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We study asymptotical expansion as v — 0 for integrals over R?¢ =
{(x,y)} of quotients of the form F(z,y)cos(Az - y)/((z - y)? 4+ v?), where
A >0 and F decays at infinity sufficiently fast. Integrals of this kind appear
in the theory of wave turbulence.
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1. Introduction

In the paper [1] we study asymptotical, as v — 0, behaviour of integrals

- N F(z,y)

where F and I' are C?-function, I is positive and the two satisfy certain conditions
at infinity. In particular, if I' = 1, then

d>2,0<v <,

02F(2)] < C'(z)" N1l vz = (2,9) € R¥, Vl]a| <2, (1.1)
where C' > 0 and N > 2d — 2. Denote by
¥ CR* =R} x RY (1.2)

the quadric {(z,y) : z-y = 0}, and by X, its regular part ¥\ {(0,0)}. It is proved
in [1] (see [2] for related results) that

T F(Z) z v
b=mt [ ds e+ Olulv)) (13)

where
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dyx, is the volume element on X, induced from the standard Riemann structure
in R??, and the integral in (1.3) converges absolutely. Integrals of this form
appear in the study of the four-waves interaction. The wave turbulence (WT)
limit in systems with the four-waves interaction leads to oscillating versions of
the integrals above with constant functions I'. Re-denoting vI" back to v we write
the integrals in question as

F A -
JV:/ gr FEosOz-9) s NS0 0<w<t (1.4)
R2d (x-y)2+v2
(as before, z = (x,y)). We assume that F is a C?—function, satisfying (1.1).
The aim of this work is to prove the following result, describing the asymp-
totical behaviour of J, when v — 0, uniformly in A > 0:

Theorem 1.1. Let 0 < v < 1 and A\ > 0. Then the integral J, and the
integral

ngﬂe_”’\/ F(2)|z| tdys, 2
E*

converge absolutely and
|, — Vfljo‘ < Cxal(v), (1.5)

where C' depends on d and the constants C', N in (1.1), but not on v and \.

Note that since C' does not depend on A, then relation (1.5) remains valid
for integrals (1.4), where A = A(v) is any function of v. Concerning the imposed
restriction d > 2 see item iv) in Section 5.

If A =0, the integral .J, becomes a special case of [, (with I' = 1), and (1.5)
follows from (1.3). Since sinz(%az +y) = 2(1 — cos(Az - y)), then combining (1.3)
and (1.5) we get

Corollary 1.2. Asv — 0,

: A
/ d dy F(z,y) 811;2(552-?;)
R x R4 (z-y)?+v

(1.6)

STt [ ﬂj)dz*z +O(xa(v)).

uniformly in A > 0.

Classically the WT considers singular versions of the integral in the lL.h.s. of
(1.6):

/dwdy Fe,y)sin®(52 y) (1.7)

(z-y)?
The theory deals with these integrals by performing certain formal calculations,
see Section 6 of [3] (e.g. note there eq. (6.39)+(6.41)). Assertion (1.6) may
be regarded as a regularisation of the integral (1.7). The factor |z|~! which it
introduces in the limiting density is not present in the asymptotical description
of integrals (1.7), used in the works on WT.
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Theorem 1.1 is proved below in Sections 2—4, using the geometric approach
of the paper [1], which also applies to various modifications of integrals I,, and
J,. Some of these applications are discussed in the last Section 5.

Notation. As usual, we denote (z) = \/|z|2 + 1. For an integral I = [p.q f(2) dz
and a submanifold M C R??, dlIIlM m < 2d compact or not (1f m = 2d, then
M is an open domain in de) we write (I, M) = [, f( ), where das(2)

is the volume-element on M, induced frorn de Similar < \I ] M > stands for the
integral [y, |f(2)|da(2).

2. Geometry of the quadric {z -y = 0} and its vicinity.

2.1. The geometry of the quadric. The difficulty in studying the in-
tegral J, with small v comes from the vicinity of the quadric £ = {z -y = 0}.
To examine the integral’s behaviour there we first analyse the geometry of the
vicinity of the regular part of the quadric ¥, = ¥\ {(0,0)}, following [1]. Exam-
ple 5.1 at the end of the paper provides an elementary illustration to the objects,
involved in this analysis.

The set ¥, is a smooth submanifold of R2¢ of dimension 2d — 1. We denote
by £ a local coordinate on ¥, with the coordinate mapping & — (x¢,ye) = z¢ €
Y., denote [£] = |(z¢,y¢)| and denote N(§) = (e, x¢). The latter is the normal
to X, at £ of length [¢|. For any 0 < Ry < Ry we set

SP={zeR¥™: 2| =R}, S =xnsh,
R R R
SRf:{z:R1<\z|<Rg}, EPj:ZﬁSRf,
and for ¢ > 0 denote by D; the dilation operator
D, :R? 5 R 2tz

For z = (z,y) we write w(z) = x - y.
The following result is Lemma 3.1 from [1]:

Lemma 2.1. 1) There ezists 6y € (0,1] such that a suitable neighbourhood
yrbh — 3k (9g) of B, in R24\ {0}, is invariant with respect to the dilations Dy,
t > 0, and may be uniquely parametrized as

S = {n(£,0) 1 £ €Dy, [0] < 6o},

where ( ,0) = (e, ye) + ONe = (me,ye) + 0(ye, z¢). In particular, |7(€,0)> =

[€[7(1 +6%).
2) If m(€,0) € ™" then

w(m(&,0)) = [£. (2.1)
3) If (z,y) € SE\ X" then |x - y| > cR? for some c = c(fp) > 0.

For 0 < Ry < Ry we will denote

(S = m(S72 x (= 6o,00)).
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Now we discuss the Riemann geometry of the domain X" = ¥ (f,), following
[1].

The set ¥ is a cone with the vertex in the origin, and X, = {tz : ¢t > 0,z €
Y1}, The set ©! is a closed manifold of dimension 2d — 2. Let us cover it by
a finite system of charts Ni,...,.Na, Nj = {0/ = (n],...,m5, 5)}, and for any
chart A; denote by m(dn’) the volume element on X!, induced from R?¢. Below
we write points in any chart A as 7, and the volume element — as m(dn).

The mapping

xR — Y, ((l‘myn)vt) - Dt(xn’yn)

is a diffeomorphism. Accordingly, we can cover ¥, by the 7 charts Nj x Ry with
the coordinates (n/,t) =: (n,t). The coordinates (n,t,6), where n € Nj,t > 0
and |f] < 6y, 1 < j < 7, make coordinate systems on ™" = ¥7"(g,). In the
coordinates (7,t) the volume element on ¥, is

ds, = t**2m(dn) dt . (2.2)
In the coordinates (7, t,0) the volume elements in R?? reeds
da dy = 2 u(n, 0)m(dn)dt dd, where u(n,0) = 1 (2.3)
(see [1]), a dilation map D,, r > 0, reeds D, (n,t,0) = (n,rt,0), and by (2.1)
w(n,t,0) =t6. (2.4)

Finally, since at a point z = 7(£,0) € ™" we have % = V. - (ye, x¢), then in
view of (1.1) for any (n,t,0) and any k < 2,

k
y%F(n,t, 0 <cit)™, N>2d-4. (2.5)
2.2. The volume element dy, and the measure |z|~!dy,. Theorem 1.1
and the result of [1] (see (1.3)) show that the manifold ¥, equipped with the
measure |z|"ldy,, is crucial to study asymptotic of integrals I,, J, and their
similarities (cf. Section 6 of [1] and Section 5 below). The coordinates (n,t) and
the presentation (2.2) for the volume element are sufficient for the purposes of this
work. But the quadric ¥ is reach in structures and admits more instrumental
coordinate systems. In particular, if d = 2 we can introduce in the space R%
n (1.2) the polar coordinates (r,¢). Then for any fixed non-zero vector z =
(r,¢) € R2 the set {y € RZ : (z,y) € X,} is the line in Rz, perpendicular to z,
and having the angle ¢ + 7/2 with the horizontal axis. Parametrizing it by the
length-coordinate [ we get on ¥, the coordinates (r,1,0) € RT x R x S, §1 =
R/27Z, with the coordinate mapping

D (r,l, ) (z=(rcosp,rsing),y = (—Ising,lcosp))
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(this map is singular at » = 0). Since
0®/0r]? =1, |0®/01)* =1, |0®/dp|* = 1% + 12,
(0®/0r,00/0l) = (0P /0r,0P/0p) = (0P /0, 0P /Dp) = 0,

then in these coordinates the volume element on X, reeds as vr2 + [2drdldyp,
and the measure |z|"'dyx, — as drdl dp. Consider the fibering

II:RZxRZDE, - R2, (2,y) — .

It has a singular fiber II710 = {0} x Rg, and for any non-zero z the fiber 11z
equals {z} X xt, where -+ is the line in Rz, perpendicular to xz. Since dr =
rdr dip, then the given above presentation for the measure |z|~'dy, implies that
its restriction to the regular part ¥ of the fibered manifold ¥,, X = X, \

({0} x Ri% disintegrates by the foliation IT as
(Iz[ds,) Iy = || e dyry, #0, yeat, (2.6)

where d,. is the length on the euclidean line 2+ C RZ.

We do not undertake the job of getting a right analogy of this result for the
multidimensional case d > 2, but note that a straightforward modification of
the construction above leads to the observation that for any d > 2 the measure
||~ tdy,, restricted to X, disintegrates as

pa(x,y)drd,iy, x¢€ R\ {0}, y € zt, (2.7)

where 7+ is the orthogonal complement to z in RZ, ,d,1 is the volume element

on this euclidean space, and the function py satisfies the estimate pg < C(|z| +
|y 2|z~

3. Integral over the vicinity of X

To study the behaviour of the integral over a neighbourhood of ¥ we first
prove that the integral, evaluated over the vicinity of the singular point (0,0) is
small, and next study the integral over the vicinity of the regular part >, of the
quadric.

For 0 < § <1 denote

Ks={z=(2,y):|z| <d,|y <6} c R x R,
An upper bound for the integral over Ky follows from Lemma 2.1 of [1]:

|F(2)| dz —1:2d—2
<[ BN < _ .
okl < [ ARl < cuis (3.)

8

Now we estimate the integral over the neighbourhood X" of ¥,. For this
end, using (2.3), for 0 < A < B < co we disintegrate (J,, (")) as

b o F(n,t,0)u(n,0) cos(A\z - y)
Ty, (S8 = d / dtth_l/ dg L2
o (7)8) = [ mtan) | B i

B
— / m(dn) / 4t P41 (1)
21

A

(3.2)



6 Sergei Kuksin

where

-2

Y, (n,t) =t /90 F(n,t,0)u(n, 0) cos(At20) do

e=vt
—6o 92 + 82 ’

To study T, we first consider the integral YY, obtained from Y, by frozening
Fyu at € = 0. Since u(n,0) = 1, then

%o cos(A\t26) d 0

bo/e cos(vAw) dw
= 2w 2R (n,t 0)/ —_—
62 + 2 Y

Y0 —9ot~4F tO/
1% (n7 ) ) D 0 w2+1

Consider the integral

Q/GO/EWUQ/WWWU_2/°°WWU.I_I
0 w2+1 w?+1 oo/ W1 .

Since

2/00 cos(§w) dw _ /°° e dw _ ol
0 w? + 1 oo W21 ’

then I; = me~"*. For I we have an obvious bound |I5| < 2¢/6y = C1vt~2. So
Yo, t) =7 U 2FE(n,1,0)(e ™ + Ay), A < Cut2. (3.3)

Now we estimate the difference between Y, and Y9. Writing (Fu)(n,t,0) —
(Fu)(n,t,0) as A(n,t)0 + B(n,t,0)0%, where |A|,|B| < C(t)~" in view of (2.5),
we have

S /90 (A8 + B6?) cos(\t26) df
v v 4, 92 T 82 .

Since the first integrand is odd in 6, then its integral vanishes, and

0 —N,—4 % 0%do —N,—4
—Yo

So by (3.3)

1Tu(n,t) — vt 2F(n,t,0)e "

<cy Nt v tue ) <o)y Nt (38.4)

4. End of the proof of Theorem 1.1
1) In view of (3.2), (3.4) and since N > 2d — 2, for ¢ € (0, 1] we have

‘(Jl,, (E"bh)go> — 7TI/_1€_V)\/ mdn/ dt t?3=3F(n, t, 0)‘
i §

<c / 2450y N gt < Cyya(5).
)
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2) Since d > 2 and N > 2d — 2, then by estimate (2.5) the integral
Jsp mdn [° dtt>*3F(n,t,0) converges absolutely, and by (2.2) it equals

/mdn/ dtt2d3F(n,t,O):/ 12|71 F(2) ds, 2.
st 0 .

3) Applying 1) and 2) to F replaced by Fy = C'(2)~" and using that |F| < |Fp|
by (1.1) we find that the integral (J,, (E”bh)go> also converges absolutely.

4) As |7(&,0)] < V2€], then (Zm0M)) Saﬁé C K /35 Therefore by (3.1)

é
‘(J,,, (E"bh)g> — Wy_le_”A/ mdn/ dt th_?’F(n, t,0) |
»1 0
[
<l K g+t [y [0 P, ,0)
»1 0
< Cll/_l(52d_2 + 021/—152 ,

for any 0 < 0 < 1. Choosing § = /v, from here and 1)-3) we find that
‘(J,,,Z”bh> — wylel’)‘/ mdn/ dt >3 F (n, ,0) ‘ < Cxal(v),
s 0

and that the integral (.J,, ¥"*") converges absolutely.

5) Finally, let us estimate the integral over R2\ ¥70h:

Fld e F(2)|dgr
gl < [ B o [T [ B
{|Z|§\/D} w* + v \/D ST\Enbh w +V2

By item 3) of Lemma 2.1, |w| > Cr? in S” \ ¥™". Jointly with (3.1) this implies
that -
(||, R*\ 2" < O+ C / P2 ) N dr < Crxa(v).
N

So the integral J, converges absolutely and, in view of 4) and 2),
o
‘J,, - 7TI/_1€_V)\/ mdn/ dt t*=3F(n, t,0) |
il 0
=|J, - 7TI/16V)‘/ 2|7 F(2) ds, 2 | < Cxalv).
E*
This proves Theorem 1.1.

5. Comments

i) The only part of the proof, where we use that N > 2d — 2 is Step 2) in
Section 4: there this relation is evoked to establish the absolute convergence of the
integral Jp; everywhere else it suffices to assume that N > 2d — 4. Accordingly,
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if F' satisfies (1.1) with N > 2d — 4 and (|F|,X{°) < oo, then (1.5) holds, since
(|F|,4) < oo, see Step 4) Section 4.

ii) Our approach does not apply to study integrals (1.4), where the divisor
(x-y)? + 12 is replaced by (x-y)? + (vI'(z,y))? and T # Const. But it applies to

integrals
Js = / & F(z)sin(Az - y)
R2d (x-y)2+v2?
under certain restrictions on \. E.g., if 1 <A < v~ !and d > 3, then J5 = O(1)
as ¥ — 0, and the leading term again is given by an integral over X,. The case
d = 2 is a bit more complicated.

)

iii) The approach allows to study integrals (1.4), where the quadratic form
2+ x -y is replaced by any non-degenerate indefinite quadratic form of z € RM,
M > 4.

iv) The restriction M > 4 in iii) (and d > 2 in the main text, where dim z =
2d) was imposed since near the origin the disparity (4.1) is controlled by the
integral fo tM=5 dt, which strongly diverges if M < 4. The difficulty disappears
if F' vanishes near zero. This may be illustrated by the following easy example:

Example 5.1. Consider

F(x,y) cos(Azy)
I = ’ dxzd
% /R 2y

)

where F' € C2(R?) vanishes near the origin. Now 2d = 2, the quadric ¥’ = {xy =
0} is one dimensional, has a singularity at the origin and its smooth part ¥'* =
¥\ 0 has four connected components. Consider one of them: C; = {(x,y) :
y = 0,z > 0}. Now the coordinate £ is a point in Ry with (z¢,y¢) = (£,0) and
with the normal N (&) = (0,¢), the set £; NCy is the single point (1,0) and the
coordinate (n,t,0) in the vicinity of C; degenerates to (t,0), t > 0, |0 < 6y,
with the coordinate-map (¢,60) — (¢,t6). The relations (2.2) and (2.3) are now
obvious, and the integral (3.1) vanishes if § > 0 is sufficiently small. Interpreting
z = (x,y) as a complex number, we write the assertion of Theorem 1.1 as

F
‘J; —7TI/_1€_V>\/ ﬁdz‘ <C,
SEREL

where the integral is a contour integral in the complex plane.
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