
HAL Id: hal-02397982
https://hal.science/hal-02397982

Preprint submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On defining linear orders by automata
Irène Durand, Bruno Courcelle, Michael Raskin

To cite this version:
Irène Durand, Bruno Courcelle, Michael Raskin. On defining linear orders by automata. 2019. �hal-
02397982�

https://hal.science/hal-02397982
https://hal.archives-ouvertes.fr

On defining linear orders by automata

Irne Durand1, Bruno Courcelle1, and Michael Raskin2

1LaBRI, Bordeaux University and CNRS
2Technical University Munich

November 26, 2019

Abstract

We define linear orders ≤Z on product sets Z := X1 ×X2 × ... ×Xn

and on subsets Z of X1 × X2 where each composing set Xi is [0, p] or
N, and ordered in the natural way. We require that (Z,≤Z) be isomor-
phic to (N,≤) if it is infinite. We want linear orderings of Z such that,
in two consecutive tuples z = (z1, ..., zn) and z′ = (z′1, ..., z

′
n), we have

|zi − z′i| ≤ 1 for each i. Furthermore, we define their distance d(z,z′)
as the number of indices i such that zi 6= z′i. We will consider orderings
where the distance of two consecutive tuples is at most 2. We are inter-
ested in algorithms that determine the tuple in Z following z by using
local information, where ”local” is meant with respect to graphs associ-
ated with Z, and that work as well for finite and infinite components Xi,
without knowing whether the components Xi are finite or not. We will
formalize these algorithms by deterministic graph-walking automata.

Introduction

Motivated by enumeration problems1 (cf. [2]), we define linear orders ≤Z on
product sets Z := X1 × X2 × ... × Xn and on subsets Z of X1 × X2 where
each composing set Xi is linearly ordered with order type ω, that of N, if it
is infinite. We require that (Z,≤Z) be isomorphic to (N,≤) if it is infinite.
Otherwise, it is isomorphic to ([0, |Z| − 1],≤). Our orders extend the classical
diagonal enumeration of N× N establishing a bijection of this set with N.

Each ordered set Xi will be taken equal to [0, p] or N, and ordered in the
natural way. We want linear orderings of Z such that, in two consecutive tuples
z = (z1, ..., zn) and z′ = (z′1, ..., z

′
n), we have |zi − z′i| ≤ 1 for each i. Fur-

thermore, we define their distance d(z, z′) as the number of indices i such that
zi 6= z′i. We have a dk-ordering if this distance is always at most k. We will
only consider d1- and d2-orderings.

1Enumeration is taken in the sense of ”listing” not in that of ”counting”, as in enumerative
combinatorics.

1

These requirements can be expressed in terms of graphs. If Z ⊆ X1 ×X2 ×
...×Xn, we define two associated graphs (kinds of ”hypercubes”):

G1(Z) has vertex set Z and an edge between z = (z1, ..., zn) and
z′ = (z′1, ..., z

′
n) if and only if |zi − z′i| ≤ 1 for each i and d(z, z′) = 1,

and

G2(Z) is similar with an edge between z and z′ if and only if |zi − z′i|
≤ 1 for each i and d(z, z′) is 1 or 2.

Hence, G1(X1×X2) is a planar rectangular grid and G2(X1×X2) is G1(X1×
X2) augmented with diagonal edges in each square. A d1-ordering (resp. a d2-
ordering) of Z ⊆ X1 ×X2 × ...×Xn is a Hamiltonian path in G1(Z) (resp. in
G2(Z)) starting at (0,0,...,0).

We are interested in algorithms that determine the tuple in Z following z
by using local information (”local” is meant with respect to G1(Z) or G2(Z)),
and work as well for finite and infinite components Xi. They will formalize
these algorithms by means of deterministic graph-walking automata, whose runs
define walks (a walk is like a path, but vertices can be visited several times).
We will actually use such automata that only define paths, but the general
definition cannot guarantee that an automaton defines a path rather than a
walk. These automata traverse graphs equipped with an edge labelling where
adjacent edges have different labels2 among a fixed finite set, which defines a
bound on the degree. They may have infinitely many states. At a vertex reached
by a walk, the automaton determines the color of the next edge to be traversed
from the state and some knowledge of a finite neighbourhood, for example the
set of colors of the incident edges. However, this neighbourhood can be a ball
of radius r > 1 (and thus of bounded size) in a more complex model. After the
traversal via the next edge, the state may be changed, according to the used
transition rule.

We will not develop a general theory of such automata (see [3] for graph-
walking automata considered in relation with logic, or [4]), but we will define
automata well-adapted to the graphs G1(Z) and G2(Z). One of our main the-
orems is the following one, informally stated.

Theorem 1. For each n, there is an automaton with 2n−1 states that defines a
d2-ordering respecting levels, on any set Z = X1 ×X2 × ...×Xn such that each
Xi is N or [0, p] for some p.

The height of a tuple of integers is the sum of values of its components. A
level is the set of tuples of the same height. For d2-orderings, we want that
levels be traversed consecutively by increasing order of height, we call them
d2-`-orderings. Related positive and negative results will be as follows:

Theorem 2. There is no finite or infinite automaton that defines a d1-ordering
in each set X1 × X2 such that each Xi is N or [0, p] for some p by looking at
distance 1 of the current vertex. There is a finite one, that looks at distance 2.

2These labels are related with edge directions.

2

We also characterize the affine and convex subsets of N × N having d2-`-
orderings defined by finite automata.

Acknowledgements: This research was supported by the GraphEn project
of Agence Nationale pour la recherche and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme, under grant agreement No 787367 (PaVeS).

1 Definitions and first results

We will order linearly sets Z := X1 × X2 × ... × Xn and subsets of X1 × X2

where each composing set Xi is linearly ordered with order type ω, that of N,
in the case it is infinite. We require that (Z,≤Z) be isomorphic to (N,≤) if it
is infinite.

Each ordered set Xi will be taken equal to [0, p] or N, and ordered in the
natural way.

We want linear orderings of Z such that, in two consecutive tuples z =
(z1, ..., zn) and z′ = (z′1, ..., z

′
n), we have |zi − z′i| ≤ 1 for each i.

Definition 1.1. Distances, heights and levels.
(a) The distance d(z, z′) of z = (z1, ..., zn) and z′ = (z′1, ..., z

′
n) is the number

of indices i such that zi 6= z′i.
(b) In a dk-ordering, the distance between any two consecutive tuples is at

most k. We will actually consider d1- and d2-orderings.
(c) If Z ⊆ X1 ×X2 × ...×Xn, we define two graphs:

G1(Z) has vertex set Z and an edge between z = (z1, ..., zn) and
z′ = (z′1, ..., z

′
n) if and only if |zi − z′i| ≤ 1 for each i and d(z, z′) = 1,

and

G2(Z) is similar with an edge between z and z′ if and only if |zi − z′i|
≤ 1 for each i and d(z, z′) is 1 or 2.

Hence, a di-ordering of Z ⊆ X1 × X2 × ... × Xn where i is 1 or 2 is a
Hamiltonian path in Gi(Z) starting at (0,0,...,0).

(d) The height of a tuple of integers is the sum of the values of its components.
The level k of Z ⊆ X1 ×X2 × ...×Xn is the set of its tuples of height k.

(e) A d2-`-ordering of Z, is d2-`-ordering such that the levels are traversed
consecutively by increasing order of height. �

We now review the classical diagonal enumeration of N×N and its extension
to certain subsets of the form X × Y in order to present on an easy case our
notion of graph-walking automaton.

Definition 1.2. The diagonal d2-`-ordering ≤∆ of N× N
We define the type τ(i, j) of a pair (i, j) ∈ N×N as the pair, also in N×N:

τ(i, j) := if i+ j is even then (i+ j, i) else (i+ j, j).

3

0 1 2 3 4 5 · · ·

0

1

2

3

4

5

...

Figure 1: A d2-`-ordering of N× N.

Note that (i, j) can be recovered from τ(i, j): τ−1(m,n) =if m is even then
(n,m− n) else (m− n, n). The pairs (i, j) ∈ N× N are ordered by increasing
lexicographic order of their types τ(i, j). That is:

(i, j) ≤∆ (i′, j′) if and only if τ(i, j) ≤lex τ(i′, j′),

We obtain a d2-`-ordering of N×N. The corresponding ordered set is denoted
by N∆N. Its level k is the interval of pairs (i, j) such that i+ j = k. It begins
with /00/10,01/02,11,20/30,21,12,03/04,... where we separate levels by /. Odd
levels are traversed in reverse lexicographic order.

The pair next(i, j) that follows (i, j) in this order is computed as follows
(we use ∧ as logical ”and”):

next(i, j) =if i+ j is even ∧ j > 0 then (i+ 1, j − 1) else

if i+ j is even ∧ j = 0 then (i+ 1, j) else

if i+ j is odd ∧ i > 0 then (i− 1, j + 1) else

if i+ j is odd ∧ i = 0 then (i, j + 1) end

Remark 1.1. In terms of automata (formally defined below, see Table 1), the
property ”i + j is even” is handled as a state that we call Down, and similarly,
”i + j is odd” is a state called Up. (In Figure 1, the vertices 02,11,20 of height
2 are ordered ”downwards”). The Boolean values of the tests ”i = 0” and
”j = 0” describe the four possible positions of (i, j) with respect to the borders
of G2(N×N) represented in the plane. The condition ”i = 0” characterizes the
West border and ”j = 0” characterizes the South border. There are no North
and East borders because we consider N× N.

The first clause can be formalized by an automaton transition of the form
(that does not change the state):

(Down, ”not on the South border”)→ (”move to South-East”, Down)

4

0 1 2 3

0

1

2

3

4

5

6

Figure 2: The diagonal enumeration of Z(3,6).

In Figure 1, an example is the edge (1,1)→(2,0) in the path that orders
N × N. Other examples of edges defined from this transition are (0,4)→(1,3)
and (2,2)→(3,1). As i + j = (i + 1) + (j − 1) in this transition, the level is
the same for (i, j) and next(i, j), whence the state, defined from the arithmetic
parity of the height is not changed. This is so because we are not on the South
border.

The last clause yields the edge (0,3)→(0,4) derived from the transition (that
changes the state Up into Down):

(Up, ”on the West border”) → (”move to North”, Down).

Definition 1.3. d2-`-orderings of X × Y ⊆ N× N.
We first extend the algorithm of Definition 1.2 so that it defines a d2-`-

ordering of X × Y when X and/or Y is finite. The order is defined from
types τ(i, j) as above. The corresponding Hamiltonian path in G2(Z(3,6)) where
Z(3,6) := [0, 3] × [0, 6] is illustrated on Figure 2. If X is finite, its maximum is
denoted by max(X).

The information about neighbourhood also uses the Boolean tests i = maxX
and j = maxY that are always false if X or, respectively Y, is infinite.

The pair next(i, j) is undefined if (i, j) is the last element, and then the
”value” is the message ”none”. We have:

next(i, j) =

if i = maxX ∧ j = maxY then none else

if i+ j is even ∧ j 6= 0 ∧ i 6= maxX then (i+ 1, j − 1) else

if i+ j is even ∧ i = maxX then (i, j + 1) else

if i+ j is even ∧ j = 0 ∧ i 6= maxX then (i+ 1, j) else

if i+ j is odd ∧ i 6= 0 ∧ j 6= maxY then (i− 1, j + 1) else

if i+ j is odd ∧ j = maxY then (i+ 1, j) else

if i+ j is odd ∧ i = 0 ∧ j 6= maxY then (i, j + 1) end

5

0

2

1

3

5 6

4

7

8

Figure 3: The different types of border used by B.

State Position Action Next state
Down 0,1 E Up

2,3,5,6 SE Down

4,7 N Up

Up 1,3,4,7 NW Up

2 N Down

5,6 E Up

Up or Down 8 End

Table 1: Automaton B

Here is an alternative formalization by an automaton B that we will use
again. There are nine possible types of position of a vertex (i, j) on the grid
when X and Y are not singletons3:

origin (numbered 0), on the South border (numbered 1),

on the West border (2), in the middle (3), at the South-East corner
(4),

at the North-West corner (5), on the North border (6),

on the East border (7) and at the North-East corner (numbered 8).

See Figure 3. Each type can be determined by a combination of Boolean
conditions such as ”j = 0” and ”i 6= maxX ”. In Table 1, to define B in a
readable way, we use the digits 0 to 8 to indicate the types of positions instead
of combinations of Boolean conditions. Position ”2,3,5,6” means of type 2 or 3
or 5 or 6. The initial state is Down. The final state is End.

The complete description of B by a table should include the special cases
where X and/or Y is singleton, but we want to keep the table readable. The
transitions of the second and fifth lines are described in Remark 1.1.

Proposition 1.1. The automaton B defines a d2-`-ordering.

3If X is singleton and Y is not, then 0 and 4 coincide, and so do 2 and 7 and 5 and 8.

6

Down

Up

End

3,2,5,6 / SE

1,3,4,7 / NW

0,1 / E

7,4 / N

2 / N

5,6 / E

8

8

Figure 4: The automaton B of Proposition 1.1.

Remarks 1.1. (1) The description in Table 1 is appropriate if X and Y are
not singletons. However, the definition of next works well in all cases.

If X or Y is singleton, there is a unique d2-`-ordering. Otherwise, there
are exactly two, one starting by (0,0)→(1,0) (as in Figures 1 and 2) and the
other by (0,0)→(0,1). The latter one is obtained by taking Up as initial state
and adding to Table 1 the transition from the origin (defined by i = 0 ∧ j =
0) to state Down with a move to the North. The obtained path starts with
/00/01,10/20,11,02/03,... . We will denote by B# this modified automaton. In
automataon B, the state Up corresponds to the odd levels and Down to the even
ones. For B#, Down corresponds to the odd levels and Up to the even ones.

(2) The automaton B (as defined by next, cf. Definition 1.3) also works in
the special case where Y = {0}. All positions satisfy j = 0∧ j = maxY . The
transitions used are:

if i+ j is even ∧ j = 0 ∧ i 6= maxX then (i+ 1, j),

and

if i+ j is odd ∧ i 6= maxX ∧ j = maxY then (i+ 1, j)

Its works also in the special case where X = {0}. All positions satisfy i = 0∧
i = maxX .The transitions used are:

if i+ j is even ∧ i = maxX then (i, j + 1)

and

if i+ j is odd ∧ i = 0 ∧ j 6= maxY then (i, j + 1). �

7

We want to formalize the notion of an automaton that defines paths in the
graphs G2(X×Y) or in some of their subgraphs, in particular G1(X×Y). This
formalization instantiates the general notion sketched in the introduction. In
Section 3, we will define automata that define Hamiltonian paths in G2(X1 ×
...×Xn).

Definition 1.4. Graph-walking automata in 2-dimensional grids.
(a) The set of directions is D := {N,E,S,W,NE,SE,SW,NW}, standing for

North, East, etc. These definitions refer to a layout of G2(X×Y) as in Figure 1.
Each direction can be formally defined as a pair of integers: N:= (0, 1),E:=
(1, 0),S:= (0,−1),NE:= (1, 1),SE:= (−1, 1), etc.

(b) If (i, j) ∈ N× N, and d ∈ D, then (i, j)d ∈ N× N is defined as (i, j) + d
(using vectorial addition). Hence, we have, for example, (i, j)E = (i+ 1, j) and
(i, j)SE = (i+ 1, j − 1).

(c) Let G be a subgraph of G2(X×Y). The directions around a vertex (i, j)
are those d ∈ D such that (i, j)d is adjacent to (i, j) in G. We denote this set
by DG(i, j). It describes the neighbourhood of (i, j) in G.

(d) A graph-walking automaton (of dimension 2) is a tuple A = (Q, T , qinit)
where Q is the finite or countable set of states, qinit ∈ Q and T is the set of
transitions: they are of the form (q, δ)→ (d, q′) or (q, δ)→End where q, q′ ∈ Q,
δ ⊆ D and d ∈ δ. (The direction d is chosen by the transition in the set δ of
possible ones.) From the final state End, no transition is possible.

An automaton is deterministic: each pair (q, δ) determines a single transi-
tion. If Q is infinite, we assume that it is effectively given, and that (d, q′) (or
End) such that (q, δ)→ (d, q′) (or (q, δ)→End) is computable.

(e) The walk πA(G, a) in G, defined by A and that starts from a is:

a = b0 → b1 → b2 → ...→ bn → ...

defined with the help of the sequence of states:

qinit = q0 → q1 → q2 → ...→ qn → ...

such that, for each n ≥ 0, (qn,DG(bn)) → (d, qn+1) and bn+1 := (bn)d.
Informally, the state qn at bn and its neighbourhood DG(bn) determine in a
unique way a direction d such that (bn)d is defined and adjacent to bn, giving
bn+1, and the state qn is updated into qn+1.

We will use graph-walking automata, simply called automata, that define
paths rather than walks.

We will sometimes restrict the directions to consider. For defining a d2-`-
ordering (cf. Definition 1.3 and Proposition 1.1), we only consider the directions
N,E,SE,NW forming the set D2. We say that B is a D2-automaton. In order to
define a d1-ordering, we will only consider directions N,E,S,W forming the set
D1. However, an extended notion of direction, including EE and NN, which
means that two steps respectively to East and North are possible, will be used
in Theorem 2.2.

8

In a concrete implementation, we assume that an oracle (a program) can
determine membership in Z of any pair b and the set DG(b). (A set Z can be
defined by affine conditions, such as i ≤ 3j+5∧ j ≤ −10i+30. See Section 3.3).

2 D1-orderings on sets X1 ×X2 × ...×Xn.

Proposition 2.1. From a d1-ordering of a finite set Y ⊆ X1 ×X2 × ...×Xn,
one can define a d1-ordering of Z := N× Y.

Proof. We discuss d1-orderings as Hamiltonian paths in the graphs G1(Y) and
G1(Z). Let Pa,b from a = (0, 0, . . . , 0) to some vertex b be a Hamiltonian
path in G1(Y). The opposite path is Pb,a from b to a. For each i ∈ N, let
i � Pa,b be the path (i, a) → (i, c1) → (i, c2) → ... → (i, b) where Pa,b is
a → c1 → c2 → ... → b. Then, one gets in Z the infinite Hamiltonian path
0�Pa,b → 1�Pb,a → 2�Pa,b → 3�Pb,a → ... starting from (0, ..., 0) = (0, a) ∈ Z.
(The arrow represents the concatenation of paths).

Remark 2.1. This construction is related to that of Gray codes, cf. [5]. The
3-ary Gray code with 3 digits is the sequence of 3-tuples in {0, 1, 2}×({0, 1, 2}×
{0, 1, 2}) that reads:

000, 001, 002, 012, 011, 010, 020, 021, 022,

122, 121, 120, 110, 111, 112, 102, 101, 100,

200, 201, 202, 212, 211, 210, 220, 221, 222.

It is thus of the form 0� P → 1� P ′ → 2� P where P is:

00→ 01→ 02→ 12→ 11→ 10→ 20→ 21→ 22,

and P ′ is the opposite path.�

Proposition 2.1 does not apply to Z := N×N, and an ordering ”row by row”
is obviously not adequate as its order type will be ω+ ω+ ... = ω · ω 6= ω. This
is a motivation for using the diagonal d2-`-ordering of Definition 1.2.

However, d1-orderings can also be defined.

Proposition 2.2. (1) There is a d1-ordering on N×N definable by an infinite
D1-automaton.

(2) Each set Z = X1 ×X2 × ...×Xp where each Xi is finite or infinite, has
a d1-ordering.

Proof. (1) See Figures 5 and 6. Theorem 2.2. will establish a more general
result for G1(X × Y) where X and/or Y may be finite.

(2) We first consider Np. We use an induction on p. For p = 2, the result
holds by Assertion (1). Assume we have a d1-ordering ≤p of Np. Since, (Np,≤p)
is isomorphic to (N,≤), we have by (1) an ordering of Np+1 = N× (Np). In this
order, a step from a vertex to the next one, either modifies the first component

9

0 1 2 3 4 5 · · ·

0

1

2

3

4

5

...

Figure 5: A d1-ordering of N× N.

(in N) or the second one, in Np. In the latter case, only one component of Np
is modified, as ≤p is a d1-ordering. In both cases, this step modifies a single
component of Np+1. Hence, we have a d1-ordering.

If Z is finite, Proposition 2.1 gives the answer. Otherwise, one can permute
the components and write Z = N× ...×N×Xq × ...×Xp with Xq, ..., Xp finite,
hence Z is isomorphic to Nq× (Xq× ...×Xp) hence to N×Y with Y finite, and
Proposition 2.1 gives the answer.

The computation of the vertex following any z in Z is computable as all
definitions and proofs are effective. Hence, there exists a D1-automaton, with
infinitely many states4.

We now examine whether automata can define d1-orderings. Figure 6 shows
a d1-ordering of X × Y where Y is finite of odd cardinality, and X is finite
or infinite, that is defined by an infinite D1-automaton. Whether X and/or Y
is finite need not be known at the beginning, but is determined at some point
of the computation. This automaton is easy to define with states including
counters5.

More generally, there are D1-automata that construct d1-orderings of X×Y
by using some information about X and/or Y . This information can be:

(1) X is finite,
(2) Y is finite,
(3) X is either infinite or finite of odd cardinality,
(4) Y is either infinite or finite of odd cardinality,
(5) X is either infinite or finite of even cardinality,

4As in fly-automata, cf. [1], we allow countable sets of states but transitions must be
computable.

5For defining the path of Figure 5, one can use a finite D1-automaton that can test whether
the current vertex is on the South-West-North-East diagonal.

10

0 1 2 3 4 5 6 7 8 9 · · ·

0

1

2

3

4

5

6

Figure 6: A d1-ordering for [0,2n]×N

(6) Y is either infinite or finite of even cardinality.
The automata for Cases (1) and (2) are finite. In Cases (1), (3), (5), Y may

be of any type. In the others, X may be of any type. In Cases (3) and (5), the
automaton need not know whether X is infinite or not, and similarly for Y in
Cases (4) and (6). Without such information, no deterministic automaton can
work correctly, as we prove now.

Theorem 2.1. There is no (finite or infinite) D1-automaton that constructs a
d1-ordering of X × Y for arbitrary (linearly ordered) sets X and Y .

Proof. For getting a contradiction, we assume the existence of an automaton
A = (Q, T , qinit) that finds a Hamiltonian path starting at (0,0) inG1(X×Y) for
any linearly ordered sets X,Y , either N or [0, p]. This automaton uses only the
directions N,E,S,W. Sets X and Y are finite or infinite, which the automaton
”does not know”, which means that A works in all cases. The set of states may
be infinite, but determinism will yield a contradiction.

The neighbourhood DG(x) describes the following possible positions of a
vertex x, numbered 0, 1, 2, 3 in Figure 3:

x is the origin: DG(x)={N,E},
or on the South border, and not the origin: DG(x)={N,E,W},
or on the West border, and not the origin: DG(x)={N,E,S}
or in the middle: DG(x)={N,E,S,W}.

We first run the automaton on N×N. Let P be a Hamiltonian path defined
by A in G1(N×N). It has a subpath P [a, b] from a to b, for some a on the South
border and some b on the West border, such that all intermediate vertices x have
neighbourhood DG(x)={N,E,S,W}.The initial part P [(0, 0), a] of P is inside the
finite portion R of G1(N×N) (drawn on the plane, cf. Figure 5) determined by
P [a, b] and the West and South borders by an obvious planarity argument. We
let R contain the vertices of P [a, b] and the initial parts of the borders, from
(0,0) to (a, 0) and from (0,0) to (0, b)).

11

Figure 7: A d1-ordering of N× N that is adaptable to X × Y where X and/or
Y is finite.

Let m be the maximal integer such that (m, j) belongs to P [a, b] for some
j. Let c := (m+ 1, j) for such a j. The vertex c is not in R.

We now consider A running in G1([0,m + 1] × N). It follows the path
P [(0, 0), b], as it does not distinguish G1([0,m+ 1]× N) from G1(N× N) when
traversing R. The path continues in G1([0,m+ 1]×N) from b to c outside of R.
But after c it must continue Southwards, and cannot reach (m+ 1, p) for large
values of p. Hence we obtained the desired contradiction.

We now enrich our automata by letting them foresee whether, from a vertex
x, they can make two moves to East and/or two moves to North. The set of
checkable directions around a vertex will be E={N,NN,E,EE,S,W}. Clearly, if in
DG(x) we have EE, we must also have E. If E is in DG(x) but EE is not, this
means that x is at distance 1 of the East border.

We first encourage the reader to contemplate Figures 8, 9 and 10. The
construction of the path in Figure 8 corresponding to the case |X| = 7, |Y | =
5 extends to N × N, cf. Step 2 of the proof. Difficulties arise in the cases
where X and/or Y have even cardinality. One typical case is shown in Figure 9
corresponding to the case |X| = 7, |Y | = 6. Another one is for |X| = 8, |Y | = 6
(Figure 10). Dotted lines indicate modifications from Figure 8.

Theorem 2.2. There exists a finite E-automaton that constructs a d1-ordering
of X × Y for arbitrary (linearly ordered) sets X and Y .

Proof. Step 1 : The intended automaton will first handle the particular cases
where X and/or Y have cardinality 1 or 2. This can be checked from DG((0, 0))
as (0, 0) is the starting vertex. Hence, Y has cardinality 1 if and only if E is not

12

0 1 2 3 4 5 6

0

1

2

3

4

Figure 8: The basic case of X × Y with sets X,Y of odd cardinalities.

0 1 2 3 4 5 6

0

1

2

3

4

5

Figure 9: Extended the previous order to accomodate set Y of even cardinality.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

Figure 10: Extended the previous order to accommodate sets X,Y of even
cardinality.

13

in DG((0, 0)) and cardinality 2 if and only if EE is not in DG((0, 0)) but E is.
We omit details relative to these special cases.

Step 2 : We now build an automaton C intended to work for all sets X,Y
that are either infinite or of finite odd cardinality at least 3. It is based on the
D2-automaton B of Proposition 1.1.

From B, we first define a D2-automaton B′ by duplicating actions: N becomes
N;N, SE becomes SE;SE, etc. Because of the assumptions on the cardinalities of
X and Y , from each vertex reached by a path defined by B′, if one can make
one step to East, one can make another one to East, and similarly for North,
South and West. This automaton need not check the extended directions EE

and NN.
A D1-automaton C is defined by Table 2, is obtained from B′ by replacing

respectively SE;SE by E;S;S;E and NW;NW by N;W;W;N. This replacement is made
explicit in Table 2. The same numbering of types of positions on borders, at
corners and in the middle is used, as for describing B and B′, cf. Figure 3 and
12 below. As for B′, one need not check the extended directions EE and NN.

Claim: The D1-automaton C defines a d1-ordering of X × Y for any sets
X,Y as stated.

Proof : First we prove that C defines a path, i.e., a walk that does not visit
twice a same vertex.

A 2×2 square in the grid G1(X,Y) is a subgraph induced by [2p, 2p+ 2]×
[2q, 2q + 2], for p, q ≥ 0. Each of them can be colored black or white, so that
two adjacent squares (adjacent by a border, not just a corner) are of different
color. Let [0, 2]× [0, 2] be white. By B′, it is traversed by the moves NW;NW. The
moves of the form SE;SE traverse black 2×2 squares.

When defining C, we replace SE;SE by E;S;S;E, so that we go through 2
more vertices, say x and y, in the middle of the left and right borders of that
2×2 square. In the surrounding 2×2 white squares, the replacements are of
NW;NW by N;W;W;N, and these replacements involve neither x nor y. A similar
observation holds at the borders.

Hence, we have a path. It is easy to check, by a similar argument based on
this coloring of the 2×2 squares that it goes through all vertices of G1(X,Y).

If X and Y are finite, it terminates at the corner numbered 8, i.e., at
(max(X),max(Y)), an example is in Figure 8.

Step 3 : We must handle the three cases where |X| and/or |Y | is even. See
Figure 4 showing the four types of borders and corners for finite sets X and Y .

Case 1 : |X| is odd or infinite, |Y | is even, the vertices on the row just
below the topmost one are in positions of types 5’, 6’ and 8’ (cf. Figure 12)
characterized by the following conditions relative to a vertex x:

5’: N,EE,S∈ DG(x), W,NN /∈ DG(x),

6’: N,EE,W,S∈ DG(x), NN /∈ DG(x),

8’: N,EE,W,S∈ DG(x), E,NN /∈ DG(x).

14

If X is infinite, positions of types 4,7,8’ do not occur.
In order to reach the vertices on the top row, we make small detours defined

as follows. In case of the current state is Down:

Action E;S;S;E from vertices of type 5 or 6 is replaced by N;E;S;S;S;E,
from vertices of type 5’ or 6’ (see top part of Figure 14).

From vertex 8’, action is N, terminating the path.

In case of the current state is Up:

Action E;E from vertices of type 5 is replaced by N;E;S;E from
vertices of type 5’.

Action E;E from vertices of type 6 is replaced by N;E;S;S;S;E from
vertices of type 6’.

From vertex 8’, action is N, terminating the path.

Case 2 : |X| is even, |Y | is odd or infinite. vertices on the column just to the
right of the last one are of types 4”, 7” and 8”, characterized by the following
conditions:

4”: N,E,W∈ DG(x), S,EE /∈ DG(x),

7”: NN,E,S,W∈ DG(x), EE /∈ DG(x),

8”: E,S,W∈ DG(x), N,EE /∈ DG(x),

If Y is infinite, positions of types 5,6,8” do not occur.
In case of the current state is Down:

Action N;N from vertices of type 4 is replaced by: E;N;W;W;W;N from
vertices of type 4”.

Action N;W;W;N from vertices of type 4 is replaced by: E;N;W;W;W;N
from vertices of type 4”. (See Figure 13).

Action N;N from vertices of type 7 is replaced by: E;N;W;N, from
vertices of type 7”,

From vertex 8”, action is E, terminating the path.

Case 3 : |X| and |Y | are even. This case combines Cases 1 and 2. The
relevant types of positions replacing 4,5,6,7,8 from the basic case are 4”,5’,6’,7”
characterized as above and

8”: N,E,S,W∈ DG(x), NN,EE /∈ DG(x),

From a vertex of type 8”, the action is E;N;W, terminating the path.
These definitions are collected in Table 3.

Remark 2.2. It is clear that Z has no d1-ordering, and that, curiously, Z× Z
has one, that is a kind of spiral around the origin. So has N × Z and thus Zp
for p > 2.

15

State Position Action New state
Down 0,1 E;E Up

2,3,5,6 E;S;S;E (instead of SE;SE) Down

4,7 N;N Up

Up 1,3,4,7 N;W;W;N (instead of NW;NW) Up

2 N;N Down

5,6 E;E Up

Up or 8 End

Down

Table 2: The automaton C

Down

Up

End

3,2,5,6 / ESSE

5',6' / NESSSE

 0,1 / EE

7,4 / NN

7",4" / ENWN

8' / N

8" / E

8''' / ENW

8' / N

8

8

8" / E

8''' / ENW

1,3,4,7 / NWWN

4" / ENWWWN

7" / ENWN

 5,6 / EE

2 / NN

5' / NESE

Figure 11: The E-automaton of Theorem 2.2.

16

0

2

1

3

5 6

4

7

8

0

2

1

3

5’ 6’

4

7

8’

0

2

1

3

5’ 6’

4”

7”

8’”

0

2

1

3

5 6

4”

7”

8”

Figure 12: Numbering of types of positions relative to the borders. In particular,
close to the North and East borders.

5

E;S;S;E

5’

N;E;S;S;S;E

5
E;E

5’
N;E;S;E

Figure 13: Some detours for vertices close to the North border.

17

State Position Action Next state
Down 0,1 E;E Up

2,3,5,6 E;S;S;E Down

4,7 N;N Up

5’,6’ N;E;S;S;S;E Down

4”,7” E;N;W;N Up

8’ N End

8” E

Up 1,3,4,7 N;W;W;N Up

2 N;N Down

5,6 E;E Down

4” E;N;W;W;W;N Up

5’ N;E;S;E Down

6’ N;E;S;S;S;E Down

7” E;N;W;N Up

Up or Down 8 End

8’ N End

8” E End

8”’ E;N;W End

Table 3: The E-automaton of Theorem 2.2.

4

N;W;W;N

4’

E;N;W;W;W;N

Figure 14: The detour at South-East corner.

18

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Figure 15: A proper subset of a Cartesian product ordered by Automaton B.

3 Diagonal orderings of convex subsets of N×N
Figure 15 shows that the automaton B of Section 1 can order proper subsets of
N× N that are not Cartesian products. We develop this observation.

3.1 D2-`-orderings of subsets of N× N
We ask the following questions.

Question 3.1. Which subsets Z of N× N have a d2-`-ordering?

We will consider D-automata, more powerful than D2-automata as they
can move to North-East in addition to North-West, North, East, South-West
and South. As we want them to define d2-`-paths, i.e., the Hamiltonian paths
corresponding to d2-`-orderings, they will make no move to South-West.

Question 3.2. When is a d2-`-ordering definable by a finite or infinite D-
automaton?

If Z is finite and d2-`-orderable, then such an ordering is definable by a finite
D-automaton with |Z| states. Hence, this question is only interesting for one
infinite set Z or for a class of finite and/or infinite sets.

Definition 3.1. Conditions on a set Z ⊆ N× N.
(a) We denote by Zk the level k of Z. For each nonempty level Zk, min(Zk)

(resp. max(Zk)) is its unique vertex of minimal (resp. maximal) second coor-
dinate.

(b) We define for Z ⊆ N× N containing (0,0) the following conditions.

C1: The graph G2(Z) is connected.

C2: Each nonempty level Zk is connected in G2(Z), hence, induces
a North-West-South-East diagonal path.

19

C3: Each nonempty level can be labelled by Up or Down, so that if
Zk and Zk′ are two consecutive nonempty levels with k < k′, then:

C3.1: if Zk is labelled by Down, then min(Zk) is adjacent in
G2(Z) to the vertex x defined as follows:

x := min(Zk′) if Zk′ is labelled by Up, or

x := max(Zk′) if Zk′ is labelled by Down, or, otherwise,

{x} = Zk′ .

C3.2: if Zk is labelled by Up, then max(Zk) is adjacent in G2(Z)
to x defined as in C3.1.

The label of a singleton level Zk = {x} can be equivalently Up or Down

because x = min(Zk) = max(Zk). Condition C1 implies that, if Zk and Zk′ are
as in C3, then k′ is k+1 or k+2. If G1(Z) is connected, then so is G2(Z) hence,
Condition C1 holds; furthermore, if a level is not empty, all previous levels are
not either, that is, we have k′=k + 1 for k, k′ as in C3.

Example 3.1. The set Z := {(0, 2i), (1, 2i + 1) | i ≥ 0} satisfies Conditions
C1,C2 and C3, with all levels labelled by Up. It has no level of odd height.

Proposition 3.1. Let Z ⊆ N× N that contains (0,0).
(1) It has a d2-`-ordering if and only if Conditions C1, C2 and C3 hold.
(2) If all levels have at least two vertices except level 0 and, possibly, the last

level (when Z is finite), then Z has at most two d2-`-orderings.
(3) If there are p indices k such that |Zk| = 1 and the following nonempty

level has at least two elements, then Z has at most 2p d2-`-orderings.

Proof. (1) Clear from definitions.
(2) and (3) Assume that Z has a d2-` -path P . It yields a labelling of levels

satisfying Condition C3.
Consider P [(0, 0), x], the beginning of this path until vertex x, not the last

one. Assume there is another d2-`-path P ′ such that P ′[(0, 0), x] = P [(0, 0), x].
Let Zk be the level containing x.

These paths can differ immediately after x only if N and E are in DG2(Z)(x).
We consider five cases.
Case 1 : Zk = {x}. An example is in Figure 2 with x = (0, 0), see Remark 1.1

(1).
Case 2 : Zk is labelled Down and x 6= min(Zk). The move after x must be to

SE in P and in P ′.
Case 3 : Zk is labelled Up and x 6= max(Zk). The move after x must be to

NW in P and in P ′.
Case 4 : Zk is labelled Down and x = min(Zk). The move after x must be to

E, or if not possible, to N, or if not possible, to NE, in P and in P ′.
Case 4 : Zk is labelled Up and x = max(Zk). The move after x must be to

N, or if not possible to E, or if not possible to NE, in P and P ′.
The only case where P and P ′ might differ just after x is when Zk = {x}

and DG2(Z)(x) contains N and E.

20

0 1 2 3

0

1

2

3

4

Figure 16: The set W of Example 3.2 (1) used in Proposition 3.2.

0 1 2 3 4

0

1

2

3

4

Figure 17: Set X of Example 3.2 (2)

Assertion (2) is an immediate consequence of this observation, because there
is at most one vertex x satisfying this condition. With the hypothesis of Asser-
tion (3), there are at most p such vertices, hence at most 2p d2-`-paths.

Example 3.2 (3) below illustrates Assertion (3).

Example 3.2. (1) Figure 16 shows an example of a set W ⊆ N×N that satisfies
Conditions C1 to C3. It has a d2-`-path starting with (0,0)→(1,0), shown in this
figure. An initial step (0,0)→(0,1) can be extended into a d2-`-path until (0,4)
but not after because max(W4) and max(W5) are not adjacent. Anticipating the
sequel, we observe that W is defined by the conditions i ≤ 3 and j ≤ −i/3 + 4.

(2) The related set X of Figure 17 has no d2-`-ordering, for a similar reason.
It is defined by the conditions j ≤ −i/2 + 4 and j ≤ −2i+ 8. It satisfies C1 and
C2.

21

0 1 2 3 4 5

0

1

2

3

4

Figure 18: Set Y of Example 3.2 (3)

(3) The finite set Y shown on Figure 18 has 8 d2-`-orderings. Three of them
are:

00/10,01/11/21/31,22/32/42/52,43/53, defined by B ,
00/01,10/11/21/22,31/32/42/43,52/53, defined by B#,and
00/10,01/11/21/22,31/32/42/52,43/53, defined neither by B nor by B#.
It infinite extension Y ′ defined by the conditions j ≤ i/2 + 1 and j ≥ i/2−1

has infinitely many d2-`-orderings.�

We continue the study of sets Z ⊆ N× N. If G1(Z) is connected and has a
d2-`-ordering that is definable by a D-automaton, then this ordering is definable
by a D2-automaton, actually the same, because no move to North-East can be
used.

We recall that automata are deterministic and must have computable tran-
sitions, cf. Definition 1.4 (d).

Proposition 3.2. (1) There exists an infinite set of finite sets Z ⊆ N×N that
have unique d2-`-orderings, but these orderings are not definable by any finite
or infinite D-automaton.

(2) There exists an infinite set Z ⊆ N×N that has a unique a d2-`-ordering
that is not definable by any finite or infinite D-automaton.

Proof. We let W ⊆ [0, 3]× [0, 4] shown in Figure 16. It has a unique d2-`-path
(defined by B) from s := (0, 0) to t := (3, 3). Let W ⊆ [0, 4]× [0, 3] be obtained
from W a symmetry with respect to the South-West-North-East diagonal. It
has a unique d2-`-path (defined by B#) also from s := (0, 0) to t := (3, 3).

(1) Let wn be the word 0n1. We define X(n) ⊆ N × N by concatenating
copies Ui of W or W , such that Ui is a copy of W if wi = 0 and of W otherwise.
Two consecutive copies Ui and Ui+1 are linked by an horizontal edge between

22

s0

t0

U0

s1

t1

U1

s2

t2

U2

Figure 19: Set X(2) of Proposition 3.2.

ti and si+1. See Figure 19 for X(2). Each set X(n) has a unique d2-`-ordering.
Assume that a D-automaton (equivalently, a D2-automaton) can d2-`-order all
the sets X(n). When it reaches a vertex si, it cannot ”know” whether the next
move must be to North or to East, because it cannot know whether Ui is of type
W or W . Infinitely many states would not help.

(2) We now construct X similarly from an infinite word w in {0, 1}ω. It has
a unique d2-`-ordering. If w is not ultimately periodic, this ordering cannot
be defined by a finite D-automaton, by an argument similar to that used in
(1). It is definable by an infinite one (whose transitions must be computable,
cf. Definition 4(d)) if there exists a computable function fw: {0, 1}∗ → {0, 1}
such that fw(u) defines the letter 0 or 1 that follows u in w in the case where
u is a prefix of w (otherwise, it yields 0). As there are uncountably many infi-
nite words and countably many computable functions, there exists uncountably
many words w in {0, 1}ω such that fw is not computable, hence uncountably
many sets X of the above form with unique d2-`-orderings that are not definable
by any D-automaton.

Remark 3.1. One might consider more powerful automata whose transitions
from a vertex x are determined from the state and the distance-p neighbourhood
of x for some p. A similar proof can be done with sets similar to W , of diameter
larger than p. See also the conclusion.

3.2 A D-automaton extending B
We define a D-automaton F that extends B, intended to d2-`-order sets Z
such that G2(Z) is connected but G1(Z) is not. In Table 4, in the ”Possible
directions” column, ”...” means ”any”. (The list of cases read from top to
bottom can be implemented by if then else expressions). The initial state is
Down and the final one is End.

23

State Possible directions Action Next state
Down SE,... SE Down

¬SE, E,... E Up

¬SE,¬E, N,... N Up

¬SE,¬E,¬N, NE,... NE Up

¬SE,¬E,¬N, ¬NE,... End

Up NW,... NW Up

¬NW, N,... N Down

¬NW, ¬N, E,... E Down

¬NW,¬N,¬E,NE.. NE Down

¬NW,¬N,¬E,¬NE.. End

Table 4: The D-automaton F .

Example 3.3. (1) Let Z be defined by 2i/3 ≤ j ≤ 3i/2. Its first levels are
{(0,0)},∅, {(1,1)}, ∅,{(2,2)}, {(2,3),(3,2)}. A d2-`-ordering can be defined by F
that makes North-East moves (0,0)→(1,1)→(2,2) and then continues with the
transition rules of B.

(2) Let Z be defined by i/2 ≤ j ≤ (i + 1)/2. Its first levels are {(0,0)},∅,
{(1,1)},{(2,1)} ∅,{(3,2)}. All levels are singleton. It satisfies Conditions C1, C2
and C3.

Our next aim is to characterize the sets Z ⊆ N×N that are d2-`-ordered by
the D-automaton F and the D2-automaton B.

Definition 3.2. More conditions on sets Z ⊆ N× N.
We consider the following variant of Condition C3

C4: Each nonempty level is labelled by Down or by Up, in such a way
that:

C4.0: Z0 is labelled by Down,

C4.1: if Zk′ follows Zk labelled by Down, then it is labelled by
Up and min(Zk) is adjacent in G2(Z) to min(Zk′).

C4.2: if Zk′ follows Zk labelled by Up, then it is labelled by
Down and max(Zk) is adjacent in G2(Z) to max(Zk′).

Note that if G2(Z) is connected, we have k′ = k+ 1 in Conditions C4.1 and
C4.2.

Example 3.1 satisfies Conditions C1-C3 but not Condition C4. By the next
theorem, Conditions C1, C2 and C4 imply Condition C3. This fact can be
checked directly without considering automata.

Theorem 3.1. Let Z ⊆ N × N. It is d2-`-ordered by F if and only if it sat-
isfies Condition C1,C2 and C4. It is d2-`-ordered by B if and only if G1(Z) is
connected (which implies C1) and Z satisfies Condition C2 and C4.

24

Proof. Let Z ⊆ N× N satisfy Condition C2 and C4.
If G1(Z) is connected, then, the automata F and B order Z by traversing

the levels in order Z0, Z1, They are in state Down on even levels and in state
Up on the others.

If G2(Z) is connected but G1(Z) is not (some levels may be empty), the
automaton F traverses levels in increasing order.

Conversely, consider a Hamiltonian d2-`-path defined by B. As its moves
that increase the height of a vertex are to North and to East only, G1(Z) is
connected. This path is a sequence of intervals, all elements of which have same
height. This proves Condition C2. The transitions between two levels are by
moves to North or to East. These transitions prove Condition C4.

The proof is similar for a path defined by F .

3.3 Sets that satisfy Conditions C1-C4?

We consider sets defined by conjunctions of arithmetical conditions, that are
intersections of finitely many half-planes.

Definition 3.3. Affine subsets of N× N.
We call affine a subset Z of N × N defined by the conjunction of finitely

many conditions of the following forms, for specifying (i, j) ∈ Z:

(i) i ≤ a,

(ii) j ≤ bi+ c or

(iii) j ≥ di− e
where a, b, c, d, e ∈ Q, a, c, d, e ≥ 0.

That a, c, e ≥ 0 ensures that (0,0) is in Z. We restrict coefficients to rational
numbers in order to be able to get algorithms for deciding certain properties
of a given affine set Z listed below. Each level Zk can be enumerated in a
straightforward (brute force manner).

Question 3.3. (1) Is it finite?
(2) Is G2(Z) connected?
(3) Are Conditions C1-C3 satisfied?
(4) If they are, does there exist a D-automaton6 that defines a d2-`-ordering?

The following examples show a variety of cases.

Example 3.4. We let Z be defined by the following conditions:
(1) i/2 − 1/3 ≤ j ≤ i/2. Then Z = {(2n, n) | n ∈ N} and G2(Z) is infinite

without edges.
(2) (i − 1)/2 ≤ j ≤ i/2. Then Z = {(2n, n), (2n + 1, n) | n ∈ N}, G2(Z) is

connected but G1(Z) is not.

6One might also wish to order Z by a d2-ordering, that does not necessarily respect levels.
We leave this study for future research.

25

(3) i ≤ j ≤ i. Then G2(Z) is an infinite diagonal South-West-North-East
path and G1(Z) has no edge.

(4) (4i− 1)/10 ≤ j ≤ i/2. Then G2(Z − {(0, 0)}) is connected but G2(Z) is
not as Z1, Z2 and Z3 are empty.

The sets Z of Cases 1 and 4 are not d2-`-ordered by any automaton. Those
of Cases 2 and 3 are by F but not by B.

Definition 3.4. Convexity properties
We define for a subset Z of N× N the following convexity properties:

horizontal convexity : if (i, j) and (i+ k, j) ∈ Z, then (i+ k′, j) ∈ Z
for 0 < k′ < k,

vertical convexity : if (i, j) and (i, j + k) ∈ Z, then (i, j + k′) ∈ Z for
0 < k′ < k.

These properties are preserved by intersection. They are satisfied by each
set defined by a single inequality, hence by every affine set. Furthermore, a
similar argument shows than an affine set satisfies the following

diagonal convexity : if (i, j + k) and (i + k, j) ∈ Z, then (i + k′, j +
k − k′) ∈ Z for 0 < k′ < k.

Theorem 3.2. One can decide if an affine subset of N×N satisfies Conditions
C1, C3 and C4.

We recall that an affine subset of N× N satisfies Condition C2.

Lemma 3.1. One can decide if an affine subset of N × N is finite. If so, one
can enumerate it and check Conditions C1, C3 and C4.

Proof. Let Z be an affine subset of N×N. It is finite if and only if its description
contains (among others) one inequality of the form:

(a) j ≤ bi+ c with b < 0,
or two inequalities of the following forms:
(b) i ≤ a and j ≤ bi+ c, or
(c) j ≤ bi+ c and j ≥ di− e with d > b ≥ 0.
In each case, the set Z can be enumerated level by level. One can then check

whether it satisfies Conditions C1, C3 and C4.

We now assume that Z is infinite. In its definition, we can eliminate an
inequality i ≤ a′ if we already have the inequality i ≤ a with a < a′, and
similarly for the equalities of types (ii) and (iii) (of Definition 3.3). After these
eliminations, we obtain a non redundant description.

Example 3.5. The following affine sets Z are infinite.
(1) Set defined by conditions of type (i) and (iii): j ≥ i/2 and j ≥ i − 2,

i ≤ 5.
(2) Set defined by conditions of type (ii) and (iii): j ≥ i/2 and j ≥ i − 10,

i ≤ j.
(3) Set defined by i = j, hence, by conditions of type (ii) and (iii): j ≤ i ≤ j.

26

If Z ⊆ N×N, and p < q, with p, q ∈ N∪ {∞}, we denote by Z[p,q[the union
of the levels Zk for p < k < q.

Lemma 3.2. Let Z be an infinite subset of N × N . Let Zp be a nonempty
level.The following equivalences hold:

(1) G1(Z) is connected if and only if G1(Z[0,p+1[) and G1(Z[p,∞[) are so.
(2) Z satisfies C1 and C3 if and only if Z[0,p+1[and Z[p,∞[do so and the

label Up or Down of Zp is the same in Condition C3 for Z[0,p+1[and Z[p,∞[.
(3) If Z contains (0,0), then it satisfies C1 and C4 if and only if Z[0,p+1[

satisfies C1 and C4, and Z[p,∞[satisfies C1, and its nonempty levels have a
labelling that satisfies C4.1 and C4.2, such that the label of Zp is the same for
Z[0,p+1[and Z[p,∞[.

Proof. (1) Clear because Z[0,p+1[∩ Z[p,∞[= Zp 6= ∅. The same holds for G1(Z)
, i.e, for Property C1.

(2) Clear from (1) and the definition of C3.
(3) Clear from (1) and the definitions. In the labelling of the levels of Z[p,∞[,

instead of Condition C4.0, we require that, Zp, the first nonempty level of Z[p,∞[

has the same label for Z[0,p+1[and Z[p,∞[.

We now show how such an integer p can be determined in order to complete
the proof of Theorem 3.2. We will use two variants of Conditions C4.1 and C4.2,
relative to a set Z ⊆ N× N:

C4.3.1: if Zk′ follows Zk, then, in G1(Z), the vertex min(Zk) is adjacent to
min(Zk′) and max(Zk) is adjacent to max(Zk′),

C4.3.2: same condition with G2(Z) instead of G2(Z).

Proposition 3.3. Let Z be an infinite affine subset of N × N . One can de-
termine if there exists an integer p such that the conditions of Lemma 3.2 are
satisfied.

Proof. Let Z be given by a non redundant description. We let I(Z) be the set
of pairs of coordinates (x, y) ∈ Q × Q of the intersection points in the plane
of the lines associated with the defining inequalities, including the inequalities
i ≥ 0 and j ≥ 0. We let i(Z) be the smallest integer i such that i ≥ x + y for
all (x, y) in I(Z).

As Z is assumed infinite, it follows from the proof of Lemma 3.1 that we
have three cases.

Case 1 : If Z is defined by i ≤ a and inequalities of type (iii) (j ≥ di − e).
We can take p = i(Z). Then Zp is not empty, G1(Z[p,∞[) is connected and
satisfies C4.3.1. It follows that the nonempty levels of Z[p,∞[have a labelling
that satisfies C4.1 and C4.2. Whether Z satisfies C1, C3 or C4 depends only
on the finite set Z[0,p+1[and can be checked.

Case 2 : Z is defined by inequalities of type (ii), of the form j ≤ bi+ c, and
of type (iii), of the form j ≥ di− e with b > d ≥ 0 for any such two inequalities.
Let b be the minimal such b and d be the maximal such d.

27

We first consider W defined by the corresponding inequalities j ≤ bi+ c and
j ≥ di−e and we let r, q ∈ N be such that b > r/q > d. Let i ≥ (dq−e−c)/(b−d)
and j such that di+ dq − e ≤ j ≤ bi+ c. We have in W the following vertices:
(i, j), (i+ k, j) and (i+ r, j + k′) for all k = 1, ..., q and k′ = 1, ..., r.

Hence, we get a path in G1(W) from (i, j) to (i + q, j + r). This path can
translated into a path from (i + nq, j + nr) to (i + (n + 1)q, j + (n + 1)r) for
each n > 0. These translated paths concatenate into an infinite path in G1(W)
starting from (i, j). By horizontal and vertical convexity, we obtain that G1(W)
is connected.

We let p := max{i + j, i(Z)}. It is clear that Z ⊆ W , Zp is not empty and
G1(Z[p,∞[) is connected.

We now check Condition C4.3.1.
Let (i′, j′) be minimal in its level. This means that di − e + 1 ≤ j ≤

di+ d− e+ 1. Then, since G1(Z[p,∞[) is connected, (i′, j′) is adjacent to some
vertex of height h = i′+j′+1. The minimal vertex in Zh+1 is adjacent to (i′, j′)
otherwise, (i′+2, j′−1) would be in W . But we cannot have j ≥ di+2d−e+1.
A similar proof works for maximal elements. We are thus in the same situation
as in Case 1.

Case 3 : Z is defined by inequalities among which are j ≤ bi+c and j ≥ bi−e
with b = r/q ≥ 0. Let W be the set defined by these two inequalities (we may
have b = e = 0 and, necessarily, c ≥ 1). The other possible defining inequalities
are of the forms j ≤ b′i+ c and/or j ≥ di− e with b′ > b > d.

Hence Z contains the vertex (nq, nr) for each integer n such that nr+ nq ≥
i(Z).We let p = m(r + q) be the minimal integer larger or equal to i(Z) (with
m ∈ N). It is clear that Z ⊆W , Zp is not empty and Z[p,∞[= W[p,∞[. However,
G2(Z[p,∞[) need not be connected (see Example 3.4 (1)).

The finite set Z[p,p+r+q+1[is isomorphic to Z[p+r+q,p+2(r+q)+1[by a transla-
tion of vector (r, q), their intersection is Zp+r+q. The set Z[p,∞[is the union of
the pairwise isomorphic sets Z[p+n(r+q),p+(n+1)(r+q)+1[.

ThenG1(Z[p,∞[) (resp. G2(Z[p,∞[)) is connected if and only ifG1(Z[p,p+r+q+1[)
(resp. G2(Z[p,p+r+q+1[) is. Also Z[p,∞[satisfies C3 (resp. C4) if and only if
Z[p,p+r+q+1[satisfies C3 (resp. C4.3.1 or C4.3.2). These conditions are thus
decidable.

Proof. of Theorem 3.2
Let Z be given by inequalities. One can decide if it is finite, and decide Condi-
tions C1, C3 and C4 by Lemma 3.1.

If Z is infinite, one eliminates the redundant equations and one uses Propo-
sition 3.3. By Lemma 3.2, one can decide Conditions C1, C3 and C4.

Open questions 3.1. (1) For handling quickly Case 3 of Proposition 3.3, can
one find algebraic conditions relating r, q, c and e insuring that G1(W) or only
G2(W) is connected?

(2) Is there an efficient algorithm for the decision problem of Theorem 3.2?

28

4 Dimension > 2

We consider next the definition of d2-` -orderings of sets X1 × X2 × ... × Xp

where X1, ..., Xp are finite or infinite linearly ordered sets, equivalently, [0,m]
or N. We will prove that a unique automaton with 2p−1 states can define a d2-`
-ordering of any such a set, without knowing whether the components Xi are
finite or infinite. We will use an induction on p for which we require more facts
about orderings of Xq × ...×Xp.

4.1 Levels

We generalize the notion of level from Definition 1.1. We define it abstractly in
a linearly ordered set. The notion of height will arise from that of level.

Definition 4.1. Levelled linear order
(a) A levelled linear order (llo) is a linear order Z defined as a finite or

infinite concatenation of finite nonempty intervals Z0, Z1, ..., Zn, ... such that
Z0 < Z1 < ... < Zn < ... Each interval is called a level. If m ∈ Zj , then
ht(m) := j is the height of m.

We define Lev(Z) as the linearly ordered set N if Z is infinite (all levels are
nonempty), and [0, p] if Zp is the maximal nonempty level.

(b) The product of a linear order X ⊆ N and a llo Z is the llo on the set
U := X × Z defined as in Definition 1.2, with a notion of type, that depends
here on the levels of Z. The Z-type of a pair (i,m) ∈ X × Z is the triple of
integers

σ(i,m) := if i+ ht(m) is even then (i+ ht(m), i,m)

else (i+ ht(m), ht(m),m).

A pair (i,m) can be determined from its type σ(i,m).
The order ≤U on pairs (i,m) is increasing lexicographically on the Z-types

σ(i,m).The level Uk is the interval consisting of the pairs (i,m) such that i +
ht(m) = k. It is important that each level of Z be finite in the case where Z is
infinite.

Intuitively, U is obtained by substituting in X × Lev(Z) ordered as in Def-
inition 1.4, the interval i � Zj to (i, j) where i � (s0, ..., sq) denotes the linear
order (x, s0), (x, s1), (x, s2), ..., (x, sq).

Example 4.1. (1) An example of a llo is Z(3,6) := [0, 3] × [0, 6] of Definition
1.4, that we can describe as /00/10,01/02,11,20/30,21,12,03/.../26/35/36/ by
separating levels. Cf. Figure 2. Every linear order from Definition 1.4 is a llo,
as a notion of level is defined.

(2) From a linear order X and an integer p, we can define a llo where each
level has p elements, except the last one that may have less. For X := N and
p = 3, we get the llo:

29

0 1 2 3

00

10

01

02

11

20

30

21

12

03

13

22

31

32

23

33

Figure 20: The d2-` -ordering of Example 4.1 (5).

/012/345/678/....

(3) From a levelled linear order X and an integer q, we can define a llo by
restricting X to its first q levels.

(4) The llo on [0, 3]× [0, 3] is:

/00/ 10, 01/ 02, 11, 20/ 30, 21, 12/13, 22, 31/32, 23/33/.

(5) The llo on [0, 3]× ([0, 3]× [0, 3]) is (see Figure 20):

/000/ 100, 010, 001/ 002, 011, 020, 110, 101, 200/

300, 210, 201, 102, 111, 120, 030/013, 022, 031, 130, 121, 112,103,
202, 211, 220, 310, 301/.../233, 332, 323/333/.

Observation 4.1. Concrete description of the levels of X × Z.
If X and Z are infinite, the levels Ui of the llo on U := X×Z of Definition 4.1

are as follows (where • denotes concatenation of sequences).

If i is even, then Ui = (0� Zi) • (1� Zi−1) • ... • (i� Z0).

If i is odd, then Ui = (i� Z0) • (i− 1� Z1) • ... • (0� Zi).

We can determine the pair (y, z′) that follows (x, z) in U , where z ∈ Zj and
thus (x, z) ∈ Ux+j . There are three cases.

30

(a) z is not last in Zj (so that (x, z) is not last in Ux+j). Then y = x and z′

follows z in Zj .
(b) (x, z) is not last in Ux+j but z is last in Zj .
If x + j is even, we must have j > 0, otherwise z is last in Z0 and (x, z) is

last in Ux+j = Ux. Hence, we have y = x+ 1 and z′ is the first element in Zj−1.
If x + j is odd, we must have x > 0, otherwise (x, z) = (0, z) is last in

Ux+j = Uj . Hence, we have y = x − 1 and z′ is the first element in Zj+1 (cf.
the definition of backZ below).

(c) If (x, z) is last in Ux+j (hence, z is last in Zj), we have two cases:

if x + j is even, then j = 0, z is last in Z0, y = x + 1 and z′ is the
first element in Z0; (possibly equal to z):

if x + j is odd, then x = 0, z is last in Zj , y = 0 and z′ is the first
element in Zj+1.

Here, the height of (y, z′) is one more than that of (x, z). In the previous
two cases, it is the same.

We can visualize Case (c) as follows:

If i is even, then

Ui • Ui+1 = (0� Zi) • ... • (i� Z0) • ((i+ 1)� Z0) • ... • (0� Zi+1),

if i is odd, then

Ui • Ui+1 = (i� Z0) • ... • (0� Zi) • (0� Zi+1) • ... • ((i+ 1)� Z0).

In Case (b) the transition from the last element of Zj to the first one in Zj−1

is called a back step in Z. In Case (c) the transition from z, last in Z0, to z′,
first in Z0, is also a back step inside the level Z0 of Z, in the case where Z0 is
not singleton. However, Z0 is singleton if Z = Xq × ...×Xp.

If X and/or Z is finite, this description must be modified. We define mX

in N ∪ {∞} as the least upper bound of X, and, similarly, MZ as the least
upper-bound of Lev(Z). We fix k ≤ mX +MZ (UmX+MZ

is the last nonempty
level). To describe Uk, we define

α := max{0, k −MZ} = k −min{k,MZ},
β := max{0, k −mX} = k −min{k,mX}.

We have α ≤ k − β ≤ k because k −MZ ≤ mX .

If k is even, we have:

Uk = (α� Zk−α) • ((α+ 1)� Zk−α−1) • ... • ((k − β)� Zβ).

If k is odd, we have:

Uk = ((k − β)� Zβ) • ((k − β + 1)� Zβ−1) • ... • (α� Zk−α).

31

Regarding the determination of the next pair, Cases (a) and (b) described
above are applicable. For Case (c) there are several subcases depending on
whether x is maximal and Zj is the maximal nonempty level of Z.

If k is even, then Uk • Uk+1 =
(α� Zk−α) • ... • ((k − β)� Zβ) • ((k + 1− β′)� Zβ′) • ... • (α′ � Zk+1−α)
where β′ := k + 1−min{k + 1,mX} and α′ = k + 1−min{k + 1,MZ}.
We let (x, z) be the last element in (k − β) � Zβ , followed by (x′, z′) in

(k + 1− β′)� Zβ′ .
There are three cases to consider. Examples are from Figure 20.
(i) If k < mX , then β = β′ = 0, x = k, x′ = k+ 1, and z′ is the first element

in Z0 = Zβ . Example: z = (2, 00), z′ = (3, 00).
(ii) If k = mX , then β = 0, β′ = 1, x′ = x = mX , and z′ is the first element

in Z1, hence it follows z in Z.
(iii) If k > mX , then β = k −mX , β

′ = β + 1, x′ = x = mX , and z′ is the
first element in Zβ , hence it follows z in Z. Example: z = (3, 01), z′ = (3, 02).

Similarly, if k is odd, then Uk • Uk+1 =
(k − β � Zβ) • ... • (α� Zk−α) • (α′ � Zk+1−α′) • ... • (k − β′ � Zβ′).
We let (x, z) be the last element in α � Zk−α, followed by (x′, z′) in α′ �

Zk+1−α′ .
(iv) If k < MZ , then α = α′ = 0, x = x′ = 0, and z′ is the first element in

Zk+1. Hence it follows z in Z. Example: z = (0, 23), z′ = (0, 33).
(v) If k = MZ , then α = 0 = x, α′ = 1 = x′, and z′ is the first element in

Zk = ZMZ
.

(vi) If k > MZ , then α = x = k−MZ , α
′ = 1 = x′, and z′ is the first element

in ZMZ
.

In case (i) we have a transition z −→ z′ inside Z0. In cases (v), (vi), it is
inside ZMZ

.

Definition 4.2. Back steps from last elements in their levels.
(a) If Z is a llo, we define backZ as the set of pairs (max(Zk),min(Zk−1)) such
that k > 0 and Zk is not empty. If Zk and Zk−1 are singleton, then min(Zk−1)
is just the element preceding max(Zk) in Z.

(b) The Last in level test LilZ applied to z ∈ Z means that z is the last
element in its level.

Example 4.2. Back steps in Cartesian products.
Let Z := [0, 3]× [0, 3], U := [0, 3]× Z and consider on Figure 20 the level
U4 = ((0, 31), (1, 30), (1, 21), (1, 12), ..., (2, 20), (2, 10), (2, 10)). We write ij

a pair (i, j) of Z and (k, ij) a pair in U corresponding to a triple (k, i, j) in
[0, 3]× [0, 3]× [0, 3].

Level U4 has a transition (0,31)→(1,30) based on a back step in Z from 31
to 30 that decreases height in Z. In the llo on U := [0, 3]×Z, some other BackZ
transitions are 20→10, 33→ 32, 36→26,16→06 and 01→00.

32

Construction 4.1. We define an automaton AU intended to define the llo on
U := X×Z (cf. Definition 4.1) where X and Z are llo’s that satisfy the following
conditions:

(1) All levels of X are singleton, and so are the minimal level Z0 and the
maximal one (if Z is finite).

(2) We are given an automaton AZ for Z that defines back steps, and more
precisely, such that, based on it, we have routines for the following tests and
actions:

firstZ , lastZ , LilZ , nextZ , backZ .

For X, LilX(x) is always true, and backX is nothing but prevX . We will
use for it the routines firstX , lastX , nextX and prevX .

Describing automata with directions N,E,SE etc. is no more convenient. If
X is an interval of integers, then

firstX(x) is implemented by the test (x = 0)?,

lastX(x) is implemented by the test (x = mX)?,

nextX by x := x+ 1, and

prevX by x := x− 1.

We use this notation for uniformity with those for Z that cannot be easily
expressed from integers. (However, see Algorithm 4.9 below).

The minimal level U0 and the maximal one (if U is finite) are singleton. This
will allow us to use recursively this construction. For the same reason, we will
build an automata AU that defines the same five tests and actions as for Z.

Examples will be given concerning U := [0, 3]×Z, where Z := [0, 3]× [0, 3],
see Figure 20.

Construction:
The states of AU are pairs (Up,s) and (Down,s) where s is a state of AZ .
The initial state is (Down,InitZ) where InitZ is the initial state of AZ .
We define:

firstU:= firstX∧firstZ,
lastU:= lastX∧lastZ.
LilU is defined by Table5.

In Tables 5, 6, 7 and 8, ”State” indicates the first component of the state.
The second component is used in the computations of firstZ , lastZ , LilZ ,
nextZ and backZ .The actions nextU and backU are described in Tables 6, 7
and 8.

The number of states of the automaton for U is twice that of the automaton
for Z. If all levels of Z are singleton, then AZ has only one state.�

33

State Subcondition Examples

Up firstX ∧LilZ (0,03)
Up lastZ (1,33)
Down firstZ (0,00),(2,00)
Down lastX ∧LilZ (3,03),(3,01)
Up or Down lastX ∧ lastZ (3,33)

Table 5: The test LilU .

State = Down New
Conditions Subcondition Property Action state Examples; cases

¬LilZ nextZ Down (1,21)→(1,12) (a)
LilZ ¬lastX∧¬firstZ nextX ; Down (1,03)→(2,02) (b)

backZ
LilZ lastX∧¬lastZ LilU nextZ Up (3,03)→(3,13) (ii)-(iii)
LilZ firstZ∧¬lastX LilU nextX Up (2,00)→(3,00) (i)
lastX∧ lastZ LilU end

Table 6: nextU , first part.

State=Up New
Condition Subconditions Property Action state Examples; cases

¬LilZ nextZ Up (0,21)→(0,12) (a)
LilZ ¬firstX∧¬lastZ prevX ; Up (2,03)→(1,13)

nextZ
LilZ firstX∧¬lastZ LilU nextZ Down (0,23)→(0,33)
LilZ ¬lastX∧lastZ LilU nextX Down (1,33)→(2,33)
lastX∧lastZ LilU end (3,33)

Table 7: nextU , second part.

Conditions Subcondition Action New state Examples

Down ¬firstX∧firstZ prevX Up (2,00)→(1,00)
Down lastX∧LilZ backZ Up (3,03)→(3,02)
Up firtX∧LilZ backZ Down (0,03)→(0,02)
Up ¬firstX∧lastZ prevX Down (1,33)→(0,33)

Table 8: backU

34

4.2 Application to Cartesian products U = X1×X2×...×Xn.

Theorem 4.1. There is a d2-` -ordering of U = X1 ×X2 × ...×Xn defined by
an automaton with 2n−1states.

Proof. We use Construction 4.1 recursively by writing U = X1×Z = X1×(X2×
(... × Xn)). To have a d2-ordering, we must check that the distance between
consecutive elements is at most 2.

We consider the following property of a llo Z (intended to be Xi× (...×Xn)
for some i).

P (Z): (a) Z0 is singleton and so is the maximal level if Z is finite. (Think
of Xi × (...×Xn)).

(b) The action backZ changes a single component.
(c) If LilZ holds, then nextZ changes a single component.
(d) If LilZ does not hold, then nextZ changes at most two components.

Property P (Z) holds if all levels of Z are singleton. This so for Xn ⊆ N.
Note that LilZ always holds and backZ is prevZ .

Next we consider P (U) where U := X × Z and P (Z) holds.
We have (a).
(b) holds by the definition of backU in Table 8 and assertion (b) for Z.
(c) Assume that LilU holds. From Table5, we have LilU in all cases, because

lastZ implies LilZ and so does firstZ because Z0 is singleton (by (a)).
Consider Table 6. The transition whose action is nextX ; backZ and precon-

dition is ¬lastX ∧ ¬firstZ is not compatible with the condition LilU which
needs, in state Down, firstZ or lastX . By P (Z), all transitions change a
single component. Similarly, consider Table 7. The transition whose action is
prevX ; nextZ and precondition is ¬firstX ∧ ¬lastZ is not compatible with
the condition LilU which needs, in state Up, firstX or lastZ . This proves (c).

(d) Clear from the tables.

Condition (a) is necessary for Construction 4.1 to work.

The automaton is the same for sets Xi either infinite or finite with maximal
value mi.

Avoiding enumeration for computing the next element.

We take each Xi to be [0,mi] or N, with known least upper-bound mi. We
wish to compute the n-tuple following a given one, say (3,0,0,2,4,0,0) to take
an example, by a ”direct” algorithm, without having to enumerate U until one
reaches the given tuple and the one following it.

Proposition 4.1. Let U := X1×X2×...×Xn such that the values mi are known.
There exists an algorithm that, for input x = (x1, ..., xn) such that xi ≤ mi

for all i, determines in time O(n) the n-tuple that follows x in ≤Uwithout
enumerating U .

35

Proof. We will compute nextU ((x1, ..., xn)) by means of at most n auxiliary
computations of LilXi×...×Xn((yi, ..., yn)) , nextXi×...×Xn((yi, ..., yn)) and
backXi×...×Xn

((yi, ..., yn))) for 1 ≤ i ≤ n and tuples (yi, ..., yn).
To simplify notation, we will use Lili(yi, ..., yn) , for LilXi×...×Xn

((yi, ..., yn)),
and similarly for next and back. We fix U := X1 ×X2 × ...×Xn such that the
values mi are known.

If (yi, ..., yn) ∈ Xi × ...×Xn, 1 ≤ i ≤ n, we define:

Λi(yi, ..., yn) := (Lili(yi, ..., yn),nexti(yi, ..., yn),backi(yi, ..., yn)),

where Lili(yi, ..., yn) ∈ {True, False}, nexti(yi, ..., yn) is ⊥ (undefined) if
(yi, ..., yn) = (mi, ...,mn) and is in Xi × ... × Xn otherwise, backi(yi, ..., yn) is
⊥ if Lili(yi, ..., yn) = False or (yi, ..., yn) = (0, ..., 0) and is in Xi × ... × Xn

otherwise.

We compute Λ1(x1, ..., xn) by recursion, by means of Λ2(...),...,Λn(...) for
appropriate arguments.

For computing Λi(yi, ..., yn), we use Tables 5, 6, 7 and 8. The state is Up if
yi + ...+ yn is odd and Down it is even.

If i = n, then Λn(yn) := (True, yn + 1,⊥) (or (True, ⊥,⊥) if yn = mn).
We now examine how to compute Λi(yi, ..., yn) if i < n.
For computing Lili(yi, ..., yn) (cf. Table5), we use:

(yi = 0)? for firstX , (yi = mi)? for lastX ,

Lili+1(yi+1, ..., yn) for LilZ and

((yi+1, ..., yn) = (mi+1, ...,mn))? for lastZ .

For computing nexti(yi, ..., yn) and backi(yi, ..., yn)(cf. Tables 6, 7 and 8),
we use:

((yi+1, ..., yn) = (0, ..., 0))? for firstZ ,

nexti+1(yi+1, ..., yn) for nextZ ,

backi+1(yi+1, ..., yn) for backZ

and, the same definitions as above for firstX , lastX and lastZ .

Example 4.3. Here are some particular cases and examples:
(1) If x = (m1, ...,mn) ∈ Nn, there is no next element because x is last in

U .
(2) If x = (2p, 0, ..., 0) and 0 ≤ 2p < m1, or x = (0, 0, ..., 0, 2p + 1) and

0 < 2p + 1 < mn, then, x is last in its level and the following element x′ is,
respectively, (2p+ 1, 0, ...,) or (0, 0, ..., 0, 2p+ 2).???

(3) Example: x = 302400 ∈ N6 , m1 > 3, m4 = 2,m5 = 4,m2,m3,m6,m7 >
0,

For x = 302400, the state is Up.
Lil6(x) = False,

36

next6(x) = 3•next5(02400).
State is now Down.
Lil5(02400) =False,
next6(x) = 3•0•next4(2400)
Lil4(2400) = Lil3(400) = True
next4(2400) = 2•next3(400) = ... = 2401.
Hence next6(x) = 302401.
Note that we did not need to compute back in this case.
(4) Example: x = 4323 ∈ N4, m4 = 5, m1 = m2 = m3 = 1.
Lil4(4323)=False, Lil3(323)=True,
next4(x) = (4+1)•back3(323) =5313.

Remark 4.1. Computation is accelerated if we note the following facts, state
as in Proposition 4.1.

Claim 1 : Lili(yi, ..., yn) implies Lili+1(yi+1, ..., yn).
and
Claim 2 : ¬Lili+1(yi+1, ..., yn) implies nexti(yi, ..., yn) = yi•nexti+1(yi+1, ..., yn).

Open questions 4.1. (1) With the hypothesis of Proposition 4.1, give an
algorithm to determine the rank rk(x) of tuple x in the ordering ≤U .

(2) Conversely, determine the tuple of given rank i.

This is easy in the case of Definition 1.2, i.e. when n = 2 and m1 = m2 =∞.
Then

rk(i, j)= if i + j is even then (i + j + 1)(i + j + 2)/2 − j else
(i+ j + 1)(i+ j + 2)/2− i.

Conversely, given rk(i, j) = n, one determines i + j as the least integer m
such that (m+ 1)(m+ 2)/2 ≥ n from which one obtains i and j depending on
its parity.

5 Conclusion

We presented open questions in the previous sections. Here are some more.
(1) Which ”simple” automata can define d1-orderings of N × N × N, and

more generally of every product N× N× ...× N?
(2) Which automata can define d2-orderings (not respecting levels)?
(3) What about sets defined by Boolean combinations of affine inequalities?

They may not be convex.
(4) Consider an affine subset Z ⊆ N × N × ... × N defined by conditions of

the form
a1i1 + ... + anin ≤ b with b ≥ 0 so that it contains (0,0,..0). Does there

exist a finite automaton that d2- `-orders it? We need to generalize Conditions
C1-C4 to larger dimensions. See Example 3.2 (2) Figure 17.

37

References

[1] B. Courcelle and I. Durand: Computations by fly-automata beyond monadic
second-order logic. Theor. Comput. Sci. 619 (2016) 32-67.

[2] I. Durand, Object enumeration, European LISP Conference, 2012, Zadar,
Croatia. https://european-lisp-symposium.org/static/proceedings/2012.pdf

[3] J. Engelfriet and H.J. Hoogeboom, Automata with Nested Pebbles Capture
First-Order Logic with Transitive Closure. Logical Methods in Computer
Science 3 (2007), issue 2.

[4] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc and D. Peleg: Graph exploration
by a finite automaton. Theor. Comput. Sci. 345 (2005) 331-344.

[5] Wikipedia, Gray code, https://en.wikipedia.org/wiki/Gray code

6 Appendix

The Enum package is part of the TRAG7 system which is written in Common Lisp.
The code can be found at https://idurand@bitbucket.org/idurand/trag.

git. The first version of this package was presented in [2]. It offered the possi-
bility of creating basic enumerators (inductive, from a list, ...) and combining
then using operations like products, sequences, filters... The general product
built on the binary product does not give a d2-ordering. Here we give some
hints about how we programmed a bidirectional leveled enumerator which enu-
merates a (possibly infinite) cartesian product with a d2-`-ordering.

1 Enumerators and bidirectional enumerators

1.1 General enumerators

In the following, an enumerator E may be identified with the enumerated se-
quence. In the Enum package, each enumerator E has at least the following
operations:

• next-element-p (E): does there exist a next element?

• next-element (E): move to the next element.

For the implementation, we also need

• init-enumerator (E): put E in its initial state

• copy-enumerator (E): independent copy of E

7trag.labri.fr

38

Examples with a finite enumerator

ENUM> (defparameter *ABC* (make-list-enumerator '(A B C))) => *ABC*

ENUM> (next-element *ABC*) => A

ENUM> (next-element *ABC*) => B

ENUM> (next-element-p *ABC*) => T

ENUM> (next-element *ABC*) => C

ENUM> (next-element-p *ABC*) => NIL

ENUM> (collect-enum *ABC*) => (A B C) ;; only if finite

Examples with an infinite enumerator

ENUM> (defparameter *naturals*

(make-inductive-enumerator 0 (lambda (n) (1+ n)))) => *NATURALS*

ENUM> (next-element *naturals*) => 0

ENUM> (next-element *naturals*) => 1

ENUM> (next-element *naturals*) => 2

ENUM> (init-enumerator *naturals*) => #<INDUCTIVE-ENUMERATOR {100B58E013}>

ENUM> (next-element *naturals*) => 0

ENUM> (next-element *naturals*) => 1

ENUM> (next-element-p *naturals*) => T ;; always true

ENUM> (collect-n-enum *naturals* 9) => (0 1 2 3 4 5 6 7 8) ;; the first 9 values

1.2 Bidirectionals enumerators

A bidirectional enumerator B has in addition a way (+1 to move forward, -1

to move backwards), an initial-way and the following operations to handle
them:

• initial-way (B): initial way

• change-initial-way (way, B): change initial-way to way

• way (B): current way

• inverse-way (B): inverse way of B

together with the following operations:

• way-next-element-p (way B): does there exist a next element in this
way?

• way-next-element (way B): move to the next element in this way.

• latest-element (B): last object enumerated.

The operations next-element-p and next-element can be written with
way-next-element-p and way-next-element:

(defun next-element-p (B) (way-next-element-p (way B) B))

(defun next-element (B) (way-next-element (way B) B))

39

The implementation of a bidirectional enumerator uses two stacks
past-objects and future-objects, the first one containing the already

enumerated objects that are before the latest enumerated object and the sec-
ond the ones that are after, and a slot latest-object containing the lat-
est enumerated object. If the enumerator is moving backwards, the top ele-
ment of past-object will be enumerated and moved to latest-object; oth-
erwise the top element of future-object will be enumerated and moved to
latest-object.

Creation and initialization of a bidirectional enumerator

Given a non empty enumerator E, enumerating e0, e1, . . ., one can obtain its
bidirectional version B-E with (make-bidirectional-enumerator E initial-way).
In B-E, one has access to E, the underlying enumerator, by (enum B-E). At
initialization, if initial-way is -1, we move forward (enum B-E) towards the
first element in the positive way, so towards the first element of E, e0, in order to
go back to this element at the next call of next-element. Consequently, the first
call (next-element-p B-E) will return T, the first call (next-element B-E)

will return the first element of E that is e0; then (next-element-p B-E) will
return Nil as long as its way remains -1.

Example of creation and use of a bidirectional enumerator

ENUM> (defparameter *B-NATURALS*

(make-bidirectional-enumerator *naturals*)) => *B-NATURALS*

ENUM> (next-element *B-NATURALS*) => 0

ENUM> (next-element *B-NATURALS*) => 1

ENUM> (next-element *B-NATURALS*) => 2

ENUM> (way *B-NATURALS*) => 1

ENUM> (inverse-way *B-NATURALS*) => -1

ENUM> (way *B-NATURALS*) => -1

ENUM> (next-element *B-NATURALS*) => 1

ENUM> (next-element *B-NATURALS*) => 0

ENUM> (next-element-p *B-NATURALS*) => NIL

ENUM> (inverse-way *B-NATURALS*) => 1

ENUM> (next-element-p *B-NATURALS*) => T

ENUM> (next-element *B-NATURALS*) => 1

ENUM> (next-element *B-NATURALS*) => 2

ENUM> (latest-element *B-NATURALS*) => 2

ENUM> (way-next-element -1 *B-NATURALS*) => 1

2 Enumeration of cartesian products

Let E1, . . . , Ep be non empty enumerators (finite or not) such that Ei enumer-
ates ei0, e

i
1, . . . if Ei is infinite, ei0, e

i
1, . . . , e

i
ci−1 where ci = card(Ei) otherwise.

Let Tp = E1 × E2 . . . × Ep the cartesian product of the sets associated with
the Ei. If all the Ei are finite, card(Tp) = Πp

i=1ci otherwise Tp is infinite. The

40

necessity of diagonal enumeration of a cartesian product arises in particular
when at least one of the components is infinite. For instance in the example
above, when enumerating *ABC* × *naturals*, we would no want to enumer-
ate: (A 0) (A 1) (A 2) (A 3) ... and never switch to the B value of the
ABC enumerator. We would rather want something like

ENUM> (defparameter *p* (make-product-enumerator (list *ABC* *naturals*)))

P

ENUM> (collect-n-enum *p* 10)

((A 0) (A 1) (B 0) (C 0) (B 1) (A 2) (A 3) (B 2) (C 1) (C 2))

where we move forward regularly on all enumerators.

2.1 Leveled enumerators (of cartesian products)

For diagonal enumeration we need the notion of height of a tuple in the cartesian
product. The height of a tuple t = (e1

j1
, e2
j2
, . . . , epjp) ∈ Tp, is the sum of the

indices of the elements in the Ei: l(t) = Σpi=0ji. Let the cartesian product
Tp = Πp

i=1Ei. We note Li, the i-th level (finite) of Tp which the set of tuples
of height i. If Tp is finite, it has a finite number of levels and can be written as
the partition of its levels. If Tp is infinite, its number of levels is infinite.

The definition of height and level in Definition 1.1 of Section 1 are a par-
ticular case the two above definitions when the enumerated sequences are N or
intervals [0, p] ⊂ N.

A leveled enumerator enumerates the levels L0, L1, . . . in increasing order.
We call major step, a step giving a change of level and minor step a step inside
a level. The leveled enumerators have in addition the predicate:

minor-step-p (E) which is true if the next step (next-element) does not
change the level. In other words, it is false when we are done with the enumer-
ation of the current level.

2.2 Bidirectionals leveled enumerators

A leveled bidirectional enumerator is a leveled enumerator which in addition,
is bidirectional (it has a way and an initial-way). When going forward
(way = +1), it enumerates the levels in increasing order: L0, L1, . . . When going
backwards (way = -1), it enumerates the levels in decreasing order: Li, Li−1, . . .
while keeping the forward order inside the levels.

2.3 Diagonal product of a bidirectional enumerator with
a bidirectional leveled enumerator

Let X be a bidirectional enumerator and Y be a bidirectional leveled enumerator
which when going forward enumerates the levels Y 0, Y 1, . . .

We define below DP(X, Y), the diagonal product of X and Y. When created
DP(X, Y), the initial way of X is set to +1 and the initial way of Y is set to -1. A
minor step on level is a step that changes the level of X in a way and the level of
Y in the opposite way but not the level of D. In addition to the usual operations

41

we have the accessors enum-x (D) and enum-y (D) to access respectively to X
and to Y. The other operations are written:

(defun latest-element (D)

(cons (latest-element(enum-x D) (latest-element (enum-y D)))))

(defun minor-step-p (D) ;; precondition (next-element-p D)

(and (next-element-p (enum-y D))

(or (next-element-p (enum-x D)) (minor-step-p (enum-y D)))))

(defun way-next-element-p (way D)

(or (way-next-element-p (way D) (enum-x D))

(way-next-element-p (way(D) (enum-y D)))))

(defun way-next-element (way D)

(let* ((enum-x (enum-x enum))

(enum-y (enum-y enum))

(next-x (next-element-p enum-x))

(next-y (next-element-p enum-y)))

(cond

((and next-y (minor-step-p enum-y)) ;; lower-level minor step

(next-element enum-y))

((and next-y next-x) ;; minor-step on level

;; each one makes a major in its way

(next-element enum-x) (next-element enum-y))

;; major step

((not (or next-x next-y))

(corner-step enum-x enum-y way))

(t (sliding-step enum-x enum-y way))))

(latest-element enum))

(defun sliding-step (X Y way)

;; precondition: X or Y can move in its way

(if (next-element-p Y)

(way-next-element way Y)

(way-next-element way X))

(inverse-way X)

(inverse-way Y))

The call (sliding-step X Y 1) corresponds to a jump-up (move to upper
level) and (sliding-step X Y -1) corresponds to a jump-back (move to lower
level). In the case where neither X nor Y can move in their current way and the
enumeration is not over, we are in a case called corner step which may happen
only when at least one of the enumerators is finite (otherwise there is always
a possible sliding step). In the corner step case, we change inverse the way
of the enumerator which goes in the opposite direction of way (of the product
enumerator) and move it to the next level according to way. If way = 1, we
move to the upper level. If way = -1, we move to the lower level. The other
enumerator changes way (it could not contribute to the level change because it
is blocked in the direction way).

42

(defun corner-step (X Y way)

;; change the way of the enumerator which goes in opposite direction

;; to way and move it; the other enumerator changes way

(when (plusp (* way (way enum-x)))

;; put in enum-x the one that goes in direction -way

(psetf enum-x enum-y enum-y enum-x))

(inverse-way enum-x) ;; enum-x will move in direction way

(next-element enum-x) ;; enum-y will move in direction -way

(inverse-way enum-y))

3 Diagonal enumeration of a cartesian product

Let Nil be the bidirectional leveled enumerator corresponding to the empty
product enumerating the singleton set containing a single tuple of length 0:
Nil = {()}; it has only one level L0 = {()}.

We may show that recusrive use of DP yields the leveled-`-ordering defined
in Definition 4.1 and described in Observation 4.1.

Proposition 3.1. Let E1, E2, . . . , Ep be bidirectional enumerators. The enu-
merator DP(E1, DP(E2, DP(..., DP(Ep, Nil)))) is a bidirectional leveled enumerator
and a leveled-`-ordering of Tp = Πp

i=1Ei.

In the examples, we will use only integers so that the level of a tuple is the
sum of its elements.

ENUM> (defparameter *e2* (make-list-enumerator '(0 1))) => *E2*

ENUM> (defparameter *e3* (make-list-enumerator '(0 1 2))) => *E3*

ENUM> (collect-enum *e2*) => (0 1)

ENUM> (collect-enum *e3*) => (0 1 2)

ENUM> (collect-enum (make-product-enumerator (list *e3* *e3*)))

((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (2 1) (1 2) (2 2))

ENUM> (collect-enum (make-product-enumerator (list *e3* *e3* *e3*)))

((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1)

(2 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2)

(1 2 1) (1 1 2) (2 0 2) (2 1 1) (2 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2))

ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 30)

((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0)

(4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1) (5 2) (6 2) (7 1) (8 0) (9 0) (8 1)

(7 2) (8 2) (9 1) (10 0))

ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 20)

((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0)

(4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1))

ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3* *e3*)) 20)

((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1)

(2 0 0) (3 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2)

(0 2 2) (1 2 1))

43

