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The objective of this paper is to discuss the pedagogic potential that is offered by the use of a flow-

chart proof with open problems and a Dynamic Geometry System in understanding geometric 

proofs by pre-service mathematics student teachers at an Indonesian university. Based on a 

literature review, we discuss aspects and levels of understanding of geometric proof and how to 

assess students’ understanding of the structure of deductive proofs, and how the use of a Digital 

Geometry System may support students’ understanding of geometric terms and statements, 

including definitions, postulates, and theorems. The pedagogic focus consists of exploiting the 

semiotic potential of a DGS, especially the use of GeoGebra tools that may function as tools of 

semiotic mediation to understand the geometry statements and the scaffolding potential of flow-

chart proof with open problems in identifying the structure of deductive geometry proofs. 
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Introduction 

Proof plays essential roles in mathematics and mathematics education. Proofs help mathematicians 

understand the meaning of statements or theorems and their validity within a framework. Through 

the process of proving, mathematicians discover or create new results or meanings (Samkoff & 

Weber, 2015; Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 2012). In the 

context of mathematics learning, understanding proof is an essential component of mathematics 

competence as it offers powerful ways of developing and expressing mathematical understanding 

(NCTM, 2000).  However, research has demonstrated that students at all levels have difficulties to 

deal with understanding and constructing proofs (Doruk & Kaplan, 2015; Güler, 2016; Knapp, 

2005; Weber, 2002). 

This paper presents some findings of the literature review we conducted aiming at developing a 

theoretical framework, which will underpin the design of a learning intervention. This intervention 

will foster understanding of Euclidean geometry proof by mathematics preservice teacher students. 

The students are first year students at an Indonesian university and will become teachers for 

secondary school. In this stage, students start to learn formal mathematical proof for the first time. 

This paper describes the aspects and levels of understanding of geometric proof and elaborate the 

use of a digital geometry system (DGS) and flow-chart proof representation as scaffolds in order to 

understand the structure of proof based on our literature review findings. We focus on these issues 

because they are relevant for our research project regarding the topic (geometric proof in 

undergraduate level), context and characteristics of participants, Indonesian university students, 

who have a little mathematical proof background. 
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Method 

This paper presents some parts of the outcomes of our literature study which focuses on the 

understanding of proof and the use of DGS and flow-chart proof to support students’ understanding 

of proof. The methodological process of the literature study is anasynthesis (coined from the words 

analysis and synthesis) adapted from Legendre’s method (as cited in Jeannotte & Kieran, 2017). 

First, we create a corpus from a search in three databases of research, namely ERIC, MathEduc, and 

Web of Science, and select articles/papers having mathematical proof as keywords or associated 

keywords by entering ‘mathematic* proof’ or ‘mathematical prov*’ and ‘geometric* proof’ or 

geometrical prov*’ as keywords. It is followed by selection and un-doubling. To assure the quality 

of the sources, we characterized the papers regarding their relevance of method and findings for 

education, quality of author (the number of citations) and quality of journal (impact factor). By the 

end of the process, 32 English texts (books, chapters, articles, and research reports in proceedings) 

constituted the corpus (modified corpus).  

Secondly, the resulting corpus is analyzed for relevant information, namely definitions of 

mathematical proof, structure of proof, learning difficulties, interventions, role of teacher, 

successful approaches. In order to analyze, we created a matrix of the resulting corpus consisting of 

four main aspects: source, research context, method, outcomes/conclusions. Thirdly, the 

information is then synthesized to check convergences, divergences, and to identify the theoretical 

gaps. Underpinned by this research, we developed a framework and prototype for a teaching 

intervention to foster prospective teacher’s geometrical proof competence. We present this process 

of analysis and synthesis as linear, but the reader should consider that it is a cyclical process, see 

Figure 1.  

 

Figure 1: Cyclic process of an Anasynthesis (adapted from Jeannotte & Kieran, 2017) 

Framework underpinning understanding of geometrical proof 

While the ability to understand, construct and validate proofs is central to mathematics, student 

difficulties with understanding of proof are well-recognized internationally. In order to help 

students to understand, teachers need to know levels of understanding to be achieved by their 

students, and also potential tools and tasks scaffolding their thinking. This information is helpful for 

the teachers/researchers in designing their learning goals and a sequence of learning activities 

fostering students’ understanding of proofs. As a result of our literature review, we present, in this 

part, our framework regarding aspects and levels of understanding as frameworks to develop an 

assessment model to capture students’ understanding of geometrical proof, and, next to that, 

potential tools and methods which can be implemented in the classroom intervention to scaffold 

students’ thinking in constructing geometric figure, emerging the meaning of geometric concepts, 

axioms and theorems. 



 

 

Understanding of geometrical proof 

Based on literature on reading comprehension of geometry proofs (Yang & Lin, 2008), the 

assessment model of proof comprehension for undergraduate students (Mejia-Ramos, Fuller, 

Weber, Rhoads, & Samkoff, 2012), and students’ understanding of the structure of deductive proof 

(Miyazaki, Fujita, & Jones, 2017), we distinguish three essential aspects in understanding proofs, 

namely a functional aspect, a structural aspect, and a communicative aspect. These three aspects 

are inspired by three main aspects of proof and proving proposed by Miyazaki et al. (2017): 

“understanding a proof as a structural object, seeing proof as intellectual activity and the role, 

functions, and meaning of proof and proving” (Miyazaki, Fujita, & Jones, 2017, page 225).  

First of all, the functional aspect regards roles or functions of proofs. The ‘function’ of proof means 

the meaning, purpose and usefulness of a proof. In the context of learning, students should regard 

proof as a meaningful activity, experiencing the functionality (usefulness) of the activities, they are 

involved in. Second, the structural aspect refers to the deductive structure of proofs. Miyazaki et al. 

(2017) see the structure of a proof as a network of singular and universal propositions between 

premises and conclusions, connected by universal instantiation and hypothetical syllogism, see 

Figure 2. That means that the singular propositions are universally instantiated from universal 

proposition and then these singular propositions are connected by a hypothetical syllogism. Students 

need to know the meaning of these terms and statements (e.g. axioms, theorems) involved in a 

proof, recognize the status of the statements (e.g. premises, conclusions), to be able to justify the 

claim.  

 

Figure 2: An example of flow-chart of proof visualizing the structure of proof  

(adapted from Miyazaki, Fujita, & Jones, 2015) 

The last aspect, the communicative aspect regards to students’ intellectual activity to read and 

comprehend proofs, and to justify and persuade others about the validity of a proof. Through a 

validating process, students determine the truth of a proof by line-by-line checking or step-by-step 

checking of multi-step proofs using their understanding of the structure of deductive proofs. We 

interpret that this level of understanding relates to a holistic comprehension of proof where the 

proof is understood in terms of main ideas, methods and applications in other contexts.  

Related to the level of understanding, we elaborate two models of understanding of proofs by 

Mejia-Ramos and colleagues (2012) and by Miyazaki and colleagues (2017). In their model of 

levels of structural proof understanding, Miyazaki and colleagues distinguish three levels of 

understanding of proof structure, namely ‘Pre-structural’ level, ‘Partial-structural’ level, and 

‘Holistic-structural’ level. Then, they break down the second level into two sub-levels, ‘Elemental’ 



 

 

and ‘Relational sub-level’. At the first level (Pre-structural), students see a proof as a collection of 

meaningless symbolic objects. When students start to consider the components, they are at the 

second level, particularly the Partial-structural Elemental sub-level. At the Partial-Structural 

Relational sub-level, students understand hypothetical syllogisms and universal instantiations and 

are able to use theorems, axioms and definitions as supporting their reasoning. At the third level of 

understanding (holistic-structural), students understand the components, inter-relationships between 

those components and how to connect them. Then, they are able to reconstruct the proof and 

become aware of the hierarchical relationship between theorems and will be able to construct their 

own proofs. 

Mejia-Ramos et al.(2012) have developed a model of assessment for proof comprehension in 

undergraduate mathematics. They distinguish two levels of understanding of proof, namely a local 

and a holistic understanding. The local understanding refers to knowing of basic terms and 

statements in the proof, knowing the logical status of statements in proof and the logical 

interrelationship between them and the statement which will be proved, and able to justify oh how 

the claims in the proof follows from the previous statements. Meanwhile, the holistic understanding 

regards being able to summarize the main idea of the proof, to identify the sub-proofs and the 

logical relationship between them, to adapt the idea and procedures of proof to solve other proving 

tasks, and to illustrate the proof regarding its relationship to specific examples.  

A semiotic potential of the use of dynamic geometry system (dgs) 

In terms of the structural aspects of understanding proof, several studies confirmed that the use of a 

Dynamic Geometry System (DGS) may help students not only solve construction problems but also 

helped them to understand geometrical postulates, definitions and theorems of Euclidean geometry, 

which are elements of the structure of proof (Jiang, 2002; Mariotti, 2012, 2013). Mariotti (2013) 

summarized that the semiotic potential of the features of DGS relates to specific mathematical 

meanings, namely “(1) the dragging test can be related to the theoretical validation of a geometric 

construction, (2) specific tools can be related to specific elements of the corresponding geometry 

theory: postulates, theorems; (3) actions concerning the management of the DGS’s menu can be 

related to fundamental meta-theoretical actions concerning the construction of a theory, such as the 

introduction of a new theorem or a definition.” (Mariotti, 2013, pp. 444-445). In the following 

paragraph, we elaborate two studies about the use of DGS in supporting students’ ability in proving. 

A study by Jiang (2002) investigates learning processes of two pre-service teachers, Lisa and Fred, 

in exploring geometry problems using the dynamic geometry software Geometer’s Sketchpad 

(GSP) to develop mathematical reasoning and proof abilities. They use a constant comparison 

approach in order to analyze participants’ pre-tests, post-tests, and teaching interviews indicating 

that the geometer’s Sketchpad can not only encourage students to make conjectures but also 

enhances students’ mathematical reasoning and proof abilities. Particularly, the use of a Dynamic 

Geometry System (DGS) improves students’ level of geometric thinking in terms of van Hiele 

levels (e.g. Lisa’s level increased from level 3 to level 4) and positively changes students’ 

conceptions of mathematics and mathematics teaching. Jiang argues that pre-service teachers’ 

experience in using DGS to foster their mathematical reasoning and proof abilities helps them to 



 

 

recognize the need to improve students’ knowledge of geometry, to develop their own mathematical 

power and their ability to develop teaching innovations.  

A theoretical study by Mariotti (2012) discusses the potential offered by the use of DGS in 

supporting and fostering 9
th

 and 10
th

 grade student’s proof competence in geometry. The theoretical 

framework used to support the use of DGS, Cabri Geometer, is her own Theory of Semiotic 

Mediation (TSM). In this context, students’ personal meanings emerge and then evolve from 

personal meanings towards mathematical meanings, when students use an artefact for 

accomplishing a task through social interaction. Particularly, the specific DGS tools can also be 

related to geometrical axioms and theorems. Meanings emerging from the use of virtual drawing 

tools for solving geometry tasks can be related not only to the theoretical meaning of geometry 

construction but also the meaning of theorems. 

Mariotti (2012) argues that the DGS could support not only the conjecturing process, but also 

mediate the mathematical meaning of conjectures, particularly premises/singular propositions in the 

context of geometry proofs. Particularly, the dragging feature provided by DGS (Cabri software) 

supports the emergence of different meanings related to the notion of conjecture as a conditional 

statement relating a premise and a conclusion. Mariotti also discusses findings by Baccaglini-Frank 

(2010) focused on the analysis of the process of exploration that can be expected by using 

Maintaining Dragging (MD). Baccaglini-Frank’s teaching experiment involves students from three 

high schools (aged 15-18), which used Cabri in the classroom. Mariotti concludes that this teaching 

experiment indicates that the DGS tools and dragging activities help students to solve construction 

tasks and to understand the notion of theorems; particularly the mathematical meaning of 

conditional statements such as expressing the logical dependency between premises and 

conclusions. 

GeoGebra as another DGS is an open-source well-developed tool with a stable interface familiar to 

many users and works in any operating system. The software has a number of features such as 

dynamic geometry which can help students in steps of problem solving towards a proof (Botana et 

al., 2015). Botana et al. (2015) conclude that GeoGebra tools provide some useful features. Firstly, 

GeoGebra could not only give yes/no answers but could also show step-by-step explanations. 

Secondly, GeoGebra could identify properties on the construction of geometric figures. Thirdly, 

GeoGebra could give a counterexample to check the truth of a statement. However, research 

findings by Doruk, Aktumen, and Aytekin (2013) show that some preservice teachers highlighted 

some limitations, such as difficulties in translating mathematical expressions into GeoGebra. 

Preservice teachers thought that GeoGebra is a complicated program and that it would take a long 

time and needs a big effort to become competent in GeoGebra.  

A scaffolding potential of the use of flow-chart proof form with open problems 

A flow-chart proof form is a means to visualize the deductive connections from premises to 

conclusion by identifying singular and universal propositions in the chart, see Figure 2. Flow-chart 

proofs show a storyline of the proof starting with premises from which the conclusion is deduced 

and includes the theorems or/and axioms being used, how the premises/hypotheses and conclusion 

are connected, and so on (Miyazaki et al., 2015). Gardiner (2004, cited in Miyazaki, Fujita, & 



 

 

Jones, 2017) claims that this format is a good starting point to learn other formats of proofs such as 

narrative proofs and two-column proofs.  

Miyazaki, Fujita, and Jones (2012) developed a learning progression based on flow-chart proving 

aimed at providing a basis for introducing the structure of proof in Grade 8 school geometry. Based 

on the theoretical underpinning of the design, researchers proposed three phases of learning 

progression: (1) constructing flow-chart proofs in an open problem, (2) constructing a formal proof 

by reference to a flow-chart proof in a closed situation, (3) refining formal proofs by placing them 

into a flow-chart proof format in a closed situation. The term ‘open’ refers to a situation where 

students can construct more than one suitable proof. In the open problem task, students are given a 

conclusion of the proof in the form of flow-chart proof format, and they are asked to determine the 

suitable statements to fill in the blank boxes of the flow-chart so the proof is complete. Based on 

three phases of learning progression, the authors designed nine lessons considering open/closed 

situations, varying steps of deductive reasoning, and different problems and contexts. The results 

from a Math test of Japanese Survey Item shows that students who followed the nine lessons are 

more likely to plan and construct a proof in accordance with their plan. This is due to (a) their 

experience with open problems that encourage them to think backward and forward to identify 

assumptions and conclusions in proof, (b) they could grasp the structure of proofs better through 

using flow-chart proofs. 

Another research by Miyazaki et al. (2015), as follow-up of their previous study (Miyazaki, Fujita, 

& Jones, 2012), showed the role of flow-chart with open problem as scaffolding to support Grade 8 

students’ learning about geometrical proofs. The results of data analysis of students’ activities 

during a classroom intervention indicates that flow-chart proof with open problems as scaffolding 

enhances students to understand the structure of proof by providing a visualization of both the 

connection between singular propositions (via hypothetical syllogism) and the connections between 

a singular proposition and the necessary universal proposition in the form of universal instantiation. 

Concluding Remarks 

We distinguish two levels of proof understanding which are proposed by Mejia-Ramos et al.: a 

local understanding related to knowing the definition of basic concepts/terms, knowing the logical 

status of statements in proof, knowing how and why each statement connects to previous 

statements. and a holistic understanding when students are able to summarize the main idea of the 

proof, to identify the sub-proofs and how these relate to the proof structure, to transfer the idea of 

proof to others, and instantiate the proof with examples (Mejia-Ramos et al., 2012; Miyazaki et al., 

2017). Classroom interventions, supporting students’ activities in understanding the structure of 

proofs including the elements of proofs such as singular propositions (premises/geometric 

statements), universal proposition (geometric definition, axioms, theorems) and hypothetical 

syllogism (the inter-relationship of these elements), are needed to help students reach both levels of 

proof understanding. 

Several studies confirmed that the use of a Dynamic Geometry System (DGS), such as Geometer’s 

Sketchpad, Cabri and Geogebra, may help students not only solve construction problems but also 

may help them identify properties on the construction of geometric figures, understand geometrical 



 

 

axioms, definitions and theorems of Euclidean geometry, which are elements of the structure of 

proof, and universal propositions (Botana et al., 2015; Jiang, 2002; Mariotti, 2012, 2013).  

The use of the flow-chart proof form may provide opportunities for students to understand the 

structure of proof and may help students identify the components of proofs and the inter-

relationship among the components (Miyazaki et al., 2015; Miyazaki et al., 2017). The use of open 

problems provides an opportunity for students to construct multiple solutions by deciding about the 

given statements and intermediate propositions necessary to deduce a given conclusion. This ability 

promotes student thinking forward and backward interactively when constructing a proof under the 

flow-chart proof format (Cheng & Lin, 2007; Heinze et al., 2008). 

A study by Miyazaki et al. (2017) suggests that the level of understanding of the structure of proof 

as a part of local understanding should be taken into consideration in designing an effective learning 

intervention. Mariotti (2012) also recommends future research to better describe how the complex 

web of meanings emerging from activities with the DGS may be transformed into mathematical 

meanings such as geometric definitions, axioms and theorems. Hence, the findings presented in this 

paper indicate our future promising research direction for the study on designing a learning 

intervention which implements the use of DGS, GeoGebra, as semiotic tools and flow-chart proof 

format as a scaffolding tool to support a local and holistic understanding of prospective 

mathematics teachers who have little mathematical proof background.  
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