDEI_CRU and WFDEI_GPCC. This is be-
cause the positive bias in discharge of the FG simulation

forced by CRU-NCEP is larger than that by WFDEI_CRU
and WFDEI_GPCC. Besides the atmospheric forcing, the
uncertainties could also originate from boundary conditions
(e.g., topographic or other land surface features), model pa-
rameter, model structure or missing processes. For all forc-
ing, the x is less than 0.3 (but greater than 0) over the south,
which implies that the error in discharge is probably resulted
from the missing model processes (human activity). Over the
north, the x values are close to 1 (discharge well simulated)
for all three forcings, which indicates the correction comes
from model “random” error (natural discharge) rather than
the system error (e.g., missing processes).

The uncertainty in x by the three forcings is small for most
regions (Fig. 8d). The high uncertainty in x over the Adour
(southwestern France) and the Chelif (in Algeria) river basins
correspond to the large uncertainty in the different atmo-
spheric forcing. This result demonstrates the obtained correc-
tion factor x is robust in spite of using different atmospheric
forcing. This is also demonstrated by comparing the pre-
cipitations between the three forcings and the IB02 dataset.
Compared to the IB02, all the three forcings overestimate
rainfall in the Iberian Peninsula (Fig. S1a–c), but none of
these error patterns resembles that of the proposed E correc-
tion (Fig. 9e–g). Unlike the pattern of the correction factor
(Fig. 8a–c), the ratios of annual mean precipitation between
the three forcings and the IB02 are higher than 1 over most
regions (Fig. S1d–f). Therefore, the precipitation forcing er-
ror is likely not the dominant factor in determining the cor-
rection factor distribution.

In summary, the assimilation approach is able to correct
errors in lateral water balance despite using different forc-
ing. Recalling that the corrected R+D (through x) and the
precipitation are known, we then transfer the optimal correc-
tion factor x to the vertical water balance equation (Eq. 5) to
derive the bias-corrected evaporation. This will enable us to
understand the impacts of assimilation on evaporation.

3.4 Evaporation estimations through the optimal
correction factor

The evaporation of the FG simulation by different forc-
ings show a quite consistent spatial distribution (Fig. 9a–
c) and small uncertainty (< 0.2 mm day−1, Fig. 9d) with the
value being higher over the north than south. The change of
evaporation (dE) induced by the correction is consistent for
three forcings (Fig. 9e–g) with low uncertainties (Fig. 9h).
It should be mentioned that the evaporation for the regions
without GRDC stations are not corrected (i.e., correction fac-
tor x equals 1) such as southern France, western Portugal,
and northwest, south and southeast of Spain (blank regions
in Fig. 8). The dE is positive (around 0.2 to 0.4 mm day−1)
over the south and northeast where the evaporation is under-
estimated in FG. Cazcarro et al. (2015) show a large blue wa-
ter footprint (volume of surface and groundwater consumed
for production of an item) of human activity over the south
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Figure 8. The correction factor x obtained from Y1SP0 forced by (a) WFDEI_CRU, (b) CRU_NCEP, (c) WFDEI_GPCC and (d) the
“Uncertainty” (defined by Eq. 10) of x by different forcing. All values are averaged over the period 1980–1989.

(Jaén, Sevilla, and Malaga provinces), northeast (Palencia,
Burgos, La Rioja, Navarra and Valladolid provinces), north
(Tarragona province) and middle (Toledo province) of Spain
(Map. 1 of that paper). The large dE over the south and north-
east obtained in the current study is consistent with the blue
water footprint of Cazcarro et al. (2015). Figure 9i–k plot
the change of the ratio of water demand (dE) and water sup-
ply (R+D). This ratio measures the degree of water short-
age. The greater the ratio, the higher the level of water short-
age. The ratio is larger over the south and northeast of Spain,
which is consistent with the results from other studies that
measure the water deficits (Rodríguez-Díaz et al., 2007) and
water exploitation index (Pedro-Monzonís et al., 2015) in
Spain. Since we assume that the missing human processes
are the main error in ORCHIDEE, the dE and dE / (R+D)
indicate the changes induced by human processes. The spa-
tial patterns of dE and dE / (R+D) are quite consistent with
human water exploitation, thus the model missing processes
(e.g., human water usage) is considered as the dominant con-
tribution to x.

We also tested the possibility of improving the river dis-
charge estimation by using an annual constant correction
factor to evaporation (XEcorr), which can be derived from

Eq. (6).

XEcorr ≈
E+ (1− x) · (R+D)

E
(11)

Ecorr =XEcorr ·E (12)

Although Eqs. (11)–(12) are able to improve river discharge
estimation by modifying soil moisture, the energy and water
balance are not conserved. One solution could be to run the
full ORCHIDEE LSM in the assimilation system with the
same cost function as Eq. (7). In this way, the intermediate
variables are adjusted towards optimal river discharge with
the modification of evaporation. This approach executes the
full ORCHIDEE model, thus it is very time consuming and
is beyond the scope of the current study.

3.5 The interannual variation in correction factor and
water cycle

3.5.1 The interannual cycles

All the results so far are obtained by averaging multi-year
mean values which provide us the bias correction informa-
tion at spatial scale. To understand the interannual cycles of
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Figure 9. The evaporation (E, in mm day−1) before assimilation (1st row), change of evaporation (dE, in mm day−1) after and before assim-
ilation (2nd row) and the ratio of dE and runoff+ drainage (3rd row) for forcing WFDEI-GPCC (1st column), WFDEI-CRU (2nd column),
CRU-NCEP (3rd column) and the “Uncertainty” (defined by Eq. 10) in different forcing (4th column) averaged from 1980 to 1989.

the correction and its possible contribution, we analyze the
assimilation results over two stations in the south of Spain
where the discharge correction is large during the period of
1980–1989 (Fig. 8).

The Puente De Palmas station is located on the Guadiana
River (southwest of the Iberian Peninsula) with an upstream
area of 48 515 km2. The three FG simulations (with different
forcing) significantly overestimate the river discharge and the
runoff coefficient (ratio of discharge and precipitation), while
the FG(WFDEIG) and FG(WFDEIC) underestimate the in-
terannual variability comparing with observations (Fig. 10a–
b). The standard deviation of the annual means for obser-
vation, FG(WFDEIG), FG(WFDEIC) and FG(CRUN), are
33.8, 28.8, 25.2 and 34.3 m3 s−1, respectively. One reason
could be the variation in water usage by irrigated agricul-
ture which occupies 90 % of the blue water usage (surface
water and groundwater) in this semiarid basin (Aldaya and
Llamas, 2008) or model errors. Besides, there are many in-
terconnected wetlands and structurally complex hydrogeo-
logical boundaries between the two upper Guadiana aquifer
in the upper Guadiana River basin (Van Loon and Van La-
nen, 2013). These complex features are difficult to represent
in the model, thus a large bias exists in river discharge of
ORCHIDEE. The correction factor corrects these model de-

fects (Fig. 10c) and it demonstrates good skill in correcting
the interannual variability in discharge and runoff coefficient
(Fig. 10a–b).

The Masia De Pompo station (17 876 km2) is on the Jú-
car River (southeast of Spain). The observations over the
year 1983 and 1988–1989 are obtained from the climatology
values due to the unavailability of GRDC data during this
period. During 1980–1989, the interannual variation in ob-
served discharge (and runoff coefficient) and FG simulation
is quite inconsistent (Fig. 10d–e). This is probably caused
by the surface water usage which occupies about 55 % over
this basin (Kahil et al., 2016). Most of them are used for
agriculture (> 80 %) and urban (> 10 %). Although the im-
provements in assimilated discharge are small, the correction
factor is able to capture the interannual variability in obser-
vations (Fig. 10d and f).

In summary, the interannual variation in river discharge in
the FG simulation and observations do not agree with each
other over the Guadiana River basin and the Júcar River basin
during 1980–1989. The human water usage (e.g., groundwa-
ter or surface water extraction) process, which is neglected in
current ORCHIDEE model, is likely to play an important role
in river discharge variation. The optimized correction factor
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Figure 10. The optimization results by different atmospheric forcings (WFDEI-GPCC in black, WFDEI-CRU in green and CRU-NCEP in
blue) over the Puente De Palmas station on the Guadiana River (a–c, 38.88◦ N,−6.97◦W; 48 515 km2) and over the Masia De Pompo station
on the Júcar River (d–f, 39.15◦ N,−0.65◦W; 17 876 km2): (a, d) annual river discharges; (b, e) runoff coefficient; (c, f) optimized correction
factor x for the simulated/assimilated river discharge (First Guess in dark color, Y1SP0 in light color) with respect to GRDC observations
(in red) from 1980 to 1989.

(varies each year) improves the interannual variability of the
modeled river discharge.

3.5.2 The geographical distribution

To further understand the interannual variability in correc-
tions over the entire Iberian Peninsula region, Fig. 11 plots
the spatial distribution of interannual variability in correction
factor x and river discharge which is quantified by the coef-
ficient of variation as used by Déry et al. (2011) and Siam
and Eltahir Elfatih (2017). In the FG (WFDEI_GPCC) sim-
ulation, the interannual variation in discharge is lower than
0.4 over most regions, which indicates an underestimation of
interannual variability of river discharge in FG. The inter-
annual variability in discharge is increased after assimila-
tion over the south and northeast. This change could be at-
tributed to the fluctuation of correction factor (human water
usage) over these regions. This result agrees with the results
(Map. 6) of Cazcarro et al. (2015) with more large dams in
the south and northeast (natural discharge greatly affected by
human) than the northwest of Spain (natural discharge less
affected by human). The interannual variability in correction
factor x and discharge for Y1SP0 (CRUN) is different from
others, which mainly results from the different atmospheric
forcing.

3.6 Comparison of bias-corrected evaporation with
GLEAM data

In order to evaluate the bias-corrected evaporation, Fig. 12a–
h compare the GLEAM product (v3.1a) with FG and
with bias-corrected E by assimilation using WFDEI_GPCC,
WFDEI_CRU and CRU_NCEP forcing. Due to the unavail-
ability of parts of GLEAM’s atmospheric forcing (e.g., air
pressure, air humidity, air speed, etc.) and difficulty of main-
taining a coherence with other forcings, the assimilation sys-
tem does not run with GLEAM’s precipitation input. We
find a large difference between GLEAM and FG, which in-
dicates that the evaporation is quite uncertain for different
estimations. The geographical distribution and magnitude of
difference in E between GLEAM and FG is highly consis-
tent with that between GLEAM and bias-corrected values
by using different forcings (Fig. 12a–c, and e–g). The sys-
tematic negative difference is higher than the uncertainties
in bias-corrected E with different forcing (Fig. 12d and h).
Parts of the differences are explained by the lower P of
GLEAM than the ORCHIDEE forcing (Fig. 12i–l). Gener-
ally, the P −E (in mm day−1) of GLEAM is higher than
the bias-corrected value associated with small uncertainties
(Fig. 12m–t). Because the bias-corrected P−E are corrected
by GRDC observed river discharge, the P −E (≈ river dis-
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Figure 11. The interannual variation in correction factor x (σ(x)
x

; a, d, g), simulated river discharge without assimilation (σ(Qsim)

Qsim
; b, e, h)

and optimized river discharge (
σ
(
Qopt

)
Qopt

; c, f, i) for Y1SP0_WFDEIGPCC (1st row), Y1SP0_WFDEICRU (2nd row) and Y1SP0_CRUNCEP

(3rd row) averaged over 1980–1989.

charge) of GLEAM is very likely to be higher than GRDC
observations over Iberia. This result indicates that some pro-
cesses are probably also missing in GLEAM v3.1. We also
compared our bias-corrected E with GLEAM v1 data (Mi-
ralles et al., 2011), and we find the P −E between GLEAM
v1 and bias-corrected values are quite consistent for different
forcings. The results are quite consistent when comparing the
corrected E with several other products which are obtained
by using different methodology and forcings (e.g., Jung et
al., 2009; Vinukollu et al., 2011; Mueller et al., 2013). Con-
sidering the availability of P −E for GLEAM data which
allows us to compare it with the bias-corrected value, only
the results of GLEAM are shown.

4 Conclusions

There has been several studies working on the estimation of
fresh water input from continent to ocean (e.g., the Mediter-
ranean Sea) based on an observation or modeling approach
(e.g., Boukthir and Barnier, 2000; Mariotti et al., 2002;
Struglia et al., 2004; Peucker-Ehrenbrink, 2009; Ludwig et
al., 2009; Szczypta et al., 2012). However, these estimations
are limited either by the coarse temporal resolution for obser-
vation approach or by the non-comprehensive representation
of physical processes (e.g., human activities) for the mod-
eling approach. As a result, the fresh water estimations are
accompanied with large uncertainties among varies studies.
This proposed methodology aims to improve the estimation
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Figure 12. Comparison of evaporation (E, in mm day−1, 1st row) between GLEAM (v3.1) and FG (First Guess), as well as E(2nd row),
precipitation (P , in mm day−1, 3rd line), P−E (in mm day−1, 4th row) and P−E (relative value between 0 to 1, 5th line) between GLEAM
(v3.1) and assimilated values using different forcings (1st column: WFDEI-GPCC; 2nd column: WFDEI-CRU; 3rd column: CRU-NCEP;
4th column: “Uncertainty” (defined by Eq. 10) of using different forcing) averaged from 1980 to 1989.

of continental water cycles by merging the merits of obser-
vations and modeling approach through data assimilation.

The basis of the method is the vertical and lateral water
balance equations. The method assumes that the precipita-
tion minus evaporation from the model simulation is an ap-
propriate first guess so that all the errors in river discharge
end up with runoff and drainage. Under this assumption, the
river discharges simulation at river outlet are expected to be
improved by correcting the runoff and drainage (inputs for
river routing model).

The idea is achieved by embedding a river routing scheme
of ORCHIDEE LSM and GRDC river discharge observa-
tions into a data assimilation system (ORCHIDAS). The sys-
tem can run in multi-level parallel computing mode (both

the routing model and the optimization are parallelized). The
river discharge is optimized through applying a correction
factor x to model runoff and drainage which translates errors
in estimated P −E.

The method has been explained through its application
over the Iberian Peninsula with 27 GRDC stations during
1979–1989 with x values being different each year. The main
conclusions are the following: first, the optimization results
are not sensitive to x prior information xprior and assimila-
tion strategies, but the setting of xprior by a “pre-estimated-
prior” (defined as Qobs/Qfg) indeed converges faster than
other xprior values. The method Y1SP0 (the model spin-up
uses the optimal aquifer levels of the previous optimization
year) demonstrates high computing efficiency and compara-
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ble discharge accuracy comparing with the other two meth-
ods (Y1SP0, Y10C), thus the Y1SP0 is recommended (e.g.,
over the full Mediterranean catchment). Second, the largest
correction of discharge is found over the south and north-
east of the Iberian Peninsula. These regions are character-
ized by large blue water footprint with large groundwater
and surface water usage by human activity. It implies that
most of the corrections by x represents the missing human
processes (at least in the south of the study domain). This is
consistent with the fact that the ORCHIDEE model neglects
the human processes (e.g., dam operation, irrigation, etc.).
The discharge correction over north of the Iberian Penin-
sula is relatively small, where it is mainly due to model
systematic error. The correction factor x can also cover er-
rors in the model structure, model parameter or boundary
conditions (e.g., land surface characteristics imposed to the
model). Third, the assimilated discharges reveal lower bias
(from > 100 % to < 30 %) and higher interannual variability
(due to the fluctuation of water usage) than uncorrected ones.
Fourth, the bias-corrected evaporation are compared with the
GLEAM v3.1a product. The E of GLEAM is lower than the
optimized E, while the P −E of GLEAM is higher than the
optimized values. This different P−E could be caused by the
different P forcing and the missing processes in the GLEAM
model.

The method takes into account both gauged rivers (usu-
ally large rivers) and un-gauged rivers, and it provides dis-
charge estimates at a daily timescale from 1980 to 2014 with
the time range depending on atmospheric forcing. By using
the correction factor of an adjacent catchment, this method
also improves the river discharge simulation for the catch-
ment without assimilating observations. Besides, this method
fills the gap of the missing data period (e.g., war, instruments,
etc.) by climatology values, thus the data are complete over
the whole period. The proposed method is supposed to be su-
perior to the simple water-balance methods, because a LSM
estimates E at sub-diurnal timescales with physically based
equations and takes advantage of the spatial distribution of
the P and P −E.

The result implies the necessity of parameterizing the hu-
man water uptake process in the ORCHIDEE LSM. Besides,
the poor quality of the river discharge observations (e.g.,
68 % of stations are discarded over the Iberian Peninsula)
calls for high-quality data. The optimized correction factors
x are model and atmospheric forcing dependent. It is en-
couraged to apply this assimilation method to other models,
which will allow us to identify the sources of errors (e.g.,
model missing process or forcing data). To improve the cal-
culation efficiency, this study uses annual mean correction
factors without considering its seasonal variation, thus the
seasonal discharges are not improved. One issue of the x op-
timization could be the equifinality with a number of opti-
mized x result in a similar river discharge downstream. Fu-
ture developments can be made towards generating ensemble
optimal x to better assess the uncertainties associated with

each parameter x. This assimilation method can be applied
for water cycle studies, data intercomparison and riverine
fresh water estimation over other basins (e.g., the full catch-
ment of the Mediterranean Sea).
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