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We study asymptotical expansion as ν → 0 for integrals over R2d =
{(x, y)} of quotients of the form F (x, y) cos(λx · y)

/(
(x · y)2 + ν2

)
, where

λ ≥ 0 and F decays at infinity sufficiently fast. Integrals of this kind appear
in the theory of wave turbulence.
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1. Introduction

In the paper [1] we study asymptotical, as ν → 0, behaviour of integrals

Iν =

∫
Rd×Rd

dx dy
F (x, y)

(x · y)2 + (νΓ(x, y))2
, d ≥ 2 , 0 < ν ≤ 1,

where F and Γ are C2-function, Γ is positive and the two satisfy certain conditions
at infinity. In particular, if Γ ≡ 1, then

|∂αz F (z)| ≤ C ′〈z〉−N−|α| ∀z = (x, y) ∈ R2d, ∀ |α| ≤ 2 , (1.1)

where C ′ > 0 and N > 2d− 2. Denote by

Σ ⊂ R2d = Rdx × Rdy (1.2)

the quadric {(x, y) : x ·y = 0}, and by Σ∗ its regular part Σ\{(0, 0)}. It is proved
in [1] (see [2] for related results) that

Iν = πν−1

∫
Σ∗

F (z)

|z|Γ(z)
dΣ∗z +O(χd(ν)), (1.3)

where

χd(ν) =

{
1, d ≥ 3 ,
max

(
ln(ν−1), 1

)
, d = 2 ,

c© Sergei Kuksin, 20XX



2 Sergei Kuksin

dΣ∗ is the volume element on Σ∗, induced from the standard Riemann structure
in R2d, and the integral in (1.3) converges absolutely. Integrals of this form
appear in the study of the four-waves interaction. The wave turbulence (WT)
limit in systems with the four-waves interaction leads to oscillating versions of
the integrals above with constant functions Γ. Re-denoting νΓ back to ν we write
the integrals in question as

Jν =

∫
R2d

dz
F (z) cos(λx · y)

(x · y)2 + ν2
, d ≥ 2 , λ ≥ 0 , 0 < ν ≤ 1 (1.4)

(as before, z = (x, y)). We assume that F is a C2–function, satisfying (1.1).
The aim of this work is to prove the following result, describing the asymp-

totical behaviour of Jν when ν → 0, uniformly in λ ≥ 0:

Theorem 1.1. Let 0 < ν ≤ 1 and λ ≥ 0. Then the integral Jν and the
integral

J0 = πe−νλ
∫

Σ∗

F (z)|z|−1 dΣ∗z

converge absolutely and ∣∣Jν − ν−1J0

∣∣ ≤ Cχd(ν), (1.5)

where C depends on d and the constants C ′, N in (1.1), but not on ν and λ.

Note that since C does not depend on λ, then relation (1.5) remains valid
for integrals (1.4), where λ = λ(ν) is any function of ν. Concerning the imposed
restriction d ≥ 2 see item iv) in Section 5.

If λ = 0, the integral Jν becomes a special case of Iν (with Γ = 1), and (1.5)
follows from (1.3). Since sin2(λ2x · y) = 1

2(1 − cos(λx · y)), then combining (1.3)
and (1.5) we get

Corollary 1.2. As ν → 0,∫
Rd×Rd

dx dy
F (x, y) sin2(λ2x · y)

(x · y)2 + ν2

=
π

2
ν−1(1− e−νλ)

∫
Σ∗

F (z)

|z|
dΣ∗z +O(χd(ν)) ,

(1.6)

uniformly in λ ≥ 0.

Classically the WT considers singular versions of the integral in the l.h.s. of
(1.6): ∫

dx dy
F (x, y) sin2(λ2x · y)

(x · y)2
. (1.7)

The theory deals with these integrals by performing certain formal calculations,
see Section 6 of [3] (e.g. note there eq. (6.39)+(6.41)). Assertion (1.6) may
be regarded as a regularisation of the integral (1.7). The factor |z|−1 which it
introduces in the limiting density is not present in the asymptotical description
of integrals (1.7), used in the works on WT.
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Theorem 1.1 is proved below in Sections 2–4, using the geometric approach
of the paper [1], which also applies to various modifications of integrals Iν and
Jν . Some of these applications are discussed in the last Section 5.

Notation. As usual, we denote 〈z〉 =
√
|z|2 + 1. For an integral I =

∫
R2d f(z) dz

and a submanifold M ⊂ R2d, dimM = m ≤ 2d, compact or not (if m = 2d, then
M is an open domain in R2d) we write 〈I,M〉 =

∫
M f(z) dM (z), where dM (z)

is the volume–element on M , induced from R2d. Similar 〈|I|,M〉 stands for the
integral

∫
M |f(z)| dM (z).

2. Geometry of the quadric {x · y = 0} and its vicinity.

2.1. The geometry of the quadric. The difficulty in studying the in-
tegral Jν with small ν comes from the vicinity of the quadric Σ = {x · y = 0}.
To examine the integral’s behaviour there we first analyse the geometry of the
vicinity of the regular part of the quadric Σ∗ = Σ \ {(0, 0)}, following [1]. Exam-
ple 5.1 at the end of the paper provides an elementary illustration to the objects,
involved in this analysis.

The set Σ∗ is a smooth submanifold of R2d of dimension 2d − 1. We denote
by ξ a local coordinate on Σ∗ with the coordinate mapping ξ 7→ (xξ, yξ) = zξ ∈
Σ∗, denote |ξ| = |(xξ, yξ)| and denote N(ξ) = (yξ, xξ). The latter is the normal
to Σ∗ at ξ of length |ξ|. For any 0 ≤ R1 < R2 we set

SR1 = {z ∈ R2d : |z| = R1} , ΣR1 = Σ ∩ SR1 ,

SR2
R1

= {z : R1 < |z| < R2} , ΣR2
R1

= Σ ∩ SR2
R1
,

and for t > 0 denote by Dt the dilation operator

Dt : R2d → R2d, z 7→ tz .

For z = (x, y) we write ω(z) = x · y.
The following result is Lemma 3.1 from [1]:

Lemma 2.1. 1) There exists θ0 ∈ (0, 1] such that a suitable neighbourhood
Σnbh = Σnbh(θ0) of Σ∗ in R2d \ {0}, is invariant with respect to the dilations Dt,
t > 0, and may be uniquely parametrized as

Σnbh = {π(ξ, θ) : ξ ∈ Σ∗, |θ| < θ0} ,

where π(ξ, θ) = (xξ, yξ) + θNξ = (xξ, yξ) + θ(yξ, xξ). In particular, |π(ξ, θ)|2 =
|ξ|2(1 + θ2).
2) If π(ξ, θ) ∈ Σnbh, then

ω
(
π(ξ, θ)

)
= |ξ|2θ. (2.1)

3) If (x, y) ∈ SR \ Σnbh, then |x · y| ≥ cR2 for some c = c(θ0) > 0.

For 0 ≤ R1 < R2 we will denote

(Σnbh)R2
R1

= π(ΣR2
R1
×
(
− θ0, θ0)

)
.
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Now we discuss the Riemann geometry of the domain Σnbh = Σnbh(θ0), following
[1].

The set Σ is a cone with the vertex in the origin, and Σ∗ = {tz : t > 0, z ∈
Σ1}. The set Σ1 is a closed manifold of dimension 2d − 2. Let us cover it by
a finite system of charts N1, . . . ,Nñ, Nj = {ηj = (ηj1, . . . , η

j
2d−2)}, and for any

chart Nj denote by m(dηj) the volume element on Σ1, induced from R2d. Below
we write points in any chart Nj as η, and the volume element – as m(dη).

The mapping

Σ1 × R+ → Σ∗, ((xη, yη), t)→ Dt(xη, yη)

is a diffeomorphism. Accordingly, we can cover Σ∗ by the ñ charts Nj ×R+ with
the coordinates (ηj , t) =: (η, t). The coordinates (η, t, θ), where η ∈ Nj , t > 0
and |θ| < θ0, 1 ≤ j ≤ ñ, make coordinate systems on Σnbh = Σnbh(θ0). In the
coordinates (η, t) the volume element on Σ∗ is

dΣ∗ = t2d−2m(dη) dt . (2.2)

In the coordinates (η, t, θ) the volume elements in R2d reeds

dx dy = t2d−1µ(η, θ)m(dη)dt dθ , where µ(η, 0) = 1 (2.3)

(see [1]), a dilation map Dr, r > 0, reeds Dr(η, t, θ) = (η, rt, θ) , and by (2.1)

ω(η, t, θ) = t2θ . (2.4)

Finally, since at a point z = π(ξ, θ) ∈ Σnbh we have ∂
∂θ = ∇z · (yξ, xξ), then in

view of (1.1) for any (η, t, θ) and any k ≤ 2,

∣∣ ∂k
∂θk

F (η, t, θ)
∣∣ ≤ C〈t〉−N , N > 2d− 4. (2.5)

2.2. The volume element dΣ∗ and the measure |z|−1dΣ∗. Theorem 1.1
and the result of [1] (see (1.3)) show that the manifold Σ∗, equipped with the
measure |z|−1dΣ∗ , is crucial to study asymptotic of integrals Iν , Jν and their
similarities (cf. Section 6 of [1] and Section 5 below). The coordinates (η, t) and
the presentation (2.2) for the volume element are sufficient for the purposes of this
work. But the quadric Σ is reach in structures and admits more instrumental
coordinate systems. In particular, if d = 2 we can introduce in the space R2

x

in (1.2) the polar coordinates (r, ϕ). Then for any fixed non-zero vector x =
(r, ϕ) ∈ R2

x the set {y ∈ R2
y : (x, y) ∈ Σ∗} is the line in R2

y, perpendicular to x,
and having the angle ϕ + π/2 with the horizontal axis. Parametrizing it by the
length-coordinate l we get on Σ∗ the coordinates (r, l, ϕ) ∈ R+ × R × S1, S1 =
R/2πZ, with the coordinate mapping

Φ : (r, l, ϕ) 7→
(
x = (r cosϕ, r sinϕ), y = (−l sinϕ, l cosϕ)

)
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(this map is singular at r = 0). Since

|∂Φ/∂r|2 = 1, |∂Φ/∂l|2 = 1, |∂Φ/∂ϕ|2 = r2 + l2,

〈∂Φ/∂r, ∂Φ/∂l〉 = 〈∂Φ/∂r, ∂Φ/∂ϕ〉 = 〈∂Φ/∂l, ∂Φ/∂ϕ〉 = 0,

then in these coordinates the volume element on Σ∗ reeds as
√
r2 + l2 drdldϕ,

and the measure |z|−1dΣ∗ – as dr dl dϕ. Consider the fibering

Π : R2
x × R2

y ⊃ Σ∗ → R2
x, (x, y) 7→ x.

It has a singular fiber Π−10 = {0} × R2
y, and for any non-zero x the fiber Π−1x

equals {x} × x⊥, where x⊥ is the line in R2
y, perpendicular to x. Since dx =

rdr dϕ, then the given above presentation for the measure |z|−1dΣ∗ implies that
its restriction to the regular part Σ+

∗ of the fibered manifold Σ∗, Σ+
∗ = Σ∗ \

({0} × R2
y), disintegrates by the foliation Π as

(|z|−1dΣ∗) |Σ+
∗

= |x|−1dx dx⊥y, x 6= 0, y ∈ x⊥, (2.6)

where dx⊥ is the length on the euclidean line x⊥ ⊂ R2
y.

We do not undertake the job of getting a right analogy of this result for the
multidimensional case d > 2, but note that a straightforward modification of
the construction above leads to the observation that for any d ≥ 2 the measure
|z|−1dΣ∗ , restricted to Σ+

∗ , disintegrates as

pd(x, y)dx dx⊥y, x ∈ Rd \ {0}, y ∈ x⊥, (2.7)

where x⊥ is the orthogonal complement to x in Rdy, , dx⊥ is the volume element
on this euclidean space, and the function pd satisfies the estimate pd ≤ C(|x| +
|y|)d−2|x|1−d.

3. Integral over the vicinity of Σ

To study the behaviour of the integral over a neighbourhood of Σ we first
prove that the integral, evaluated over the vicinity of the singular point (0, 0) is
small, and next study the integral over the vicinity of the regular part Σ∗ of the
quadric.

For 0 < δ ≤ 1 denote

Kδ = {z = (x, y) : |x| ≤ δ, |y| ≤ δ} ⊂ Rd × Rd .

An upper bound for the integral over Kδ follows from Lemma 2.1 of [1]:

|〈|Jν |,Kδ〉| ≤
∫
Kδ

|F (z)| dz
(x · y)2 + ν2

≤ Cν−1δ2d−2 . (3.1)

Now we estimate the integral over the neighbourhood Σnbh of Σ∗. For this
end, using (2.3), for 0 ≤ A < B ≤ ∞ we disintegrate 〈Jν , (Σnbh)BA〉 as

〈Jν , (Σnbh)BA〉 =

∫
Σ1

m(dη)

∫ B

A
dt t2d−1

∫ θ0

−θ0
dθ
F (η, t, θ)µ(η, θ) cos(λx · y)

t4θ2 + ν2

=

∫
Σ1

m(dη)

∫ B

A
dt t2d−1Υν(η, t) ,

(3.2)
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where

Υν(η, t) = t−4

∫ θ0

−θ0

F (η, t, θ)µ(η, θ) cos(λt2θ) dθ

θ2 + ε2
, ε = νt−2 .

To study Υν we first consider the integral Υ0
ν , obtained from Υν by frozening

Fµ at θ = 0. Since µ(η, 0) = 1, then

Υ0
ν = 2t−4F (η, t, 0)

∫ θ0

0

cos(λt2θ) d θ

θ2 + ε2
= 2ν−1t−2F (η, t, 0)

∫ θ0/ε

0

cos(νλw) dw

w2 + 1
.

Consider the integral

2

∫ θ0/ε

0

cos(νλw) dw

w2 + 1
= 2

∫ ∞
0

cos(νλw) dw

w2 + 1
− 2

∫ ∞
θ0/ε

cos(νλw) dw

w2 + 1
=: I1 − I2 .

Since

2

∫ ∞
0

cos(ξw) dw

w2 + 1
=

∫ ∞
−∞

eiξw dw

w2 + 1
= πe−|ξ|,

then I1 = πe−νλ. For I2 we have an obvious bound |I2| ≤ 2ε/θ0 = C1νt
−2 . So

Υ0
ν(η, t) = πν−1t−2F (η, t, 0)(e−νλ + ∆t) , |∆t| ≤ Cνt−2 . (3.3)

Now we estimate the difference between Υν and Υ0
ν . Writing (Fµ)(η, t, θ) −

(Fµ)(η, t, 0) as A(η, t)θ + B(η, t, θ)θ2, where |A|, |B| ≤ C〈t〉−N in view of (2.5),
we have

Υν −Υ0
ν = t−4

∫ θ0

−θ0

(Aθ +Bθ2) cos(λt2θ) dθ

θ2 + ε2
.

Since the first integrand is odd in θ, then its integral vanishes, and

|Υν −Υ0
ν | ≤ C〈t〉−N t−4

∫ θ0

−θ0

θ2 dθ

θ2 + ε2
≤ 2C〈t〉−N t−4θ0 .

So by (3.3)

|Υν(η, t)− πν−1t−2F (η, t, 0)e−νλ|
≤ C〈t〉−N

(
t−4 + ν−1t−2 νt−2

)
≤ C ′〈t〉−N t−4 .

(3.4)

4. End of the proof of Theorem 1.1

1) In view of (3.2), (3.4) and since N > 2d− 2, for δ ∈ (0, 1] we have

∣∣〈Jν , (Σnbh
)∞
δ
〉 − πν−1e−νλ

∫
Σ1

mdη

∫ ∞
δ

dt t2d−3F (η, t, 0)
∣∣

≤ C
∫ ∞
δ

t2d−5〈t〉−N dt ≤ C1χd(δ) .
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2) Since d ≥ 2 and N > 2d− 2, then by estimate (2.5) the integral∫
Σ1 mdη

∫∞
0 dt t2d−3F (η, t, 0) converges absolutely, and by (2.2) it equals∫

Σ1

mdη

∫ ∞
0

dt t2d−3F (η, t, 0) =

∫
Σ∗

|z|−1F (z) dΣ∗z .

3) Applying 1) and 2) to F replaced by F0 = C ′〈z〉−N and using that |F | ≤ |F0|
by (1.1) we find that the integral 〈Jν ,

(
Σnbh

)∞
δ
〉 also converges absolutely.

4) As |π(ξ, θ)| ≤
√

2 |ξ|, then (Σnbh)δ0 ⊂ S
√

2δ
0 ⊂ K√2δ. Therefore by (3.1)

∣∣〈Jν , (Σnbh
)δ

0
〉 − πν−1e−νλ

∫
Σ1

mdη

∫ δ

0
dt t2d−3F (η, t, 0)

∣∣
≤ 〈|Jν |,K√2δ〉+ πν−1e−νλ

∫
Σ1

mdη

∫ δ

0
dt t2d−3|F (η, t, 0)|

≤ C1ν
−1δ2d−2 + C2ν

−1δ2 ,

for any 0 < δ ≤ 1. Choosing δ =
√
ν, from here and 1)-3) we find that

∣∣〈Jν ,Σnbh〉 − πν−1e−νλ
∫

Σ1

mdη

∫ ∞
0

dt t2d−3F (η, t, 0)
∣∣ ≤ Cχd(ν),

and that the integral 〈Jν ,Σnbh〉 converges absolutely.

5) Finally, let us estimate the integral over R2d \ Σnbh:

〈|Jν |,R2d \ Σnbh〉 ≤
∫
{|z|≤

√
ν}

|F | dz
ω2 + ν2

+ Cd

∫ ∞
√
ν
dr r2d−1

∫
Sr\Σnbh

|F (z)| dSr
ω2 + ν2

.

By item 3) of Lemma 2.1, |ω| ≥ Cr2 in Sr \ Σnbh. Jointly with (3.1) this implies
that

〈|Jν |,R2d \ Σnbh〉
∣∣ ≤ C + C

∫ ∞
√
ν
r2d−1r−4〈r〉−N dr ≤ C1χd(ν).

So the integral Jν converges absolutely and, in view of 4) and 2),

∣∣Jν − πν−1e−νλ
∫

Σ1

mdη

∫ ∞
0

dt t2d−3F (η, t, 0)
∣∣

=
∣∣Jν − πν−1e−νλ

∫
Σ∗

|z|−1F (z) dΣ∗z
∣∣ ≤ Cχd(ν) .

(4.1)

This proves Theorem 1.1.

5. Comments

i) The only part of the proof, where we use that N > 2d − 2 is Step 2) in
Section 4: there this relation is evoked to establish the absolute convergence of the
integral J0; everywhere else it suffices to assume that N > 2d − 4. Accordingly,
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if F satisfies (1.1) with N > 2d − 4 and 〈|F |,Σ∞1 〉 < ∞, then (1.5) holds, since
〈|F |,Σ1

0〉 <∞, see Step 4) Section 4.

ii) Our approach does not apply to study integrals (1.4), where the divisor
(x · y)2 + ν2 is replaced by (x · y)2 + (νΓ(x, y))2 and Γ 6= Const. But it applies to
integrals

Jsν =

∫
R2d

dz
F (z) sin(λx · y)

(x · y)2 + ν2
,

under certain restrictions on λ. E.g., if 1 ≤ λ ≤ ν−1 and d ≥ 3, then Jsν = O(1)
as ν → 0, and the leading term again is given by an integral over Σ∗. The case
d = 2 is a bit more complicated.

iii) The approach allows to study integrals (1.4), where the quadratic form
z 7→ x · y is replaced by any non-degenerate indefinite quadratic form of z ∈ RM ,
M ≥ 4.

iv) The restriction M ≥ 4 in iii) (and d ≥ 2 in the main text, where dim z =
2d) was imposed since near the origin the disparity (4.1) is controlled by the
integral

∫
0 t
M−5 dt, which strongly diverges if M < 4. The difficulty disappears

if F vanishes near zero. This may be illustrated by the following easy example:

Example 5.1. Consider

J ′ν =

∫
R2

F (x, y) cos(λxy)

x2y2 + ν2
dxdy ,

where F ∈ C2
0 (R2) vanishes near the origin. Now 2d = 2, the quadric Σ′ = {xy =

0} is one dimensional, has a singularity at the origin and its smooth part Σ′∗ =
Σ′ \ 0 has four connected components. Consider one of them: C1 = {(x, y) :
y = 0, x > 0}. Now the coordinate ξ is a point in R+ with (xξ, yξ) = (ξ, 0) and
with the normal N(ξ) = (0, ξ), the set Σ1 ∩ C1 is the single point (1, 0) and the
coordinate (η, t, θ) in the vicinity of C1 degenerates to (t, θ), t > 0, |θ| < θ0,
with the coordinate-map (t, θ) 7→ (t, tθ). The relations (2.2) and (2.3) are now
obvious, and the integral (3.1) vanishes if δ > 0 is sufficiently small. Interpreting
z = (x, y) as a complex number, we write the assertion of Theorem 1.1 as∣∣J ′ν − πν−1e−νλ

∫
Σ′

F (z)

|z|
dz
∣∣ ≤ C ,

where the integral is a contour integral in the complex plane.
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