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Highlights 
 
 

• Dendritic cell GRM4 has tumor suppressor properties in human and mouse osteosarcoma 
• GRM4 inhibits IL23 expression, while increasing the related cytokine, IL12 
• IL23 has oncogenic properties in tumor development  
• Both GRM4 and IL23 are novel therapeutic targets in osteosarcoma. 
 
 

 
 
 
 



  
Abstract  

The glutamate metabotropic receptor 4 (GRM4) locus is linked to susceptibility to human 
osteosarcoma, through unknown mechanisms. We show that Grm4−/− gene– targeted mice 
demonstrate accelerated radiation-induced tumor development to an extent comparable with Rb1+/− 
mice. GRM4 is expressed in myeloid cells, selectively regulating expression of IL23 and the related 
cytokine IL12. Osteosarcoma-conditioned media induce myeloid cell Il23 expression in a GRM4-
dependent fashion, while suppressing the related cytokine Il12. Both human and mouse 
osteosarcomas express an increased IL23:IL12 ratio, whereas higher IL23 expression is associated 
with worse survival in humans. Con- sistent with an oncogenic role, Il23−/− mice are strikingly 
resistant to osteosarcoma development. Agonists of GRM4 or a neutralizing antibody to IL23 
suppressed osteosarcoma growth in mice. These findings identify a novel, druggable myeloid 
suppressor pathway linking GRM4 to the proinflammatory IL23/IL12 axis.  

  
SIGNIFICANCE:  
Few novel systemic therapies targeting osteosarcoma have emerged in the last four decades. Using 
insights gained from a genome-wide association study and mouse modeling, we show that GRM4 
plays a role in driving osteosarcoma via a non–cell-autonomous mechanism regulating IL23, opening 
new avenues for therapeutic intervention.  
 
Teaser 
GRM4 regulates the myeloid IL-12:IL-23 inflammatory axis to control tumor development 
 

 

 

 

 

 
  



Osteosarcoma is an aggressive bone cancer that is incurable in relapsed or metastatic disease (1). 

After chemotherapy (2), no new drug targets have emerged over the past four decades(3), including 

immune checkpoint inhibition (4). A genome-wide association study identified a locus at 6p21.3 

(rs1906953; odds ratio 1.57, 95% confidence intervals [95% CI] 1.35-1.83; P=8.1x10-9) in the GRM4 
gene(5), validated in two subsequent studies (6, 7). GRM4 (metabotropic glutamate receptor-4 or 

mGluR4) is a member of the group III family of G-protein coupled receptors that play a role in the 

cyclic adenosine monophosphate (cAMP)/Protein kinase A (PKA) pathway. GRM4 is implicated in 

neurodegenerative and autoimmune diseases(8, 9), but its biological role in tumorigenesis is 

unknown.  

We first asked whether GRM4 had tumor suppressor or oncogenic effects on tumor development. 

Wild-type (WT) or Grm4-/- mice (n=25/cohort) were injected with 45Ca, a low energy b-emitter that 

localizes to bone (10, 11) (Fig 1A and Fig S1). Tumor latency in this model is consistently 10-12 
months (11, 12). Loss of Grm4 accelerated tumor development (Fig. 1B; Hazard ratio [HR] 0.41, 95% 

95%CI 0.22-0.76, P=0.0006; median survival in WT mice 89 vs 65 weeks in Grm4-/- mice). Outside 

the central nervous system, GRM4 is expressed by dendritic cells (DCs) and CD4+ T cells (8). Using 

flow cytometry, GRM4 was predominantly expressed by. intratumoral DCs (defined as 

CD45+CD11c+MHC class II+ cells (13), and not by CD45- tumor cells (Fig 1C). Few CD4+ T cells were 

found in tumors (not shown).  

Grm4 was shown to regulate DC expression of Il1, Il6, Il23 and Il27 in experimental autoimmune 

encephalomyelitis (8). Bone marrow DCs cultured with IL4 and GMCSF for 7 days, showed that 

Grm4-/- DCs had selectively increased expression of the related pro-inflammatory cytokines Il12 and 

Il23 relative to WT DCs (Fig 1D). A common p40 subunit is covalently linked to p35 to form Il12, or to 
p19 to form Il23, both of which are primarily expressed by activated DCs (14). Increased expression 

of Il23 is observed in many human cancers (15, 16), while Il12 has potent anti-tumor activity (17). 

Grm4, Il12, and Il23 expression were next studied in conventional DCs, cDC1 and cDC2 (defined as 

MHCII+CD11c +CD64-Ly6clowCD11blow and MHCII+CD11c+CD64-Ly6clow CD11b+ respectively) and 

monocyte-derived DCs (MoDcs; defined as MHCII+CD11c+Ly6chiCD64+CD24intCD11b+; gating 

strategy Fig S2 (13)). Tumor-derived MoDcs expressed both Grm4 and high levels of Il23, but little 

Il12 relative to splenic MoDCs (Fig 1E; Figs S3A-C). To show these findings were not a function of the 

model system, the expression of Il23A was also examined in osteosarcomas from genetically defined 
mouse models (osx/cre p53/Rb and osx/cre p53.1224 pRb mice (18); Fig S4). Again, the majority of 

tumors had increased Il23A compared to normal bone. 

To determine whether osteosarcoma cells influence expression by DCs of Il12 and Il23 in vitro, bone 
marrow-derived DCs (BMDCs) were exposed to conditioned media (OSCM) from cultured mouse 

osteosarcoma cells. Lipopolysaccharide (LPS) was used as a positive control (19, 20). In WT BMDCs, 

LPS increased cAMP (Fig S5A) and IL12 and Il23. OSCM significantly induced Il23 expression in 

BMDCs, while suppressing Il12 (Fig. 1F and 1G). Both LPS and GRM4 act via the cAMP/ PKA 



pathway (8, 11). Consistent with an intermediate role for the cAMP/ PKA pathway, forskolin, a cAMP 

agonist, recapitulated the effect of OSCM by inducing Il23 expression by BMDCs (Fig S5B).  

Since Grm4 also regulates Il23 and Il12, we treated BMDCs with GRM4 agonists, with or without LPS 

or OSCM. GRM4 agonists are being developed for neurological disorders, including depression and 

Parkinson’s disease (21). PHCCC ((-)-N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-

carboxamide) is a positive allosteric modulator of GRM4, while cinnabarinic acid (CIN) is an 

orthosteric regulator. Pretreatment with GRM4 agonists attenuated cAMP expression, and 
suppressed both basal (Fig S3), and LPS- or OSCM-induced Il23 protein and transcript levels (Fig 

1H-K). PHCCC also down-regulated IL23 in human peripheral blood DCs stimulated with LPS (Fig 

S6). Collectively, these data suggest that osteosarcoma cells repress IL23 production by DCs via the 

GRM4-mediated pathway.  

Given that GRM4 suppresses tumor development (Fig 1B), and IL-23 is negatively regulated by 

GRM4, we tested whether IL-23 itself had oncogenic properties in the osteosarcoma model. Il23p19-/- 

(Il23-/-) mice were strikingly protected from tumor development, with 24/30 (80%) of Il23-/- mice tumor-

free at 104 weeks compared to no control mice at 90.7 weeks (Fig 2A: HR 9.4, 95%CI 3.3-27; 

P<0.0001). To enhance sensitivity, a subset of Il23-/- mice >2 years of age were screened by 18F 2-

deoxyglucose PET scanning, without any subclinical evidence of tumors. Similar to IL6, IL23 
contributes to the generation of IL17 expressing T-helper cells (TH17) (22, 23). However, unlike Il6-/- 

mice (12), Il17a-/ -mice did not display accelerated tumor development (Fig 2B: HR 0.95, 95%CI 0.47-

1.9, P=0.89). These findings recapitulate our observations in a mouse model of soft-tissue sarcomas 

(3). To put our findings of a pro-tumorigenic role for Il23 in context, we tested 15 mouse genotypes of 

pathways implicated in immune control of cancer development (Il1r-/-, Il6-/-, Il17-/-, Pdl1-/-(cd276-/-), 

Ifnar1-/-, Ifnar2-/-, IFNg-/-/perforin-/-, Trail-/-, Ccl2-/-, Ccr2-/-, Ja18-/-, and CD1d-/-), apoptosis (Bim1-/-), and 

adenosine metabolism (Cd73/NTE5-/-). Among these, only Il23-/- mice were protected against 

osteosarcoma development, notably including Pdl1-/- (Fig 2C). Notably, the effect sizes observed in 

this model in both Il23-/- and Grm4-/- mice were comparable to or greater than those observed in Rb+/- 

mice. 

In mouse osteosarcomas, increased expression of Il23 was observed relative to normal bone. To 

confirm these results, in situ hybridization for IL23 transcript was undertaken in a series of human 

osteosarcomas. More than 60% of samples demonstrated focal staining for IL23 (12% high, 24% 

medium), while little staining was observed in normal human bone (NHB) (Fig 3A and Fig S7). In an 

independent cohort quantitated by qRTPCR, increased IL23A (p19) expression was noted in tumors 

compared to NHB, accompanied by reduced IL12A (p35) expression. More than 70% of samples 
exhibited significantly increased expression of IL23 over NHB, with 53% having >2-fold increase and 

with 34% have >5-fold greater expression. By contrast, IL12 p35 transcript expression was 

significantly lower in tumor samples relative to NHB (Fig 3B). Finally, high IL23 expression (>8-fold) 

was associated with worse survival (Fig 3C: HR 0.33, 95%CI 0.06-1.69, P=0.0427).   



Both IL23 and GRM4 are potential therapeutic targets. Notably, IL23 blockade has been successful in 

treating psoriasis (24, 25). The anti-tumor activity of an antibody (16E5) targeting the p19 subunit of 

Il23 (aIl23) was compared to a control antibody (aAGP3, Amgen). Following autografting of 

osteosarcomas into the flank of the leg, mice were treated with aIl23 or aAGP33. Il23 inhibition 

moderately slowed tumor growth (P=0.0425), and lengthened survival (P=0.0322; Fig 3D and Fig 3E). 

Neutralizing Il23 significantly decreased intratumor Il23 transcript as well downstream-targets (Il22, 

Mmp9, and Tgfb, but not Il17; Fig S8) (15, 26).  Markers of cytotoxic T-cell activity, Gzma and Cxcl9, 

were significantly increased in tumors following treatment with aIl23 (Fig S9). To enhance the single 

agent activity of aIl23, it was combined with doxorubicin, an active agent in the treatment of 

osteosarcoma. These studies used pegylated liposomal doxorubicin (DOX), which has a more 

favourable toxicity profile for treatment of relapsed patients (27). In two independent cell lines, aIl23 

and DOX significantly suppressed tumor growth compared to controls (Fig 3F, P=0.009). To test 

whether GRM4 also represented a potential therapeutic target, mice transplanted with osteosarcomas 
were treated with PHCCC, significantly suppressing tumor growth (Fig 3G, P=0.0273). This effect was 

associated with increased Il12 transcript levels (Figure S10). Similar effects were observed with 

another specific GRM4 agonist, LSP29166 (Fig S11). Taken together, these data support the 

therapeutic potential of targeting GRM4/IL23 axis. 

Our studies show that GRM4 and IL-23 are rate-limiting for osteosarcoma development through non-

cell autonomous mechanisms involving DCs. Although their role is unclear, intratumoral DCs connote 

a worse outcome in osteosarcoma(28). DCs are best known as antigen-presenting cells required for 

efficient activation of T-cells and maintenance of immune tolerance (29, 30)).  To date, there is little 

genetic evidence for a rate-limiting role for DCs in cancer development. Polymorphisms in the DC-

SIGN gene, expressed in DCs, are associated with nasopharyngeal carcinoma(31), while variants in 

the FGR1 gene affect intratumoral dendritic cell migration and response to chemotherapy (32). Here 
we present direct human and mouse genetic evidence for a rate-limiting pathway within dendritic cells 

for spontaneous tumor development. Surprisingly, the magnitude of the effect of Grm4 was 

comparable to the canonical cell autonomous tumor suppressor, Rb1, a reminder that polymorphic 

effects in GWAS do not reflect the biological or therapeutic significance of associated genes.  

 

GRM4 acts via the cAMP/PKA pathway, reported recently to possess tumor suppressor activity in 

osteosarcoma (33). GRM4 regulates the pro-inflammatory cytokines, IL23 and IL12 to create an 
immune-suppressive tumor environment. The oncogenic effects of IL-23 are seen in multiple cancer 

types (3, 15, 16, 34). In the context of our data on osteosarcoma, subjects with psoriasis, an 

autoimmune disease driven by IL23 are specifically at risk of cancers of bone and cartilage (HR 4.97, 

95%CI 2.32-10.62, P<0.0001) (35). Critically, IL23 antagonists have favourable safety and toxicity 

profiles and are approved for the treatment of plaque psoriasis (25). Since immune checkpoint 

blockade has been disappointing in osteosarcoma (4), GRM4 agonists and/or IL23 antagonists, may 

be of therapeutic interest, perhaps combined with chemotherapy. The balance of IL23:IL12 is 

important, since IL-12 alone has potent anti-tumor activity (17). Since the first-generation agents 



targeting IL23 inhibited both IL23 and IL12, second-generation agents with greater specificity for IL23 

should probably be the agents of choice in future cancer trials. In this context, we note that targeting 

GRM4 agonists not only down-regulate IL23, but also increase IL12. In summary, our findings identify 

a non–cell autonomous pathway linking Grm4 to the pro-inflammatory IL23/IL12 axis, with the 
potential to be therapeutically targeted in osteosarcoma. 

  



Fig. 1. Grm4-/- mice have accelerated osteosarcoma development (A) Schematic of radiation-

induced mouse model of osteosarcoma, mice at 28 days of age were injected with 1 μCi/g 45Ca 

intraperitoneally once weekly for 4 consecutive weeks and monitored for the growth of tumors. (B) 

Kaplan Meier plot showing Grm4-/- mice are predisposed to the development of 45Ca induced 
osteosarcomas compared to WT mice (n=25-26/cohort) (p=0.0003***). (C) Flow cytometry analysis of 

disaggregated tumors reveal that Grm4 is predominantly expressed by tumor infiltrating Dcs (CD45+, 

MHCII+, CD11c+)(blue line) and with limited expression in tumor cells (CD45 negative cells)(dotted 

line) control fmo (dashed line). WT 45Ca tumors were disaggregated into single cells and flow 

cytometry conducted to identify GRM4 expressing cells, representative tumor shown 19.4 % of MHC 

class II+, CD11c are positive for extracellular GRM4 expression. (D) Quantitative mRNA expression of 

DCs revealed that Grm4-/- DCs (blue bars) had increased expression of inflammatory cytokines Il12A 

and Il23A compared to WT DCs (gray bars). Bone marrow DCs were isolated from WT or Grm4-/- mice 
and cultured in the presence of IL4 and GMCSF for 7 days and profiling conducted. (E) moDCs 

(markers as outlined in the text) coexpressed GRM4 and IL23 in the tumor microenvironment. Two 
45Ca tumors are shown (dashed and solid line) compared to control fmo. Grm4+ moDcs had limited 

IL12 expression. (F) BMDCs derived from wild type mice have attenuated IL12 expression and 

increased IL23 expression when treated with osteosarcoma cell lines condition media (CM) 

quantitative mRNA expression. (G & H) Grm4 agonists inhibit IL23 protein expression in BMDC. 

BMDC were treated at with GRM4 agonists PHCCC or Cinabarrinic acid for 1 hr followed by treatment 

with LPS at 1 ug/ml or osteosarcoma cell line condition media (I & J).  
    

Figure 2. IL23-/- mice are protected from the development of tumors. (A) Kaplan Meier plot IL23-/- 

mice are significantly protected from the development of 45Ca induced osteosarcoma compared to 

wild type mice (n=25-26/cohort) (P<0.0001). (B) Il17-/- mice   (C) Forest plot of groups of 15-25 WT 

and knockout mice were injected with 45Ca and aged, mice were monitored for tumor development for 

up to 2 years. Hazard ratio (log rank) 95% confidence interval, Mantel-Cox test for significance 

compared to WT. 
 

Figure 3. IL23 is expressed in human osteosarcoma and correlates with worse overall survival 
in humans (A) Representative image human osteosarcoma expressing IL23A relative to normal 

human bone. (B) Independent French cohort of osteosarcomas examined Il23A and IL12 transcript 

levels relative to normal human bone (RT-PCR).  We found that 53% (17/32) of the samples 2-fold or 

greater expression compared to control normal human bone  (NHB) and that expression was 8-fold 

higher in 25% (7/32) samples, note that IL12p35 transcript expression was significantly lower in tumor 

samples relative to NHB. (C) High IL23 expression trends with worse overall survival in human 
osteosarcoma.  Kaplan Meier curve of high expressors shown in B P=0.0427. IL23 and Grm4 are 
targetable in osteosarcoma  (D) C57BL/6 mice were injected subcutaneously in the flank of the leg 

with osteosarcoma cell line OS18, mice were divided onto cohorts of 6 and treated with aAGP3 or 

aIL-23 or 500 µg/mouse days 1, 3, 5, 7, 9, 12, 16, 21, mean tumor volume shown ± SEM *P=0.0425 

and prolongs survival Fig (E). Representative figure shown. (F) Synergistic effect of aIL-23 and 



doxorubicin. Treatment starting day 23 after tumor cell implantation. Mice were treated with aIL-23 or 

aAGP3 500µg/mouse and liposomal DOX 10 mg/Kg/week, mean tumor volume shown ± SEM 

(n=6/cohort). G) PHCCC can suppress the growth of osteosarcoma. Seven mice per cohort were 

treated with PHCCC 10 mg/Kg in 20% DMSO or vehicle alone, once every second day (seven doses 

in total) (starting day 28) The Wilcoxon matched test was used to test statistical significance of 

difference between treatment groups (p=0.0273). LPS29166 another Grm4 agonist showed similar 

results to PHCCC Fig S12.  
 

Fig 4 Schematic of proposed role for GRM4 in modifying tumor growth. Malignant cells produce 

inflammatory signals (e.g DAMPs (damage associated molecular patterns) in the microenvironment in 

turn recruiting myeloid cells. Inflammatory signals in the tumor microenvironment acting on DCs 

activate adenylyl cyclase and increase the production of cAMP, which in turn activates Protein Kinase 

A (PKA), and increase the expression of inflammatory cytokines, including IL23. Activation of GRM4 

by glutamate binding or GRM4 agonists inhibits adenynyl cyclase and the production of cAMP, 

preventing the expression of IL23. Modified from neuroinflammation model (8). Therapeutic 
intervention by GRM4 agonists that down-regulate IL23 direct suppression of IL23 with neutralizing 

antibodies can suppress tumor growth. Down-regulation of IL23 in combination with 

chemotherapeutics may synergistically suppress tumor growth. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Materials and Methods  

Mice. Inbred wild-type C57B6/J (C57BL/6 WT), C57BL6 GRM4 deficient (GRM4-/-) were purchased 

from The Jackson Laboratory, C57BL/6 heterozygous (Rb+/-), C57BL/6 Il23p19-deficient (Il23-/-), 

C57BL/6 Wif1-deficient (Wif1-/-), C57BL/6 Cd1d-deficient (Cd1d -/-), C57BL/6 Ja18 (Ja18-/-), C57BL/6 

IfnaR1 -deficient (IfnaR1 -/-), C57BL/6 IfnaR2-deficient (IfnaR2 -/-), C57BL/6 Il17-deficient (IL17-/-), 

C57BL/6 perforin and Ifng-deficient (pfpifng−/−), C57BL/6 CD274 /pdl1-/-, C57BL/6 Trail-deficient 

(Trail−/−), C57BL/6 Bim-deficient (Bim-/−), C57BL/6 CD73-deficient (CD73−/−), C57BL/6 Ccl2-deficient 
(Ccl2−/−), C57BL/6 CcR2-deficient (Ccr2−/−), C57BL/6 Il1R-deficient (Il1r−/−) mice were either 

generated using C57BL/6 ES cells or backcrossed to at least 10 generations to C57BL/6. All mice 

were genotyped using published protocols. Mice were bred at ABR and maintained at the Garvan 

Institute BTF, with all animal experiments carried out according to guidelines contained within the 

NSW (Australia) Animal Research Act 1985, the NSW (Australia) Animal Research Regulation 2010 

and the Australian code of practice for the care and use of animals for scientific purposes, (8th Edition 

2013, National Health and Medical Research Council (Australia)) and approved by Garvan/St 

Vincent’s Animal Ethics and Experimentation Committees (approval number 15/21, 15/30). Some 
experiments were performed at the Peter MacCallum Cancer, Melbourne Australia, all procedures 

using mice were reviewed and approved by the Peter MacCallum animal ethics experimentation 

committee. 

  

 

Mouse models of osteosarcoma. The radiocarcinogen model was conducted as previously 

described (10, 12). Briefly mice were injected with 1 µCi/g 45Ca (GE Healthcare) or 0.9% saline 

intraperitonially at 28 35, 42 and 49 days postpartum. Mice were aged and monitored for signs of 
tumorigenesis (limping, paralysis, loss of condition, poor feeding or grooming, or weight loss) twice 

weekly up to two years. Mice develop tumors in the spine (70%) and limbs (18%), and then pelvis, 

cranium, scapula, and clavicle (12%).18F 2-deoxyglucose positron emission tomography (PET) 

scanning was undertaken as previously described (12). In some instances X-ray imaging was 

conducted using Faxitron. Mice were sedated with isoflurane inhalation and scanned. Short-term high 

dose 45Ca studies used a single dose of 4 μCi/g 45Ca at day 28 postpartum. Mice were sacrificed 14 

days after exposure to 45Ca, and blood, calvaria, spines, and sera were collected for analysis.  Tumor 

implantation model and treatment studies. Osteosarcoma cell lines derived from the 45Ca experiments 

(OS18, OS5) and cultured ex vivo were mixed with 1:1 Matrigel:Media  (GIBCO) and a total volume of 

100 µl (106 cells) was injected subcutaneously in the flank. Mice were monitored for tumor growth 

using digital calliper measurement (United Precision Machine, Inc). Mice were treated 

intraperitoneally with anti-Il23p19 (aIL23) or control antibody (AGP3) 500 mg/mouse (Amgen) weekly, 

liposomal doxorubicin (Calyx) 5-10 mg/kg or PHCCC in vehicle DMSO 20% 10 mg/kg or LSP29166 
10 mg/kg in saline every second day for 14 days.  

 



Gene expression analysis and statistical methods. Transcript levels of cytokines were determined 

using quantitative RT-PCR. Total RNA was extracted from cells using TRIzol ™ and Qiagen RNAeasy 

mini kit as per manufacturer’s instructions. RNA converted to cDNA using standard techniques. Real-

time RT-PCR was carried out using SyBr Green (Applied Biosystems) according to the 
manufacturer’s instructions using an ABI-Prism 7000 Sequence Detection System. All primer 

sequences are listed in Supplemental Table 1. Statistical analysis was performed using GraphPad 

Prism software.  

 

Cytokine assay. Cell culture media from control and treated cells were frozen at -80oC. The 

concentration of cytokines was quantitatively determined using CBA IL23 kit mouse or human (BD 

Biosciences, San Jose, C, USA) as per kit instructions. A standard calibration kit was established fro 

each kit. The maximum and minimum detection limits for cytokines was 1-5000 pg/mL.  
 

Flow cytometry immune cell infiltration analysis. Tumors were washed in PBS, cut into 1 

mm3 pieces, and tissue digested in DMEM supplemented with 2% FCS and 5 mg/ml collagenase A 

for 50 minutes at 37°C. Cells were passed through a 40 μm cellular sieve and labelled with surface 

antibodies and intracellular antibodies. Mouse splenocytes were used as positive controls for immune 

cells. Cells were analyzed using the Fortessa (BD Biosciences). Data was analyzed using Flowjo 

software ®. Antibodies are listed in Supplemental Table 2.  

 
Histology. Tissue was fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned and 

stained with hematoxylin and eosin, routine method. Human bone and osteosarcoma tissue 

microarrays were purchased from Biomax.USA (BO244b, OS804). In situ hybridization was carried 

out using probes for mouse and human IL23 RNA scope (ACD Bio-techne brand, USA, Newark, CA). 

Slides were scanned on Scan Score XT (Aperio). 

 
DC enrichment and stimulation. BMDCs were generated as described (Abcam protocol).  Briefly 
bone marrow was flushed out of mouse tibia and femur and single cell suspension plated in the 

presence of 50 ng/mL GMCSF and 50 ng /mL IL4, 80% of the media was removed and media and 

new media added at day 3, assays were conducted on day 7. Flow cytometry analysis of enriched 

dendritic cells was conducted. Cells were plated in 6 well plates and treated.   

 

Statistical analysis. Statistical analysis was performed using GraphPad Prism software. (V7.0a, 

GraphPad, La Jolla, California, USA). Values are reported as means + SEM. When comparing two 

groups, P-values were calculated using 2-tailed Student’s t tests. For time to event and survival 
analysis P-values for the Kaplan-Meier survival curves were calculated with a log-rank (Mantel-Cox) 

test. Significance was conventionally accepted at P-values equal to or less than 0.05. For multiple 

treatment group comparisons, significance was determined by one-way analysis of variance, followed 

by Tukey post hoc multiple comparisons test where *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 
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