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Abstract

This work presents a data-driven method for approximation of the maximum posi-
tively invariant (MPI) set and the maximum controlled invariant (MCI) set for nonlin-
ear dynamical systems. The method only requires the knowledge of a finite collection
of one-step transitions of the discrete-time dynamics, without the requirement of seg-
ments of trajectories or the control inputs that effected the transitions to be available.
The approach uses a novel characterization of the MPI and MCI sets as the solution
to an infinite-dimensional linear programming (LP) problem in the space of continu-
ous functions, with the optimum being attained by a (Lipschitz) continuous function
under mild assumptions. The infinite-dimensional LP is then approximated by re-
stricting the decision variable to a finite-dimensional subspace and by imposing the
non-negativity constraint of this LP only on the available data samples. This leads
to a single finite-dimensional LP that can be easily solved using off-the-shelf solvers.
We analyze the convergence rate and sample complexity, proving probabilistic as well
as hard guarantees on the volume error of the approximations. The approach is very
general, requiring minimal underlying assumptions. In particular, the dynamics is not
required to be polynomial or even continuous (forgoing some of the theoretical results).
Detailed numerical examples up to state-space dimension ten with code available online
demonstrate the method1.

Keywords: Maximum positively invariant set, Maximum controlled invariant set, Data, Convex
optimization, Sampling, Infinite-dimensional linear programming.

1 Introduction

The maximum controlled invariant (MCI) set associated to a given controlled dynamical
system and a given state and input constraint set is the set of all initial conditions that can
be kept within the state constraint set forever using admissible control inputs. If there is

1CNRS; LAAS; 7 avenue du colonel Roche, F-31400 Toulouse; France. korda@laas.fr
2Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, CZ-16626 Prague,

Czech Republic.
1Matlab code available at https://homepages.laas.fr/mkorda/MCI_data_driven.zip
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no control, this set is referred to as the maximum positively invariant (MPI) set. Both sets
are fundamental objects associated to any (controlled) dynamical system, determining the
limitations of the system in terms of constraint satisfaction. In terms of applications, the
knowledge of these sets is critical for safety as well as for controller synthesis [2]; for example,
determining a control invariant set is a key element for recursively feasible model predictive
control design [7, 22].

The computation of these sets has been the subject of intensive research for the last decades.
Let us mention in particular the classical contractive algorithm, described, e.g., in the mono-
graph [3], the expansive algorithm of [9] or the more recently proposed approach based on
occupation measures and convex semidefinite programming (SDP) [14]. However, to the best
of our knowledge, all of the algorithms proposed in the literature are model-based, i.e., they
require the knowledge of the transition mapping f of the discrete-time dynamical system.

In this work, we develop a fully data-driven algorithm, requiring only the knowledge of a

finite collection of one-step transitions
{

(xi, x
+
i )
}K
i=1

with x+i = f(xi) or x+i = f(xi, ui). In
particular, in the controlled setting, we do not require the knowledge of the control inputs
that effected the transitions. We also do not require the knowledge of entire trajectories, or
sufficiently long segments thereof. Our approach is based on sample-based discretization of
a novel characterization of the MPI or MCI set as the solution to an infinite-dimensional
linear programming problem in the space of continuous functions. Contrary to existing LP
characterization of these sets (e.g., [14]), the optimizer of this LP is attained in the space of
(Lipschitz) continuous functions, while still being amenable for data-driven discretization.
The attainment of the optimizer is crucial for subsequent theoretical analysis of the conver-
gence of finite-dimensional approximations to this LP as well as to the sample complexity
analysis when using data-driven discretization, both of which are carried out in this paper.

The contribution can be summarized as follows:

• We provide a novel characterization of the MCI and MPI sets as the solution to an
infinite-dimensional LP in the space of continuous functions whose optimizer is at-
tained, under mild regularity assumptions.

• We analyze the convergence rate of approximating the LP by restricting the space of
decision variables to a finite-dimensional subspace.

• We propose a data-driven discretization scheme of the LP and derive high-probability
bounds on the volume error of this discretization in terms of the number of samples and
the dimension of the approximating subspace. We also discuss how hard guarantees
can be obtained with additional modeling information.

The main characteristics of the proposed approach are:

• The algorithm is data-driven, requiring no explicit knowledge of the underlying dynam-
ics. In particular, contrary to [14], the dynamics does not need to be polynomial or
even continuous (forgoing some of the theoretical results); in particular, the approach
is applicable to nonlinear switched and hybrid systems.

2



• The algorithm is based on the solution to a single finite-dimensional linear program-
ming problem, with no iteration or complicated initialization involved. The scalability
appears to be superior to the SDP-based approach of [14].

• Being data-driven, the approach provides high-probability guarantees only, contrary
to [14] that provides guaranteed outer approximation to the MCI set. The sample
complexity bounds are explicit, albeit depending on hard-to-estimate quantities.

Historically, the idea of using infinite-dimensional linear programming to address nonlin-
ear optimal control problems originated, to the best of our knowledge, with the work of
Rubio [27], closely followed by the works of Vinter and Lewis [29, 18]. The work of Ru-
bio [27] is in itself a follow-up on his earlier work [26] that use the infinite-dimensional
linear-programming embedding to study calculus of variations problems within the frame-
work of generalized curves introduced by Young in [30]. Without control, the fact that
certain objects evolving along the flow of a nonlinear dynamical system obey linear relation-
ships is classical; for example, the evolution of a density (or more generally a Borel measure)
defined on the state space is governed by the so-called continuity equation whereas values of
a function defined on the state-space evolve according to the transport equation.

Computationally, this approach had not been systematically exploited (to the best of our
knowledge) until the 2000’s, starting with the work [24] based on the result of [25] for stability
analysis, albeit already the early work [27] proposes a discretization-based algorithm. The
first systematic use for optimal control in conjunction with semidefinite programming was
in [17]. After that, this approach was successfully applied to a number of problems including
region of attraction [10, 13], maximum invariant sets [14], invariant measures [16, 20], bound-
ing extreme values on attractors [6] or, very recently, nonlinear partial differential equations
analysis and control [15, 21]. It should be mentioned that the occupation measure approach
is also heavily employed in the stochastic processes literature, the survey of which is beyond
the scope of this paper; see, e.g., [11, Chapter 6].

Notation The space of real-valued continuous functions on a set X ⊂ Rn is denoted by
C(X) and we denote ‖f‖C(X) = supx∈X |f(x)| the corresponding supremum norm. The space
of bounded Borel measurable functions on X is denoted by B(X). Function composition is
denoted by ◦, i.e., (f ◦ g)(x) = f(g(x)). The Lipschitz constant of a function f is denoted
by Lip(f).

Organization We define the problem of invariant set computation in the uncontrolled
setting in Section 2; Section 3 presents an infinite-dimensional LP characterization of the
MPI and discusses regularity of the optimizers to this LP. Section 4 develops the data-
driven approximation to this LP; in particular, Section 4.3 present succinctly the core of
the proposed method. Section 5 provides theoretical analysis. Section 6 then extends the
approach to the controlled setting (i.e., MCI set computation). Numerical examples are in
Section 7 and longer proofs in Section 9.
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2 Problem statement (uncontrolled)

For simplicity, we develop the theory in the uncontrolled setting and generalize to systems
with control inputs in Section 6.2. Consider therefore the nonlinear discrete-time dynamical
system

x+ = f(x), (1)

where x ∈ Rn is the current state and x+ ∈ Rn is the successor state. The mapping
f : Rn → Rn is assumed to be Borel measurable (but not necessarily Lipschitz continuous).

Given a compact constraint set
X ⊂ Rn,

the maximum positively invariant (MPI) set associated to f and X is defined by

X∞ := {x ∈ X | f (k)(x) ∈ X for all k ∈ N0},

where f (k) denotes the k-times repeated application of f , i.e.

f (k) = f ◦ f ◦ . . . ◦ f

with f (0) being the identity map. In words, the MPI set is the set of all initial conditions
from X that remain in X forever under the action of the dynamical system (1).

In this work we do not assume the knowledge of f but rather we have at our disposal the
data in the form of K pairs (xi, x

+
i ), i.e.,

Data =
{

(xi, x
+
i )
}K
i=1

(2)

with x+i = f(xi). Note that no temporal ordering of the data pairs is assumed; in particular
we do not require that the data comes in the form of trajectories.

Goal The main goal of the paper is to construct an approximation of the MPI set X∞
from the sole knowledge of the data set (2).

Remark 1 (Output measurements) If only output rather than full state measurements
are available, we can use the Taken’s embedding theorem [28] and work with several consec-
utive output measurements in lieu of the single state measurement.

3 Infinite-dimensional LP formulation

In this section we reformulate the MPI set problem as an infinite-dimensional linear pro-
gramming problem (LP) in the space of Borel measurable functions. A similar reformulation
was already given in [14]. However, the formulation in [14] suffered from the subtle fact that
the optimum was not attained in the space of continuous functions, which hampered theoret-
ical analysis as well as lead to numerical issues connected with approximating discontinuous
functions with polynomials. As we will show, the novel formulation presented here enjoys
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the property of the optimizer being attained in the space of continuous functions, provided
that the transition mapping f is continuous and X is sufficiently “nice”, for example convex.

The strategy to derive this formulation is to construct an auxiliary system x+ = f̄(x) and a
“stage cost” l̄(x) such that

• X is positively invariant under f̄ , i.e., f̄(X) ⊂ X,

• f̄(x) equals f(x) whenever f(x) ∈ X,

• l̄(x) = 0 if f(x) ∈ X and l̄(x) ∈ (0, 1) if f(x) /∈ X,

• f̄(x) and l̄(x) can be easily computed from x and f(x).

The value function of a discounted optimal control problem (here without control) with this
artificial dynamics and stage cost will then bounded on X and its zero sublevel set will be
equal to X∞. The requirement that l̄ ∈ (0, 1) is just for mathematical convenience; any
bounded cost function strictly positive whenever f(x) /∈ X suffices.

In order find such f̄ and l̄, let

projX(x) := arg min
y∈X

‖x− y‖ (3)

denote the Euclidean projection2 of x onto X and let

distX(x) := min
{

min
y∈X
‖x− y‖, 1

}
(4)

denote the Euclidean distance of x from X saturated at one. One possible choice for f̄ and
l̄ is then

f̄ = projX ◦ f and l̄ = distX ◦ f. (5)

Remark 2 (Projection and distance functions) The choice of the Euclidean projection
and distance functions is not the only one possible. The projection function can be replaced
by any measurable function that maps f(X) to X and is equal to the identity on X (in topol-
ogy, such functions are referred to as retractions). The distance function can be replaced
by any measurable function which is strictly positive on f(X) \X and equal to zero on X.
Convexity of X ensures additional regularity of these functions: it implies that the projection
mapping is uniquely defined and Lipschitz continuous and that the distance function is Lip-
schitz continuous. A less strict condition for this regularity to hold is that X is bi-Lipschitz
homeomorphic to a convex set (e.g., a unit ball) or the positive reach condition [5].

The infinite-dimensional LP reformulation reads

d∗ = sup
v∈B(X)

∫

X

v(x) dλ(x)

s.t. v(x) ≤ distX(f(x)) + αv(projX(f(x))) ∀x ∈ X,
(6)

2If X is not convex, the projection may not be unique. In this case, we assume that a measurable selection
function is applied to the set of minimizers. Such measurable selection exists since the set of minimizers is
compact [8, Theorem 18.19].
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where α ∈ (0, 1) is a given discount factor and λ ∈ M(X)+ is a given probability measure
on X. The support of λ is required to be the entire constraint set X which is satisfied, for
example, by the uniform probability measure on X.

We have the following result that will play a crucial role in the subsequent developments:

Theorem 1 For any Borel measurable transition mapping f , the supremum in (6) is at-
tained by the bounded measurable function

v?(x) =
∞∑

k=0

αk l̄
(
f̄ (k)(x)

)
. (7)

In addition:

1. We have v? = 0 on X∞ and v?(x) > 0 on X \X∞.

2. We have X∞ ⊂ {x ∈ X | v(x) ≤ 0} for any v feasible in (6) and

X∞ = {x ∈ X | v?(x) ≤ 0}.

3. If f is continuous on X and projX and distX are continuous on X ∪ f(X), then v?

is uniformly continuous on X. In particular, v? is uniformly continuous on X if f is
continuous on X and X is convex.

4. If f is Lipschitz continuous on X with Lipschitz constant Lf , X is convex, and α < L−1f ,
then v? is Lipschitz continuous on X with Lipschitz constaint 1/(1− αLf ).

Proof: See Section 9. �

Inner approximation A linear program whose feasible solutions provide inner approxi-
mations to the MPI set can be obtained by characterizing the complement of the MPI set.
This idea was first used for the related problem of region of attraction estimation in [13] and
later for the MPI set in [23].

4 Data-driven approach

In this section we describe how the infinite-dimensional LP can be approximated using the
available data (2)

Data =
{

(xi, x
+
i )
}K
i=1
.

Since the space of decision variables is infinite-dimensional and the number of constraints
of (6) is infinite, they both have to be approximated.
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4.1 Finite-dimensional decision variable

For the decision variable v of (6), we choose a set of Lipschitz continuous basis functions

β(x) = [β1(x), . . . , βN(x)]>

and optimize over functions v belonging to their span

VN = span{β1, . . . , βN}.

This is a classical approach in optimal control, partial differential equations and many other
fields. This leads to the following optimization problem

dN = sup
v∈VN

∫

X

v(x) dλ(x)

s.t. v(x) ≤ distX(f(x)) + αv(projX(f(x))) ∀x ∈ X.
(8)

The following result is classical in the dynamic programming literature.

Lemma 1 For every N there exists a v̄N feasible in (8) such that

∫

X

|v? − v̄N | dλ(x) ≤ ‖v? − v̄N‖C(X) ≤
2

1− α min
v∈VN

‖v? − v‖C(X). (9)

In particular, any optimal solution vN of (8) satisfies

∫

X

|v? − vN | dλ(x) ≤ 2

1− α min
v∈VN

‖v? − v‖C(X) (10)

Proof: See Section 9. �

Denote
XN = {x | vN(x) ≤ 0}

and
gv?(γ) = λ

(
{x | v?(x) ∈ (0, γ]}

)
(11)

for γ > 0. The function g?v , capturing the rate of growth of v? close to the boundary of X∞,
will play a crucial role in analysis of convergence of the finite-dimensional approximations
in Theorem 2. The function is illustrated in Figure 1.

0
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• Being data-driven, the approach provides high-probability guarantees only, contrary
to [12] that provides guaranteed outer approximation to the MCI set. The sample
complexity bounds are explicit, albeit depending on hard-to-estimate quantities.

Historically, the idea of using infinite-dimensional linear programming to address nonlin-
ear optimal control problems originated, to the best of our knowledge, with the work of
Rubio [23], closely followed by the works of Vinter and Lewis [24, 16]. The work of Ru-
bio [23] is in itself a follow-up on his earlier work [22] that use the infinite-dimensional
linear-programming embedding to study calculus of variations problems within the frame-
work of generalized curves introduced by Young in [25]. Without control, the fact that
certain objects evolving along the flow of a nonlinear dynamical system obey linear relation-
ships is classical; for example, the evolution of a density (or more generally a Borel measure)
defined on the state space is governed by the so-called continuity equation whereas values of
a function defined on the state-space evolve according to the transport equation.

Computationally, this approach was not exploited (to the best of our knowledge) until the
2000’s, starting with the work [20] based on the result of [21] for stability analysis. The first
systematic use for optimal control in conjunction with semidefinite programming was in [15].
After that, this approach was successfully applied to a number of problems including region
of attraction [10, 11], maximum invariant sets [12], invariant measures [14, 18], bounding
extreme values on attractors [6] or, very recently, nonlinear partial di↵erential equations
analysis and control [13]

Organization

Notation The space of real-valued continuous functions on a set X ⇢ Rn is denoted by
C(X) and we denote kfkC(X) = supx2X |f(x)| the corresponding supremum norm. The space
of bounded Borel measurable functions on X is denoted by B(X). Function composition is
denoted by �, i.e., (f � g)(x) = f(g(x)). The smallest Lipschitz constant of a function f is
denoted by Lip(f).

2 Problem statement (uncontrolled)

For simplicity, we develop the theory in the uncontrolled setting and generalize to systems
with control inputs in Section 6.2. Consider therefore the nonlinear discrete-time dynamical
system

x+ = f(x), (1)

where x 2 Rn is the current state and x+ 2 Rn is the successor state. The mapping
f : Rn ! Rn is assumed to be Borel measurable (but not necessarily Lipschitz continuous).

Given a compact constraint set
X ⇢ Rn,

the maximum positively invariant (MPI) set associated to f and X is defined by

X1 := {x 2 X | f (k)(x) 2 X for all k 2 N0},

3

denote the Euclidean projection1 of x onto X and let

distX(x) := min
�

min
y2X

kx � yk, 1
 

(4)

denote the Euclidean distance of x from X saturated at one. One possible choice for f̄ and
l̄ is then

f̄ = projX � f and l̄ = distX � f. (5)

Remark 1 (Projection and distance functions) The choice of the Euclidean projection
and distance functions is not the only one possible. The projection function can be replaced
by any measurable function that maps f(X) to X and is equal to the identity on X (in topol-
ogy, such functions are referred to as retractions). The distance function can be replaced
by any measurable function which is strictly positive on f(X) \ X and equal to zero on X.
Convexity of X ensures additional regularity of these functions: it implies that the projection
mapping is uniquely defined and Lipschitz continuous and that the distance function is Lip-
schitz continuous. A less strict condition for this regularity to hold is that X is bi-Lipschitz
homeomorphic to a convex set (e.g., a unit ball) or the positive reach condition [5].

The infinite-dimensional LP reformulation reads

d⇤ = sup
v2B(X)

Z

X

v(x) d�(x)

s.t. v(x)  distX(f(x)) + ↵v(projX(f(x))) 8 x 2 X,
(6)

where ↵ 2 (0, 1) is a given discount factor and � 2 M(X)+ is a given probability measure
on X. The support of � is required to be the entire constraint set X which is satisfied, for
example, by the uniform probability measure on X.

We have the following result that will play a crucial role in the subsequent developments:

Theorem 1 For any Borel measurable transition mapping f , the supremum in (6) is at-
tained by the bounded measurable function

v?(x) =
1X

k=0

↵k l̄
�
f̄ (k)(x)

�
. (7)

In addition:

1. We have v? = 0 on X1 and v?(x) > 0 on X \ X1.

2. We have X1 ⇢ {x 2 X | v(x)  0} for any v feasible in (6) and

X1 = {x 2 X | v?(x)  0}.

1If X is not convex, the projection may not be unique. In this case, we assume that a measurable selection
function is applied to the set of minimizers. Such measurable selection exists since the set of minimizers is
compact [8, Theorem 18.19].

5

Figure 1: Illustration of the function gv? .
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Lemma 2 We have
lim
γ→0

gv?(γ) = 0.

Proof: This is a basic measure theoretic argument. Denoting Ak = {x | v?(x) ∈ (0, 1/k]},
we have Ak+1 ⊂ Ak, ∩∞k=1Ak = ∅ and gv?(1/k) = λ(Ak). Since gv? is a non-decreasing
function of γ we obtain

lim
γ→0

gv?(γ) = lim
k→∞

gv?(1/k) = lim
k→∞

λ(Ak) = λ(∩∞k=1Ak) = 0.

�

Define

eα,N :=
2

(1− α)(1− αLf )
min
v∈VN

‖v? − v‖C(X).

Notice that eα,N goes to zero as N →∞ with the same rate as minv∈VN ‖v? − v‖C(X).

Then we have the following result:

Theorem 2 Let vN be a solution to (8). The following statements hold:

1. XN ⊃ XN+1 ⊃ . . . ⊃ X∞ for all N ∈ N.

2. If eα,N < 1 and β is a basis of the space of multivariate polynomials of degree at most
d (hence N =

(
n+d
n

)
) and α < 1/Lf , then
∫

X

|v? − vN | dλ(x) ≤ 2CX,n

(1− α)(1− αLf )
1

d
, (12)

where CX,n is a constant depending only on the diameter of X and the dimension n.

3. Under the same assumptions, we have

λ(XN \X∞) ≤ inf
γ>0

{
2CX,n

(1− α)(1− αLf )
1

γd
+ gv?(γ)

}
. (13)

In particular

λ(XN \X∞) ≤ 2CX,n

(1− α)(1− αLf )
1√
d

+ gv?

(
1√
d

)
(14)

Proof: See Section 9. �

Remark 3 (Optimazing the convergence rate) The question of the optimal γ in (13)
depends on the behavior of gv? close to zero. For example, assume that gv?(γ) = O(γb) for

γ → 0 with b > 0. Then, the rate of convergence in (13) is optimized by γ = O
(

1

d
1
b+1

)
,

leading to the rate λ(XN \X∞) = O
(

1

d
1− 1

b+1

)
. Notice that this rate tends to 1

d
for b → ∞,

which is the optimal worst-case rate of approximating Lipschitz functions by polynomials.

Remark 4 (Why polynomials) There is nothing special about using polynomials Theo-
rem 2; analogous rates of convergence can be derived for any basis functions, given the
knowledge of the approximation rate of Lipschitz continuous functions from within this basis.
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4.2 Data-driven constraint approximation

In this section, we describe how to proceed in a data-driven fashion, i.e., when f is not

known explicitly but only the data
{

(xi, x
+
i )
}K
i=1

is available. The basic, simple, idea is to
impose the constraint of the infinite-dimensional LP (6) only on the available data points
while controlling the interplay between the number of data points K and the number of basis
functions N .

In addition to this, we impose the constraint

− 1 ≤ v(x) ≤ (1− α)−1 (15)

on a second, artificial, set of samples

Data′ = {zi}K
′

i=1 (16)

which we assume to be unisolvent with respect to the basis β:

Assumption 1 The aritificial data set (16) is unisolvent with respect to the basis β, i.e.,

c>β(zi) = 0 ∀i ∈ {1, . . . , K ′} ⇒ c = 0.

This second artificial data set is fully in our control and therefore we can easily satisfy the
unisolvency assumption, for example by drawing zi from the uniform distribution over X
with K ′ > N under mild conditions on β and X (e.g., β being polynomail and X having a
non-empty interior).

We note that the constraint (15) is redundant for the infinite-dimensional LP (6) since 0 ≤
v? ≤ (1−α)−1 on X. The reason to include this constraint in the data-driven approximation
is in order to ensure boundedness of the feasible set. This is important only if the original
data set (2) is not large enough (or not rich enough) in which case this additional constraint
acts as a regularizer and prevents the finite-dimensional approximation to be unbounded.

4.3 The proposed method

Now we formulate the finite-dimensional LP solved by our method, which is lies at the
heart of the proposed approach. This LP is nothing but the LP (8) with the constraint
imposed only on the available data (2) and with the additional constraint (15) imposed on
the artificial data set (16). We write down the LP with an explicit parametrization of the
decision variable as v = β(x)>c, with c ∈ RN .

The finite-dimensional LP solved by the proposed method reads:

dN,K = sup
c∈RN

z>c

s.t. β(xi)
>c ≤ distX(x+i ) + αβ(projX(x+i ))>c ∀ i ∈ 1, . . . , K,

−1 ≤ β(zi)
>c ≤ (1− α)−1 ∀ i ∈ 1, . . . , K ′,

(17)
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where the vector3

z :=

∫

X

β(x) dλ(x) ∈ RN . (18)

Let cN,K denote an optimal solution to (17) and let

vN,K(x) = β(x)>cN,K .

The approximation of the MPI set, and the key object of the study of this paper, is then
defined by

XN,K = {x ∈ X | vN,K(x) ≤ 0}. (19)

Discussion Optimization problem (17) is a finite-dimensional linear programming problem
that can be readily solved using off-the-shelf software. To be be specific, observe that the
vectors β(xi) and β(zi) are just fixed vectors in RN and define

A1 =



β(x1)

> − αβ(projX(x+1 ))>

...
β(xK)> − αβ(projX(x+K))>


 , A2 =



β(z1)

>

...
β(zK′)

>


 , b1 =




distX(x+1 )
...

distX(x+K)




and

A =




A1

A2

−A2


 , b =




b1

(1− α)−11K′
1K′


 ,

where 1K′ ∈ RK′ denotes the column vector of ones of length K ′. Then, the LP (17) is
equivalent to

dN,K = sup
c∈RN

z>c

s.t. Ac ≤ b.
(20)

5 Theoretical analysis

In this section we study the convergence, with respect to both N and K, to the MPI set
X∞.

To avoid mathematical pathologies related to sampling, we make the following assumption
on the constraint set X:

Assumption 2 The set X is compact and is equal to the closure of its interior.

This is a mild assumption satisfied in most applications. The results extend to the case where
the dynamics evolves (or is required to evolve in the controlled case) on a lower-dimensional

3For simplicity of analysis we assume that the integral of each basis function over X can be evaluated
analytically. If this is not the case, this integral could be approximated with high accuracy using Monte
Carlo sampling techniques or numerical quadrature. We do not analyze the error due to such approximation
here.
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variety as long as one ensures that the set of samples (xi)
∞
i=1 is dense in X in the limit as K

tends to infinity with probability one. Under assumption 2, it suffices to sample uniformly
over X and the rate with which the samples become dense can be quantified, which we
describe next.

Definition 1 (ε net) A collection of points {xi}Ki=1 is an ε net for the set X if X ⊂
∪Ki=1Bε(xi), where Bε(x) = {y | ‖y − x‖∞ ≤ ε}.

The following Lemma is an elementary probabilistic probabilistic result:

Lemma 3 Let assumption 2 hold, let the points {xi}Ki=1 are drawn independently from the
uniform distribution over X and let D be the diameter of X and let

K ≥ log(1
δ
) + n ε

2D

log
(

1

1− εn

2nDn

) (21)

with δ ∈ (0, 1]. Then {xi}Ki=1 is an ε net for X with probability at least 1− δ.

Proof: See Section 9. �

We shall use the following natural assumptions on the basis β and set X:

Assumption 3 The basis β is such that

c>β(x) = 0 ∀x ∈ X if and only if c = 0.

This assumption is satisfied, for example, if β is a polynomial basis and X has a non-empty
interior. This assumption implies that the mapping c>β 7→ ‖c>β‖C(X) defines a norm on the
vector space VN . Since VN is finite-dimensional, this norm is equivalent to the “coefficient
norm” c>β 7→ ‖c‖2.

Assumption 4 The basis β and the set X are such that

vol({x ∈ X | c>β(x) = 0}) > 0 if and only if c = 0.

In simple terms, this assumption asks that the volume of the zero-level sets of the functions
from VN be zero, unless the function is identically zero on X. Again, this assumption is
satisfied, for example, if β is a polynomial basis and X has a non-empty interior.

Denote

Ln,N = sup
{

Lip(v − distX ◦ f − αv ◦ projX ◦ f) | v feasible in (17)
}
.

The following result summarizes convergence properties of the proposed method.

Theorem 3 Let Assumption 1, 2 and 3 hold, let the points (xi)
K
i=1 in the data set (2) be

drawn from the uniform distribution over X. Then we have

11



1. If also Assumption 4 holds and f is continuous, then for any fixed N , with probability
one

lim
K→∞

vol(X∞ \XN,K) = 0.

2. Let f be Lispchitz continuous with Lipschitz constant Lf and let β be a basis of the
space of multivariate polynomials of degree at most d (hence N =

(
n+d
n

)
) and α < 1/Lf .

Given accuracy ε > (0, 1), confidence δ ∈ (0, 1) and

K ≥
log δ − n log(1

ζ
)

log
(
1− ζn

) =
log(1

δ
) + n log(1

ζ
)

log
(

1
1−ζn

) , (22)

where

ζ =
ε(1− α)

2DLn,N
,

we have with probability at least 1− δ that

λ(XN,K \X∞) ≤ 4CX,n

(1− α)(1− αLf )
1√

d+ εd
+

ε
1√
d

+ ε
+ g

(
1√
d

)
(23)

for all d ≥ 2CX,n[(1− α)(1− αLf )]−1.

Proof: See Section 9. �

Discussion of Theorem 3 The bound of Theorem 3 can be further simplified using the
fact that log x ≥ 1− 1

x
; we have

log(1
δ
) + n log(1

ζ
)

log
(

1
1−ζn

) ≤
log(1

δ
) + n log(1

ζ
)

ζn

so a simplified, less-precise, sample bound is

K ≥
log(1

δ
) + d log(1

ζ
)

ζn
= Õ(ε−n),

where Õ signifies the classical big-O notation modulo logarithmic terms in ε. Using the fact
that log 1

ε
< 1

ε
and inverting the expression for K, we get

ε = O(K
1

n+1 ).

Setting d = K
1

n+1 , we obtain the bound

λ(XN,K \X∞) ≤ O(K−
1

2(n+1) ) + gv?(K
− 1

2(n+1) ),

which goes to zero as the number samples K tends to infinity. Finally, we note that Remark 4
applies to Theorem 3 as well.
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5.1 Guaranteed approximations

It is a natural questions to ask whether one can, possibly with some additional knowledge,
obtain a guaranteed outer approximation of X∞. The following lemma and its immediate
corollary go in this direction.

Lemma 4 Any solution vN,K to (17) satisfies

XG
N,K :=

{
x ∈ X | vN,K(x) ≤ (1− α)−1 sup

z∈X
E(z)

}
⊃ X∞, (24)

where the function E : X→ R is defined by

E(x) := vN,K(x)− distX(f(x))− αvN,K(projX(f(x))).

Proof: By definition of E(x), which is just the slack in the constraint of (8), it follows that

vN,K − (l̄ + E)− αvN,K ◦ f̄ = 0,

which is a Bellman equality for the dynamics f̄ , stage cost l̄ + E and discount factor α.
Therefore, using the same computation as in the proof of Theorem 1, we obtain

vN,K =
∞∑

k=0

αk(l̄ + E) ◦ f̄ (k).

Since l̄(x) = 0 on X, it follows that l̄ ◦ f̄ (k) = 0 on the MPI set X∞. Therefore, for all
x ∈ X∞ it holds

vN,K(x) =
∞∑

k=0

αkE ◦ f̄ (k)(x) ≤ sup
z∈X

E(z)
∞∑

k=0

αk ≤ (1− α)−1 sup
z∈X

E(z),

which implies that XG
N,K ⊃ X∞ as desired. �

Corollary 1 Let vN,K denote a solution to (17) and let ε denote the diameter of the smallest
ε net for X with the centers (xi)

K
i=1, i.e.,

ε = inf
δ>0

{
δ | ∪Ki=1Bδ(xi) ⊃ X

}
.

Then, if f is Lipschitz continuous with a Lipschitz constant Lf , we have

X̃G
N,K :=

{
x ∈ X | vN,K(x) ≤ (1− α)−1ε[Lip(vN,K)(1 + αLf ) + Lf ]

}
⊃ X∞.

Proof: This follows from the fact that

E(x) ≤ ε[Lip(vN,K) + Lf + Lip(vN,K)Lf ]

for all x ∈ X, which is a consequences of the definition of E and ε. �
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Discussion Both Lemma 4 and Corollary 1 require information which cannot be extracted
from the data samples (xi, x

+
i )Ki=1 unless further modeling assumptions are made. For Corol-

lary 1, the only modeling assumption is the knowledge of an upper bound on the Lipschitz
constant of f .

Conservative outer approximations If no further information is available, one can
resort to ex-post validation techniques, providing more conservative outer approximations
obtained by estimating the supz∈XE(z) in (24). Specifically, we split the data set Data =
(xi, x

+
i )Ki=1 in two disjoint sets of size K1 and K2 and solve the LP (17) using only the first

data set. Then we use the second data set to estimate supz∈XE(z), i.e., we compute

Ē = max
i=1,...,K2

[vN,K(xi)− distX(x+i )− αvN,K(projX(x+i ))].

The conservative approximation is then defined by

XC
N,K :=

{
x ∈ X | vN,K(x) ≤ (1− α)−1Ē

}
. (25)

Without further assumptions, this approximation is not guaranteed to be an outer approxi-
mation and one can hope for probabilistic guarantees only, akin to those obtained in Theo-
rem 3. However, in all numerical examples tested, we observed that XC

N,K provided an outer
approximation when the data set was split in two equal parts. A rigorous analysis of this
conservative approximation is left for future work.

6 Problem statement (controlled)

Now we briefly describe how the framework extends to the problem of the maximum con-
trolled invariant set computation. We will use the same notation as in the uncontrolled
setting. Consider the discrete time controlled system

x+ = f(x, u) (26)

with x ∈ Rn, x+ ∈ Rn being the current respectively successor state and u ∈ Rm the control.
Given compact state and control constraint sets

X ⊂ Rn , U ⊂ Rm,

the maximum controlled invariant (MCI) set

X∞ = {x0 ∈ Rn | ∃ (uk)
∞
k=0 s.t. xk+1 = f(xk, uk), xk ∈ X, uk ∈ U}. (27)

In words, the MCI set is the set of all initial states of (26) that can be kept inside the
constraint set X forever using admissible control inputs.

14



6.1 Infinite-dimensional LP characterization of MCI set

The MCI set is characterized by the following LP analogous to (17)

d∗ = sup
v∈B(X)

∫

X

v(x) dλ(x)

s.t. v(x) ≤ distX(f(x, u)) + αv(projX(f(x, u))) ∀ (x, u) ∈ X×U,
(28)

where α ∈ (0, 1).

As in (5) define f̄ : X×U→ X and l̄ : X×U→ [0, 1] by

f̄ = projX ◦ f and l̄ = distX ◦ f, (29)

where projX and distX are defined in (3) and (4). We have the following theorem:

Theorem 4 For any Borel measurable transition mapping f : Rn×Rm → Rn, the supremum
in (28) is attained by the bounded measurable function

v?(x) = inf

{ ∞∑

k=0

αk l̄(xk, uk) | xk+1 = f̄(xk, uk), x0 = x, uk ∈ U

}
. (30)

In addition:

1. We have v? = 0 on X∞ and v?(x) > 0 on X \X∞.

2. We have X∞ ⊂ {x ∈ X | v(x) ≤ 0} for any v feasible in (6) and

X∞ = {x ∈ X | v?(x) ≤ 0}.

3. If f is jointly continuous on X×U and projX and distX are continuous on X∪f(X×U),
then v? is uniformly continuous on X. In particular, v? is uniformly continuous on X
if f is continuous on X×U and X is convex.

4. If f is jointly Lipschitz continuous on X×U with Lipschitz constant Lf , X is convex,
and α < L−1f , then v? is Lipschitz continuous on X with Lipschitz constaint 1/(1−αLf ).

Proof: See Section 9. �

6.2 Data-driven approach for MCI set

In this section we describe how the infinite-dimensional LP (28) can be approximated using
the available data

Data =
{

(xi, x
+
i )
}K
i=1
, (31)

where x+i = f(xi, ui). Notice that, very interestingly, we do not require the knowledge of the
the control inputs ui that effected the transitions xi → x+i .
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As in the case without control, first we restrict the space of decision variables to a finite
dimensional subspace spanned by the Lipschitz continuous basis functions

β(x) = [β1(x), . . . , βN(x)]>

and we optimize over functions v belonging to their span

VN = span{β1, . . . , βN}.
This leads to

dN = sup
v∈VN

∫

X

v(x) dλ(x)

s.t. v(x) ≤ distX(f(x, u)) + αv(projX(f(x, u))) ∀ (x, u) ∈ X×U.
(32)

The data-driven approximation to (32) reads

dN,K = sup
c∈RN

z>c

s.t. β(xi)
>c ≤ distX(x+i ) + αβ(projX(x+i ))>c ∀ i ∈ 1, . . . , K,

−1 ≤ β(zi)
>c ≤ (1− α)−1 ∀ i ∈ 1, . . . , K ′,

(33)

where the samples zi come from a second, artificial, data set

Data′ = {zi}K
′

i=1

unisolvent with respect to the selected basis functions, as in Section 4.2; the vector z is
defined by (18).

Theoretical analysis for MCI set Since all the results for the MPI set rely only on
the regularity of v? which is, by Theorem 4, the same as for the MCI set, they extend
immediately to the case of the MCI set with the proofs being verbatim copies. The sampling
bounds, notably (22), need to be adjusted for the dimension of U, i.e., n must be replaced
by n+m.

7 Numerical examples

This section presents several numerical examples to demonstrate the approach. All problems
were coded in Matlab with the help of Yalmip [19]. Linear programs were solved using
Gurobi; semidefinite programs using Mosek 8. The performance of the methods compared
is assessed in terms of the volume error of the approximation defined as

Volume error = 100 · vol(Xapprox \X∞)

vol(X∞)
[%], (34)

where X∞ is the true MPI or MCI set and Xapprox is a candidate outer approximation. We
also report the “misclassification” due to finitely many data samples. The misclassification
is defined as

Misclassification = 100 · vol(Xc
approx ∩X∞)

vol(X∞)
[%], (35)
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which is the proportion of points classified as outside of the MPI or MCI set whereas they
are in reality inside (note that all the algorithms compared aim at obtaining outer approxi-
mations).

Bases used As the basis, we will utilize either the monomial basis (i.e., functions of the
form xγ1 · . . . · xγn with γ ∈ Nn) up to a total degree d (i.e.,

∑
i γi ≤ d); for a degree d, the

number of basis functions created in this way is N =
(
n+d
n

)
. We will also use thin-plate-

spline radial basis functions (RBFs); given N centers c1, . . . , cN , this basis is comprised of
the functions

x 7→ ‖x− ci‖22 log ‖x− ci‖2, i ∈ {1, . . . , N}.
The subspace spanned by these basis functions depends on the choice of the centers; in all
the examples considered we generated the centers randomly with a uniform distribution over
the constraint set X. Alternatively, one could adapt the centers to the data at hand, e.g.,
cluster the data to N clusters and choose the ci’s to be the cluster centroids.

Matlab code for the examples is available at

https://homepages.laas.fr/mkorda/MCI_data_driven.zip

7.1 Julia map

First we consider the so-called Julia map, which is a recurrence of the form

x+ =

[
x21 − x22 + c1
2x1x2 + c2

]
(36)

with c = (−0.7, 0.2) (the value of c influences the shape of the MPI set – see [14] for
experiments with different values of c). The state constraint is the unit ball X = {x ∈ R2 |
‖x‖2 ≤ 1}.

Comparison with SDP First, we compare the proposed algorithm with the SDP based
approach of [14]. In order to do so, we set βN to be the monomial basis of total degree d
and use 3 · 104 data points sampled uniformly over X (the effect of decreasing the sample
size is investigated later). The discount factor α is set to 0.6. Figure 2 shows the results
of the proposed data-driven approach with d = 10 and d = 18. Table 1 reports the volume
error and misclassification in comparison with the SDP based approach of [14]; we notice
that whenever neither approach encounters numerical problems, the results are very similar.
However, due to the ill-condioning of the monomial basis, the SDP-based approach [14]
encounters numerical problems beyond degree 14. Beyond degree 20, also the LP (17) in the
data-driven method become too ill-conditioned4 to be accurately solved by Gurobi.

4A more careful implementation (e.g., with a different polynomial basis used or a problem-specific pre-
conditioning) may improve the performance of both methods. The ill-conditioning is a subtle issue and the
numerical results presented here are not be taken as representative of the relative performance of the two
methods.
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RBFs Next, in Table 2, we report the volume error and misclassification for the data-
driven approach with the thin-plate spline RBFs; this basis cannot be easily used with the
SDP-based approaches due to the lack of efficient nonnegativity certificates for this basis.
We observe that for a given number of basis functions, the monomial basis provides a tighter
approximation of the MPI set; however, the the RBF basis is much better conditioned
and allows the LP (17) to be solved for much larger values of N , thereby achieving higher
accuracy of the approximation. Figure 3 shows the RBF approximations with N = 200
and N = 600. We also investigated the effect of increasing the size of the basis even
further in order to observe non-negligible misclassification due to “overfitting”. This occurs
for N = 1000. Luckily, the misclassification can be eliminated by using the conservative
approximation (25) (with the data set split in two equal parts). Figure 4 depicts both the
non-conservative and conservative approximations, with the misclassified points depicted in
orange.

Small data limit Next, in Figure 5, we investigate performance with a low number of
data samples, namely 200 and 1000. We depict both the samples themselves as well as the
approximations.

Monomials: d = 10 Monomials: d = 18

Figure 2: Julia map: approximations obtained from the data-driven approach with monomial
basis. Dark grey: true MPI set. Light grey: outer apporoximation XN,K from (19).

Table 1: Julia Map, monomial basis: comparison of the proposed Data-driven method and
the SDP-based approach of [14]. The information is reported in the format [Volume error /
Misclassificaiton] in percent as defined in (34) and (35) .

Degree 10 (N = 66) 14 (N = 120) 18 (N = 190) 20 (N = 231)

Data-driven 20.9 / 0 15.0 / 0.0035 13.27 / 0.0035 11.70 / 0.018

SDP 22.42 / 0 15.18 / 0 Num. problems Num. problems
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RBFs: N = 200 RBFs: N = 600

Figure 3: Julia map: approximations obtained from the data-driven approach with radial basis
functions. Dark grey: true MPI set. Light grey: outer apporoximation XN,K from (19).

Table 2: Julia Map, radial basis functions: volume error and misclassificaiton for the proposed
data-driven method with radial basis functions.

Size of basis N 66 120 200 400 600 1000

Volume error [%] 22.46 18.30 15.27 10.99 9.07 7.0

Misclassification [%] 0 0 0.021 0.014 0.024 0.179

7.2 Dimensionality dependence

In order to investigate scalability and dimensionality dependence of the approach we consider
an artificial dynamical system obtained by stacking the Julia map n/2 times and making a
random unitary coordinate change to couple the states together. We do this in order to be
able to vary the dimension of the system while still having access to the true MPI set for
comparison. Mathematically, we consider the map f : Rn → Rn defined by

f = ϕ ◦ [fjulia, . . . , fjulia]︸ ︷︷ ︸
n/2 times

◦ ϕ−1,

where fjulia : R2 → R2 is the right-hand-side of (36) and ϕ(x) = Qx with Q ∈ Rn×n being
a random unitary matrix. The state constraint set is set to be X = ϕ([−1, 1]n), resulting
in the MPI set being equal to ϕ−1(X∞,julia × . . .×X∞,julia︸ ︷︷ ︸

n/2 times

), where X∞,julia is the MPI set of

the Julia map with the constraint [−1, 1]2. We fix the number radial basis functions with
randomly generated centers over X to N = 1600 and we use 3 · 104 data samples. Figure 6
depicts the results for n ∈ {4, 6, 8, 10}. As expected, we observe that the approximations
get less tight as the dimension increases; however, we do not observe an increase in the
missclassificaiton. An intuitive explanation for this is that the thin-plate spline radial basis
functions are not spatially localized (as opposed to, e.g., Gaussian radial basis functions with
narrow width) and hence not as prone to large inter-sample errors.
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RBFs: N = 1000 RBFs: N = 1000

Conservative

Figure 4: Julia map: approximations obtained from the data-driven approach with radial basis
functions for N = 1000. Dark grey: true MPI set. Light grey: outer apporoximation. Orange:
misclassified points. Left: non-conservative approximation XN,K from (19). Right: conservative
approximation XC

N,K from (25).

7.3 Controlled example

In order to demonstrate the approach in a controlled setting, we consider the three-dimensional
Hénon map with control from [14] with the dynamics

x+1 = 0.44− 0.1x3 − 4x22 + 0.25u,

x+2 = x1 − 4x1x2,

x+3 = x2

and subject to the constraints X = [−1, 1]3 and U = [−1, 1]. We use 1000 thin-plate spline
radial basis functions with centers generated randomly in X and 5 · 104 data samples (x, x+)
(the associated control samples are not required). The discount factor α is set to 0.2. The
true MCI set is unknown for this example; therefore we compare the approximations (19)
with the conservative approximations (25). Figure 7 shows the results. We observe that the
approximation (19) captures smaller inner structures compared to the conservative approx-
imation.

7.4 Switched system

In our last example, we demonstrate the applicability for systems with a discontinuous
transition mapping f . We consider the system

ẋ =





[
−1 1

−5 −0.1

]
ϕ(x) x21 ≤ x22

[
−0.1 5

−1 −0.1

]
ϕ(x) x21 > x22 ,
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RBFs: N = 15 RBFs: N = 10

RBFs: N = 40 RBFs: N = 30

Figure 5: Julia map: Approximations obtained from the data-driven approach with RBFs for low number
of data samples. The samples (xi, x

+
i )Ki=1 are depicted in the first column with blue corresponding to xi and

orange to x+
i . Top row: 200 samples. Bottom row: 1000 samples. Dark grey: true MPI set. Light grey:

outer apporoximation XN,K from (19). Orange: misclassification.

where ϕ is a given, possibly nonlinear, mapping. For ϕ(x) = x we obtain the classical flower
system from [12]. The discrete-time dynamics f investigated is the Runge-Kutta four dis-
cretization of this continuous-time ordinary differential equation with sampling interval 0.05.
The constraint set is X = [−1, 1]2. We utilize 600 thin-plate-spline RBFs with randomly
selected centers, 3 · 104 data samples and discount factor α = 0.8. Figure 8 shows the re-
sults for ϕ = x (i.e., resulting in a switched affine system) and for ϕ = [sin x31, sinx

3
2]
> (i.e.,

resulting in a switched nonlinear system). We observe that the approach can provide valid
outer approximations even in this setting to which some of the theoretical results do not
apply due to the lack of Lipschitz continuity of f .

8 Conclusion and outlook

We presented a convex-optimization-based data-driven method for approximation of the MPI
and MCI sets, furnished with theoretical analysis and detailed numerical experiments. The
method is simple and general, relying on the solution to a single finite-dimensional LP with
mild underlying assumptions. The worst case complexity upper bounds of Theorem 3 are
exponential in the state-space dimension. We believe that this is unavoidable at this level of
generality; a possible future research direction would be to derive matching lower bounds.
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State-space dimension = 4 State-space dimension = 6

State-space dimension = 8 State-space dimension = 10

Figure 6: Dimensionality dependence: Outer approximations with thin-plate spline 1600 RBFs
for the product of Julia maps. Dark grey: projection of the MPI set on the first two coordinate
axes. Light grey: projection of the outer approximation on the first two coordinate axes.

Future research directions include:

• Structure exploitation. Exploiting problem-specific specific structure such as sparsity
or symmetries should increase the efficiency of method, both in terms of the number
of basis functions required as well as in terms of the number of data samples.

• Ex-post validation. Deriving rigorous probabilistic guarantees on the “conservative”
approximation of (25) or investigating more sophisticated ex-post validation techniques
(e.g., subsampling-based cross-validation) would increase applicability in safety-critical
applications.

• Adaptive sampling and basis selection. The presented approach is the simplest possible
version of the algorithm. More sophisticated algorithms could employ adaptive basis
selection, or, if sequential sampling is possible also adaptive sampling.
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Figure 7: Controlled Hénon map: Comparison of the “standard” (left) approximation (19) and
the conservative (right) approximation (25). The true MCI set is unknown in this case.

Figure 8: Switched system: Left: switched affine system (ϕ(x) = x). Right: switched nonlinear system
(ϕ(x) = [sinx3

1, sinx3
2]>). Dark grey: true MPI set. Light grey: outer apporoximation XN,K from (19).
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9 Proofs

Proof of Theorem 1 The fact that v? is bounded (by 1/(1 − α)) follows from the facts
that |l̄| ≤ 1 on Rn and α ∈ (0, 1). Measurability of v? with respect to x is trivial as it is a
convergent sum of nonnegative measurable functions.

The proof of attainment of the supremum in (6) follows a standard dynamic programming
argument applied to an infinite-horizon discounted optimal control problem (here without
control) with the dynamical system x+ = f̄(x), stage cost l̄(x) and constraint set X. The
auxiliary dynamical system x+ = f̄(x) was crafted such that the constraint set is invariant
under f̄ . Now, given any v ∈ B(X) feasible in (6), we have

v ≤ l̄ + αv ◦ f̄ on X.

Multiplying by α and composing with f̄ (using the invariance of X under f̄) we obtain

αv ◦ f ≤ αl̄ ◦ f̄ + α2v ◦ f̄ (2) on X

and hence
v ≤ l̄ + αl̄ ◦ f̄ + α2v ◦ f̄ (2) on X.

Iterating the procedure, we get

v ≤
N−1∑

k=0

αk l̄ ◦ f̄ (k) + αNv ◦ f̄ (N) on X.

Taking the limit as N →∞, using the facts that v is bounded α ∈ (0, 1), we conclude that

v ≤
∞∑

k=0

αk l̄ ◦ f̄ (k) = v?

on X. Therefore v ≤ v? for any v feasible in (6). We already have proven that v? ∈ B(X);
therefore, it only remains to prove that the constraint v? ≤ l̄+ αv? ◦ f̄ is satisfied. We have

αv? ◦ f̄ =
∞∑

k=0

αk+1l̄ ◦ f̄ (k+1) =
∞∑

k=1

αk l̄ ◦ f̄ (k) =
∞∑

k=0

αk l̄ ◦ f̄ (k) − l̄ = v? − l̄.

Therefore, the inequality constraint in (6) is satisfied with equality by v?. This concludes
the proof of optimality of v?.

Proof of 1. If x ∈ X∞, then f(f̄ (k)(x)) ∈ X for all k ∈ N0 and hence l̄(f̄ (k)(x)) =
distX(f(f̄ (k)(x))) = 0; as a result v? = 0 on X∞. Conversely, if x ∈ X \ X∞, then there
exists a k ∈ N0 such that f̄ (i)(x) = f (i)(x) ∈ X for all i ≤ k and f(f̄ (k)(x)) = f (k+1)(x) /∈ X.
Therefore

l̄(f̄ (k)(x)) = distX
(
f(f̄ (k)(x))

)
> 0

and hence v? > 0 on X \X∞.

Proof of 2. This follows directly from the previous point.
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Proof of 3. It suffices to prove continuity of v? on X. Uniform continuity then follows by
compactness of X. Let x ∈ X and ε > 0 be given. Then for any y ∈ X we have from (7)

|v?(x)− v?(y)| ≤
∞∑

k=0

αk|l̄
(
f̄ (k)(x)

)
− l̄
(
f̄ (k)(y)

)
|

≤
M−1∑

k=0

αk|l̄
(
f̄ (k)(x)

)
− l̄
(
f̄ (k)(y)

)
|+

∞∑

k=M

2αk,

where in the second inequality we used the fact that l̄ ≤ 1 on X. The constant M is chosen
such that 2

∑∞
k=M αk < ε/2. Since l̄ and f̄ are continuous by assumption, so are l̄ ◦ f̄ (k) for

k ∈ {0, . . . ,M − 1}. Therefore, there exists δ > 0 such that

M−1∑

k=0

αk|l̄
(
f̄ (k)(x)

)
− l̄
(
f̄ (k)(y)

)
| < ε

2

for any y with ‖y − x‖2 ≤ δ. As a result, |v?(x)− v?(y)| < ε for all such y, as desired.

Proof of 4. Since X is convex, the functions projX and dsitX are Lipschitz continuous with
Lipschitz constant one. Hence, the Lipschitz constant of l̄ ◦ f̄ (k) is at most Lkf . Therefore,
from (7), we have for any x, y ∈ X

|v?(x)− v?(y)| ≤
∞∑

k=0

αk|l̄
(
f̄ (k)(x)

)
− l̄
(
f̄ (k)(y)

)
| ≤

∞∑

k=0

αkLkf‖x− y‖2 =
1

1− αLf
‖x− y‖2.

�

Proof of Lemma 1 The proof follows closely the argument of [4, Theorem 2]; we give full
details of the proof since we refer to it later in the paper. Let v ∈ Argminh∈VN‖v? − h‖C(X)

(at least one minimizer exists since the set of minimizers is compact5). The idea is to shift v
downward in order to make it satisfy the constraint of (8). Set v̄N = v − a with a ∈ R+;
then we have

v̄N − l̄ − αv̄N ◦ f̄ = v − l̄ − αv ◦ f̄ − a(1− α)

≤ v? − l̄ − αv? ◦ f̄ + ‖v − v?‖C(X)(1 + α)− a(1− α)

≤ ‖v − v?‖C(X)(1 + α)− a(1− α).

The last expression is rendered nonnegative by setting a = 1+α
1−α‖v− v?‖C(X). Estimating the

error for this choice of a yields

‖v̄N − v?‖ ≤ ‖v − v?‖+ ‖v̄N − v‖ = ‖v − v?‖+ ‖v − v?‖1 + α

1− α =
2

1− α‖v − v
?‖,

which finishes the proof of (9). To prove (10) it suffices to observe that maximizing the
objective of (8) is the same as minimizing the left-hand side of (10) since vN ≤ v? for any
vN feasible in (8) and hence the absolute value is redundant. �

5This follows from the fact that ‖v‖C(X) ≤ 2‖v?‖C(X) for any minimizer v and the fact that VN is a finite
dimensional subspace of C(X), which implies that the C(X) norm on VN is equivalent to the “coefficient
norm” given by ‖v‖coef = ‖c‖2 for v(x) = c>β(x).
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Proof of Theorem 2 Point 1: This follows from the fact that vN is feasible in (6) and
from Point 2 of Theorem 1.

Point 2: From Lemma 1, we only need to bound ed := minv∈Pd ‖v?−v‖C(X), where Pd is the
space of multivariate polynomials up to degree d. From [1, Theorem 1] and the Kirszbraun
extension theorem of Lipschitz functions, we know that ed ≤ CX,nLip(v?)1

d
for some constant

CX,n depending only on the diameter of X and the dimension n. The result then follows
from Point 4 of Theorem 1.

Point 3: Given γ > 0, we have

λ(XN \X∞) = λ(vN ≤ 0, v? > 0)

= λ(vN ≤ 0, v? > γ) + λ(vN ≤ 0, v? ∈ (0, γ])

≤ λ(v? − vN > γ) + λ(v? ∈ (0, γ]) ≤ 1

γ

∫
(v? − vN) dλ+ gv?(γ), (37)

where gv? is defined in (11). From Point 2 of this theorem we obtain

λ(XN \X∞) ≤ 1

γ

2CX,n

(1− α)(1− αLf )
1

d
+ gv?(γ).

Minimizing over γ gives (13); choosing γ = 1/
√
d gives (14). �

Proof of Lemma 3 It is enough to prove the statement with X replaced by its smallest
axis-aligned box. Let therefore X be a box with the largest side of length D and let (yi)

K′
i=1

be an ε/2 net for this box; such net exists with K ′ ≥ 2nDn

εn
. The probability of sampling a

point within Bε/2(yi) is then Bε/2(yi)/vol(X) = εn

2nDn
. Given K independent samples, the

probability of not sampling within a given ball is therefore (1 − εn

2nDn
)K . Now, by triangle

inequality, for any point x ∈ Bε/2(yi) it holds that Bε(x) ⊃ Bε/2(yi). Therefore, using the
union bound, the probability of not obtaining an ε net with K samples is at most

2nDn

εn

(
1− εn

2nDn

)K
.

We want to make this quantity less than or equal to δ. Taking logarithm, this is equivalent
to

n log

(
2D

ε

)
+K log

(
1− εn

2nDn

)
≤ log(δ),

which is equivalent to (21). �

Theorem 3 Point 1 : Consider the auxiliary optimization problem

sup
v∈VN

∫

X

v(x) dλ(x)

s.t. v(xi) ≤ distX(f(x)) + αv(projX(f(x))) ∀x ∈ X

−1 ≤ v(zi) ≤ (1− α)−1 ∀ i ∈ 1, . . . , K ′,

(38)
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which is the LP (8) with the additional constraint −1 ≤ v ≤ (1 − α)−1 imposed on the
artificial data set (16). By assumption 1, the Lipschitz constant of any function v feasible in
this problem is bounded by some L′ <∞ and the coefficient vector c defining v is bounded
by some M ′. Consequently, the supermum (38) is attained by some v′N ∈ VN which assume
to be unique for the simplicity of the argument; we generalize the argument to the case of
multiple solutions later. Since v′N is feasible in (8) and hence in (6) it follows by Theorem 1
that

v′N ≤ v? on X.

and X′N ⊃ XN , where
X′N = {x | v′N(x) ≤ 0}.

Define the function
h(ε) = vol

(
{x | v′N(x) ∈ [−ε, 0]}

)
.

Since vol ({x | v′N(x) = 0}) = 0 by Assumption 4, it follows that

lim
ε→0+

h(ε) = vol ({x | v′N(x) = 0}) = 0.

Now we prove that vN,K = cN,K → β convergences to v′N uniformly as K →∞, where cN,K
denotes an optimal solution to (17). Since the feasible set of (17) is compact it follows that,
as K tends to infinity, the sequence cN,K of optimal solutions to (17) has an accumulation
point c̃N . Let ṽN = c̃>Nβ(x). By continuity of the functions in the constraints of (38) and
the fact that the points (xi)

K
i=1 are sampled independently and uniformly over the compact

set X satisfying Assumption 2, it follows that ṽN is, with probability one, feasible in (38).
Therefore ṽN is optimal in (38) by continuity of the objective function and by the fact that
for each K the constraints of the sampled LP (17) are less stringent than those of (38). Hence
ṽN = v′N on X by the uniqueness of optimizers to (38). Let cN,Ki be a subsequence such that
limi→∞ cN,Ki = c̃N ; by Assumption 3 and the discussion below it, convergence in the space
of coefficients is equivalent to uniform convergence on X, i.e., limi→∞ ‖vN,Ki − vN‖C(X) → 0.
By the uniqueness of optimizers to (38), this implies that each accumulation point of vN,K
must be equal to v′N and hence the limit of vN,K exists and is equal to v′N , i.e.,

lim
K→∞

‖vN,K − vN‖C(X) → 0

with probability one.

To finish the proof, we use the following estimate valid for any ε > 0:

vol(X∞ \XN,K) = vol(v? ≤ 0, vN,K > 0)

≤ vol(v′N ≤ 0, vN,K > 0)

= vol(v′N < ε, vN,K > 0) + vol(v′N ∈ [−ε, 0], vN,K > 0)

≤ vol(v′N < ε, vN,K > 0) + h(ε). (39)

Since vN,K converges to v′N uniformly, it follows that

lim
K→∞

vol(X∞ \XN,K) ≤ h(ε).
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Since ε was arbitrary and h(ε)→ 0 as ε→ 0+, the result follows.

To prove the result in the general case where solution to (38) is not unique, observe that
the set of solutions to this LP is compact (since its feasible set is compact). Redefining the
function h as

h(ε) = sup
v′N solves (38)

vol
(
{x | v′N(x) ∈ [−ε, 0]}

)
,

it follow that h(ε) → 0 as ε → 0+. Indeed, if limε→0+ h(ε) = δ > 0, then by compactness
of the set of optimizers of (38), there would exist an optimal v′N such that limε→0+ vol({x |
v′N(x) ∈ [−ε, 0]}) = δ > 0, which contradicts Assumption 4. To finish the proof, consider a
subsequence (Ki)

∞
i=1 such that

lim sup
K→∞

vol(X∞ \XN,K) = lim
i→∞

vol(X∞ \XN,Ki).

From this subsequence we can extract another subsequence (Kij)
∞
j=1 such that cN,Kij con-

verges to some cN ; this is possible by the compactness of the set of minimizers of (38).
It follows by the same arguments as in the case of a unique minimizer that cN is optimal
and that vN,Kij converges as j → ∞ uniformly to an optimal v′N . It follows by the same

calculation as (39) that
lim
j→∞

vol(X∞ \XN,Kij
) = 0

and hence

lim sup
K→∞

vol(X∞ \XN,K) = lim
i→∞

vol(X∞ \XN,Ki) = lim
j→∞

vol(X∞ \XN,Kij
) = 0.

as desired.

Point 2 : With K as in the theorem, the points (xi)
K
i=1 form an

(1− α)ε

Ln,N
net.

Define the function
ṽN,K = vN,K − ε.

A straightforward computation shows that ṽN,K is feasible in (8). Then we have

λ(XN,K\ X∞) = λ(vN,K ≤ 0, v? > 0) = λ(vN,K ≤ 0, v? > γ) + λ(vN,K ≤ 0, 0 < v? ≤ γ)

≤ λ(v? − vN,K > γ) + λ(0 < v? ≤ γ)

≤ λ(v? − ṽN,K > γ + ε) + gv?(γ)

≤ 1

γ + ε

∫
v? − ṽN,K + g?(γ) =

1

γ + ε

∫
v? − vN,K + λ(X)

ε

γ + ε
+ gv?(γ)

=
1

γ + ε

∫
v? − vN

︸ ︷︷ ︸
≤(12)

+
1

γ + ε

∫
vN − v?

︸ ︷︷ ︸
≤0

+
1

γ + ε

∫
v? − vN,K

︸ ︷︷ ︸
≤?(12)

+λ(X)
ε

γ + ε
+ gv?(γ)

≤ 4

γ + ε

CX,n

(1− α)(1− αLf )
1

d
+ λ(X)

ε

γ + ε
+ gv?(γ),
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where the inequality indicated by the brace with a star holds for d ≥ CX,n(1+α)[(1−α)(1−
αLf )]

−1, as assumed. This is because in this case

CX,n(1 + α)[(1− α)(1− αLf )]−1 min
v∈Pd
‖v? − v‖C(X) ≤ 1

and hence the v̄N used in the proof of Lemma 1 will also satisfy the additional constraint
−1 ≤ v̄N ≤ (1− α)−1 of (17), making the bound (12) valid also for vN,K . Setting γ = 1/

√
d

gives the desired result. �

Proof of Thereom 4 The fact that v? is Borel measurable follows from the fact that it
is an infimum of a set of Borel measurable functions (indexed by the sequences of control
inputs). Boundedness of v? is immediate since α ∈ (0, 1) and |l̄| ≤ 1. The attainment of
the supremum in (28) by v? follows from the Bellman’s optimiality principle. Indeed, this
principle stays that

v?(x) = inf
u∈U
{l̄(x, u) + αv? ◦ f̄(x, u)}

and hence necessarily
v?(x) ≤ l̄(x, u) + αv? ◦ f̄(x, u)

for all (x, u) ∈ X×U, i.e., v? satisfies the constraint of (28). The same argument as in the
proof of Theorem 1 shows that v ≤ v? on X for any v satisfying the constraint of (28). This
implies that v? is optimal in (28) as claimed.

Proof of 1 and 2: Follows by the same arguments as in Theorem 1.

Proof of 3: Observe that, by continuity of f̄ and l̄, for every x0 ∈ X the function

(uk)
∞
k=0 7→

∞∑

k=0

αk l̄(xk, uk),

with xk+1 = f̄(xk, uk), is continuous with respect to the product topology on U∞. Since U
is compact, so is U∞ (e.g., by the Tychonoff’s theorem) and hence for every x0 ∈ X the
infimum in (30) is attained by some (uk)

∞
k=0 ∈ U∞. Let x0 ∈ X and ε > 0 be given and let

(uk)
∞
k=0 be an optimal sequence in (30) associated to this x0. Then for any x′0 ∈ X, with

associated optimal sequence (u′k)
∞
k=0, we have

v?(x0)− v?(x′0) =
∞∑

k=0

αk[l̄(xk, uk)− l̄(x′k, u′k)]

=
∞∑

k=0

αk[l̄(xk, uk)− l̄(xk, u′k)]
︸ ︷︷ ︸

≤ 0 by optimality of uk

+
∞∑

k=0

αk[l̄(xk, u
′
k)− l̄(x′k, u′k)]

≤
M−1∑

k=0

αk|l̄(xk, u′k)− l̄(x′k, u′k)|+
∞∑

k=M

2αk,

where M is chosen such that
∑∞

k=M 2αk < ε/2. By continuity of l̄ and f̄ and compactness
of X and U, the function (x0, (uk)

M−1
k=0 ) 7→ ∑∞

k=0 α
k l̄(xk, uk), where xk+1 = f̄(xk, uk), is
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uniformly continuous on X×UM . Therefore there exists δ > 0 such that

M−1∑

k=0

αk|l̄(xk, u′k)− l̄(x′k, u′k)| ≤ ε/2

whenever ‖x0 − x′0‖ < δ and hence v?(x0) − v?(x′0) ≤ ε whenever ‖x0 − x′0‖ < δ. A mirror
argument shows that v?(x′0)−v?(x0) < ε whenever ‖x0−x′0‖ < δ and hence v? is continuous.
Uniform continuity follows by compactness of X.

Proof of 4: Using the same notation and reasoning as in the proof of Point 3, we have for
any x0, x

′
0 ∈ X

v?(x0)− v?(x′0) ≤
∞∑

k=0

αk[l̄(xk, u
′
k)− l̄(x′k, u′k)].

Since under the stated assumptions, the function l̄ is 1-Lipschitz and f̄ is jointly Lipschitz in
(x, u) with Lipschitz constant Lf , it follows that for any (uj)

k−1
j=0 the function x0 7→ l̄(xk, uk),

with xj+1 = f̄(xj, uj), has Lipschitz constant at most Lkf . As a result,

v?(x0)− v?(x′0) ≤
∞∑

k=0

αkLkf =
1

1− αLf
.

A mirror argument shows that also v?(x′0)− v?(x0) ≤ (1− αLf )−1, finishing the proof. �
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