Irne Durand

Bruno Courcelle

Michael Raskin

On defining linear orders by automata

We define linear orders ≤Z on product sets Z := X1 × X2 × ... × Xn and on subsets Z of X1 × X2 where each composing set Xi is [0, p] or N, and ordered in the natural way. We require that (Z, ≤Z) be isomorphic to (N, ≤) if it is infinite. We want linear orderings of Z such that, in two consecutive tuples z = (z1, ..., zn) and z = (z 1 , ..., z n), we have |zi -z i | ≤ 1 for each i. Furthermore, we define their distance d(z, z) as the number of indices i such that zi = z i . We will consider orderings where the distance of two consecutive tuples is at most 2. We are interested in algorithms that determine the tuple in Z following z by using local information, where "local" is meant with respect to graphs associated with Z, and that work as well for finite and infinite components Xi, without knowing whether the components Xi are finite or not. We will formalize these algorithms by deterministic graph-walking automata.

Introduction

Motivated by enumeration problems1 (cf. [START_REF] Durand | Object enumeration, European LISP Conference[END_REF]), we define linear orders ≤ Z on product sets Z := X 1 × X 2 × ... × X n and on subsets Z of X 1 × X 2 where each composing set X i is linearly ordered with order type ω, that of N, if it is infinite. We require that (Z, ≤ Z) be isomorphic to (N, ≤) if it is infinite. Otherwise, it is isomorphic to ([0, |Z| -1], ≤). Our orders extend the classical diagonal enumeration of N × N establishing a bijection of this set with N.

Each ordered set X i will be taken equal to [0, p] or N, and ordered in the natural way. We want linear orderings of Z such that, in two consecutive tuples z = (z 1 , ..., z n) and z = (z 1 , ..., z n), we have |z iz i | ≤ 1 for each i. Furthermore, we define their distance d(z, z) as the number of indices i such that z i = z i . We have a d k-ordering if this distance is always at most k. We will only consider d1-and d2-orderings.

These requirements can be expressed in terms of graphs. If Z ⊆ X 1 × X 2 × ... × X n , we define two associated graphs (kinds of "hypercubes"):

G 1 (Z) has vertex set Z and an edge between z = (z 1 , ..., z n) and z = (z 1 , ..., z n) if and only if |z iz i | ≤ 1 for each i and d(z, z) = 1, and G 2 (Z) is similar with an edge between z and z if and only if |z iz i | ≤ 1 for each i and d(z, z) is 1 or 2.

Hence, G 1 (X 1 ×X 2) is a planar rectangular grid and G 2 (X 1 ×X 2) is G 1 (X 1 × X 2) augmented with diagonal edges in each square. A d1-ordering (resp. a d2ordering) of Z ⊆ X 1 × X 2 × ... × X n is a Hamiltonian path in G 1 (Z) (resp. in G 2 (Z)) starting at (0,0,...,0).

We are interested in algorithms that determine the tuple in Z following z by using local information ("local" is meant with respect to G 1 (Z) or G 2 (Z)), and work as well for finite and infinite components X i . They will formalize these algorithms by means of deterministic graph-walking automata, whose runs define walks (a walk is like a path, but vertices can be visited several times). We will actually use such automata that only define paths, but the general definition cannot guarantee that an automaton defines a path rather than a walk. These automata traverse graphs equipped with an edge labelling where adjacent edges have different labels2 among a fixed finite set, which defines a bound on the degree. They may have infinitely many states. At a vertex reached by a walk, the automaton determines the color of the next edge to be traversed from the state and some knowledge of a finite neighbourhood, for example the set of colors of the incident edges. However, this neighbourhood can be a ball of radius r > 1 (and thus of bounded size) in a more complex model. After the traversal via the next edge, the state may be changed, according to the used transition rule.

We will not develop a general theory of such automata (see [START_REF] Engelfriet | Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure[END_REF] for graphwalking automata considered in relation with logic, or [START_REF] Fraigniaud | Graph exploration by a finite automaton[END_REF]), but we will define automata well-adapted to the graphs G 1 (Z) and G 2 (Z). One of our main theorems is the following one, informally stated. Theorem 1. For each n, there is an automaton with 2 n-1 states that defines a d2-ordering respecting levels, on any set Z = X 1 × X 2 × ... × X n such that each X i is N or [0, p] for some p.

The height of a tuple of integers is the sum of values of its components. A level is the set of tuples of the same height. For d2-orderings, we want that levels be traversed consecutively by increasing order of height, we call them d 2--orderings. Related positive and negative results will be as follows:

Theorem 2. There is no finite or infinite automaton that defines a d1-ordering in each set X 1 × X 2 such that each X i is N or [0, p] for some p by looking at distance 1 of the current vertex. There is a finite one, that looks at distance 2.

We also characterize the affine and convex subsets of N × N having d2-orderings defined by finite automata.

Definitions and first results

We will order linearly sets Z := X 1 × X 2 × ... × X n and subsets of X 1 × X 2 where each composing set X i is linearly ordered with order type ω, that of N, in the case it is infinite. We require that (Z, ≤ Z) be isomorphic to (N, ≤) if it is infinite.

Each ordered set X i will be taken equal to [0, p] or N, and ordered in the natural way.

We want linear orderings of Z such that, in two consecutive tuples z = (z 1 , ..., z n) and z = (z 1 , ..., z n), we have |z iz i | ≤ 1 for each i. Definition 1.1. Distances, heights and levels.

(a) The distance d(z, z) of z = (z 1 , ..., z n) and z = (z 1 , ..., z n) is the number of indices i such that z i = z i .

(b) In a d k-ordering, the distance between any two consecutive tuples is at most k. We will actually consider d1-and d2-orderings.

(c) If Z ⊆ X 1 × X 2 × ... × X n , we define two graphs:

G 1 (Z) has vertex set Z and an edge between z = (z 1 , ..., z n) and z = (z 1 , ..., z n) if and only if |z iz i | ≤ 1 for each i and d(z, z) = 1, and G 2 (Z) is similar with an edge between z and z if and only if

|z i -z i | ≤ 1 for each i and d(z, z) is 1 or 2.
Hence, a di-ordering of Z ⊆ X 1 × X 2 × ... × X n where i is 1 or 2 is a Hamiltonian path in G i (Z) starting at (0,0,...,0).

(d) The height of a tuple of integers is the sum of the values of its components. The level k of Z ⊆ X 1 × X 2 × ... × X n is the set of its tuples of height k.

(e) A d2--ordering of Z, is d2--ordering such that the levels are traversed consecutively by increasing order of height.

We now review the classical diagonal enumeration of N × N and its extension to certain subsets of the form X × Y in order to present on an easy case our notion of graph-walking automaton.

Definition 1.2. The diagonal d2--ordering ≤ ∆ of N × N
We define the type τ (i, j) of a pair (i, j) ∈ N × N as the pair, also in N × N:

τ (i, j) := if i + j is even then (i + j, i) else (i + j, j). Note that (i, j) can be recovered from τ (i, j):

τ -1 (m, n) =if m is even then (n, m -n) else (m -n, n).
The pairs (i, j) ∈ N × N are ordered by increasing lexicographic order of their types τ (i, j). That is:

(i, j) ≤ ∆ (i , j) if and only if τ (i, j) ≤ lex τ (i , j),
We obtain a d2--ordering of N×N. The corresponding ordered set is denoted by N∆N. Its level k is the interval of pairs (i, j) such that i + j = k. It begins with /00/10,01/02,11,20/30,21,12,03/04,... where we separate levels by /. Odd levels are traversed in reverse lexicographic order.

The pair next(i, j) that follows (i, j) in this order is computed as follows (we use ∧ as logical "and"):

next(i, j) =if i + j is even ∧ j > 0 then (i + 1, j -1) else if i + j is even ∧ j = 0 then (i + 1, j) else if i + j is odd ∧ i > 0 then (i -1, j + 1) else if i + j is odd ∧ i = 0 then (i, j + 1) end Remark 1.1.
In terms of automata (formally defined below, see Table 1), the property "i + j is even" is handled as a state that we call Down, and similarly, "i + j is odd" is a state called Up. (In Figure 1, the vertices 02,11,20 of height 2 are ordered "downwards"). The Boolean values of the tests "i = 0" and "j = 0" describe the four possible positions of (i, j) with respect to the borders of G 2 (N × N) represented in the plane. The condition "i = 0" characterizes the West border and "j = 0" characterizes the South border. There are no North and East borders because we consider N × N.

The first clause can be formalized by an automaton transition of the form (that does not change the state):

(Down, "not on the South border") → ("move to South-East", Down) The diagonal enumeration of Z (3,6) .

In Figure 1, an example is the edge (1,1)→(2,0) in the path that orders N × N. Other examples of edges defined from this transition are (0,4)→(1,3) and (2,2)→(3,1). As i + j = (i + 1) + (j -1) in this transition, the level is the same for (i, j) and next(i, j), whence the state, defined from the arithmetic parity of the height is not changed. This is so because we are not on the South border.

The last clause yields the edge (0,3)→(0,4) derived from the transition (that changes the state Up into Down):

(Up, "on the West border") → ("move to North", Down).

Definition 1.3. d 2--orderings of X × Y ⊆ N × N.
We first extend the algorithm of Definition 1.2 so that it defines a d2-ordering of X × Y when X and/or Y is finite. The order is defined from types τ (i, j) as above. The corresponding Hamiltonian path in G 2 (Z (3,6)) where Z (3,6)

:= [0, 3] × [0, 6] is illustrated on Figure 2. If X is finite, its maximum is denoted by max(X).
The information about neighbourhood also uses the Boolean tests i = max X and j = max Y that are always false if X or, respectively Y, is infinite.

The pair next(i, j) is undefined if (i, j) is the last element, and then the "value" is the message "none". We have: Here is an alternative formalization by an automaton B that we will use again. There are nine possible types of position of a vertex (i, j) on the grid when X and Y are not singletons3 : origin (numbered 0), on the South border (numbered 1), on the West border [START_REF] Durand | Object enumeration, European LISP Conference[END_REF], in the middle (3), at the South-East corner (4), at the North-West corner [START_REF]Gray code[END_REF], on the North border (6), on the East border (7) and at the North-East corner (numbered 8). See Figure 3. Each type can be determined by a combination of Boolean conditions such as "j = 0" and "i = max X ". In Table 1, to define B in a readable way, we use the digits 0 to 8 to indicate the types of positions instead of combinations of Boolean conditions. Position "2,3,5,6" means of type 2 or 3 or 5 or 6. The initial state is Down. The final state is End.

next(i, j) = if i = max X ∧ j = max Y then none else if i + j is even ∧ j = 0 ∧ i = max X then (i + 1, j -1) else if i + j is even ∧ i = max X then (i, j + 1) else if i + j is even ∧ j = 0 ∧ i = max X then (i + 1, j) else if i + j is odd ∧ i = 0 ∧ j = max Y then (i -1, j + 1) else if i + j is odd ∧ j = max Y then (i + 1, j) else if i + j is odd ∧ i = 0 ∧ j = max Y then (i, j + 1) end
The complete description of B by a table should include the special cases where X and/or Y is singleton, but we want to keep the table readable. The transitions of the second and fifth lines are described in Remark 1.1. If X or Y is singleton, there is a unique d2--ordering. Otherwise, there are exactly two, one starting by (0,0)→(1,0) (as in Figures 1 and2) and the other by (0,0)→(0,1). The latter one is obtained by taking Up as initial state and adding to Table 1 the transition from the origin (defined by i = 0 ∧ j = 0) to state Down with a move to the North. The obtained path starts with /00/01,10/20,11,02/03,... . We will denote by B # this modified automaton. In automataon B, the state Up corresponds to the odd levels and Down to the even ones. For B # , Down corresponds to the odd levels and Up to the even ones.

(2) The automaton B (as defined by next, cf. Definition 1.3) also works in the special case where Y = {0}. All positions satisfy j = 0∧ j = max Y . The transitions used are:

if i + j is even ∧ j = 0 ∧ i = max X then (i + 1, j), and if i + j is odd ∧ i = max X ∧ j = max Y then (i + 1, j)
Its works also in the special case where X = {0}. All positions satisfy i = 0∧ i = max X .The transitions used are:

if i + j is even ∧ i = max X then (i, j + 1) and if i + j is odd ∧ i = 0 ∧ j = max Y then (i, j + 1).
We want to formalize the notion of an automaton that defines paths in the graphs G 2 (X × Y) or in some of their subgraphs, in particular G 1 (X × Y). This formalization instantiates the general notion sketched in the introduction. In Section 3, we will define automata that define Hamiltonian paths in G 2 (X 1 × ... × X n). Definition 1.4. Graph-walking automata in 2-dimensional grids.

(a) The set of directions is D := {N,E,S,W,NE,SE,SW,NW}, standing for North, East, etc. These definitions refer to a layout of G 2 (X ×Y) as in Figure 1. Each direction can be formally defined as a pair of integers: N:= (0, 1),E:= (1, 0),S:= (0, -1),NE:= (1, 1),SE:= (-1, 1), etc.

(b) If (i, j) ∈ N × N, and d ∈ D, then (i, j) d ∈ N × N is defined as (i, j) + d (using vectorial addition). Hence, we have, for example, (i, j) E = (i + 1, j) and (i, j) SE = (i + 1, j -1).

(c) Let G be a subgraph of G 2 (X × Y). The directions around a vertex (i, j) are those d ∈ D such that (i, j) d is adjacent to (i, j) in G. We denote this set by D G (i, j). It describes the neighbourhood of (i, j) in G.

(d) A graph-walking automaton (of dimension 2) is a tuple A = (Q, T , q init) where Q is the finite or countable set of states, q init ∈ Q and T is the set of transitions: they are of the form (q, δ) → (d, q) or (q, δ) →End where q, q ∈ Q, δ ⊆ D and d ∈ δ. (The direction d is chosen by the transition in the set δ of possible ones.) From the final state End, no transition is possible.

An automaton is deterministic: each pair (q, δ) determines a single transition. If Q is infinite, we assume that it is effectively given, and that (d, q) (or End) such that (q, δ) → (d, q) (or (q, δ) →End) is computable.

(e) The walk π A (G, a) in G, defined by A and that starts from a is:

a = b 0 → b 1 → b 2 → ... → b n → ...
defined with the help of the sequence of states:

q init = q 0 → q 1 → q 2 → ... → q n → ... such that, for each n ≥ 0, (q n , D G (b n)) → (d, q n+1
) and b n+1 := (b n) d . Informally, the state q n at b n and its neighbourhood D G (b n) determine in a unique way a direction d such that (b n) d is defined and adjacent to b n , giving b n+1 , and the state q n is updated into q n+1 . We will use graph-walking automata, simply called automata, that define paths rather than walks.

We will sometimes restrict the directions to consider. For defining a d2-ordering (cf. Definition 1.3 and Proposition 1.1), we only consider the directions N,E,SE,NW forming the set D 2 . We say that B is a D 2 -automaton. In order to define a d1-ordering, we will only consider directions N,E,S,W forming the set D 1 . However, an extended notion of direction, including EE and NN, which means that two steps respectively to East and North are possible, will be used in Theorem 2.2.

In a concrete implementation, we assume that an oracle (a program) can determine membership in Z of any pair b and the set D G (b). (A set Z can be defined by affine conditions, such as i ≤ 3j + 5 ∧ j ≤ -10i + 30. See Section 3.3).

D1-orderings on sets

X 1 × X 2 × ... × X n . Proposition 2.1. From a d1-ordering of a finite set Y ⊆ X 1 × X 2 × ... × X n , one can define a d1-ordering of Z := N × Y.
Proof. We discuss d1-orderings as Hamiltonian paths in the graphs G 1 (Y) and G 1 (Z). Let P a,b from a = (0, 0, . . . , 0) to some vertex b be a Hamiltonian path in G 1 (Y). The opposite path is P b,a from b to a. For each i ∈ N, let i P a,b be the path (i, a)

→ (i, c 1) → (i, c 2) → ... → (i, b) where P a,b is a → c 1 → c 2 → ... → b. Then, one gets in Z the infinite Hamiltonian path 0 P a,b → 1 P b,a → 2 P a,b → 3 P b,a → ... starting from (0, ..., 0) = (0, a) ∈ Z.
(The arrow represents the concatenation of paths).

Remark 2.1. This construction is related to that of Gray codes, cf. [START_REF]Gray code[END_REF]. The 3-ary Gray code with 3 digits is the sequence of 3-tuples in {0, 1, 2} × ({0, 1, 2} × {0, 1, 2}) that reads: Proposition 2.1 does not apply to Z := N × N, and an ordering "row by row" is obviously not adequate as its order type will be ω + ω + ... = ω • ω = ω. This is a motivation for using the diagonal d2--ordering of Definition 1.2.

However, d1-orderings can also be defined.

Proposition 2.2. (1)

There is a d1-ordering on N × N definable by an infinite

D 1 -automaton. (2) Each set Z = X 1 × X 2 × ... × X p
where each X i is finite or infinite, has a d1-ordering.

Proof. (1) See Figures 5 and6. Theorem 2.2. will establish a more general result for G 1 (X × Y) where X and/or Y may be finite.

(2) We first consider N p . We use an induction on p. For p = 2, the result holds by Assertion (1). Assume we have a d1-ordering ≤ p of N p . Since, (N p , ≤ p) is isomorphic to (N, ≤), we have by [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF] an ordering of N p+1 = N × (N p). In this order, a step from a vertex to the next one, either modifies the first component (in N) or the second one, in N p . In the latter case, only one component of N p is modified, as ≤ p is a d1-ordering. In both cases, this step modifies a single component of N p+1 . Hence, we have a d1-ordering. If Z is finite, Proposition 2.1 gives the answer. Otherwise, one can permute the components and write Z = N × ... × N × X q × ... × X p with X q , ..., X p finite, hence Z is isomorphic to N q × (X q × ... × X p) hence to N × Y with Y finite, and Proposition 2.1 gives the answer.

The computation of the vertex following any z in Z is computable as all definitions and proofs are effective. Hence, there exists a D 1 -automaton, with infinitely many states 4 .

We now examine whether automata can define d1-orderings. Figure 6 shows a d1-ordering of X × Y where Y is finite of odd cardinality, and X is finite or infinite, that is defined by an infinite D 1 -automaton. Whether X and/or Y is finite need not be known at the beginning, but is determined at some point of the computation. This automaton is easy to define with states including counters 5 .

More generally, there are D 1 -automata that construct d1-orderings of X × Y by using some information about X and/or Y . This information can be:

(

1) X is finite, (2) Y is finite, (3)
X is either infinite or finite of odd cardinality, (4) Y is either infinite or finite of odd cardinality, (5) X is either infinite or finite of even cardinality, The automata for Cases (1) and (2) are finite. In Cases (1), (3), (5), Y may be of any type. In the others, X may be of any type. In Cases (3) and (5), the automaton need not know whether X is infinite or not, and similarly for Y in Cases (4) and (6). Without such information, no deterministic automaton can work correctly, as we prove now.

Theorem 2.1. There is no (finite or infinite) D 1 -automaton that constructs a d1-ordering of X × Y for arbitrary (linearly ordered) sets X and Y .

Proof. For getting a contradiction, we assume the existence of an automaton A = (Q, T , q init) that finds a Hamiltonian path starting at (0,0) in G 1 (X×Y) for any linearly ordered sets X, Y , either N or [0, p]. This automaton uses only the directions N,E,S,W. Sets X and Y are finite or infinite, which the automaton "does not know", which means that A works in all cases. The set of states may be infinite, but determinism will yield a contradiction.

The neighbourhood D G (x) describes the following possible positions of a vertex x, numbered 0, 1, 2, 3 in Figure 3: Let m be the maximal integer such that (m, j) belongs to P [a, b] for some j. Let c := (m + 1, j) for such a j. The vertex c is not in R.

x is the origin: D G (x)={N,E},
We now consider A running in G 1 ([0, m + 1] × N). It follows the path

P [(0, 0), b], as it does not distinguish G 1 ([0, m + 1] × N) from G 1 (N × N) when traversing R. The path continues in G 1 ([0, m + 1] × N) from b to c outside of R.
But after c it must continue Southwards, and cannot reach (m + 1, p) for large values of p. Hence we obtained the desired contradiction.

We now enrich our automata by letting them foresee whether, from a vertex x, they can make two moves to East and/or two moves to North. The set of checkable directions around a vertex will be E={N,NN,E,EE,S,W}. Clearly, if in D G (x) we have EE, we must also have E. If E is in D G (x) but EE is not, this means that x is at distance 1 of the East border.

We first encourage the reader to contemplate Figures 8, 9 and 10. The construction of the path in Figure 8 Proof. Step 1 : The intended automaton will first handle the particular cases where X and/or Y have cardinality 1 or 2. This can be checked from D G ((0, 0)) as (0, 0) is the starting vertex. Hence, Y has cardinality 1 if and only if E is not in D G ((0, 0)) and cardinality 2 if and only if EE is not in D G ((0, 0)) but E is. We omit details relative to these special cases.

Step 2 : We now build an automaton C intended to work for all sets X,Y that are either infinite or of finite odd cardinality at least 3. It is based on the D 2 -automaton B of Proposition 1.1.

From B, we first define a D 2 -automaton B by duplicating actions: N becomes N;N, SE becomes SE;SE, etc. Because of the assumptions on the cardinalities of X and Y , from each vertex reached by a path defined by B , if one can make one step to East, one can make another one to East, and similarly for North, South and West. This automaton need not check the extended directions EE and NN.

A D 1 -automaton C is defined by Table 2, is obtained from B by replacing respectively SE;SE by E;S;S;E and NW;NW by N;W;W;N. This replacement is made explicit in Table 2. The same numbering of types of positions on borders, at corners and in the middle is used, as for describing B and B , cf. Figure 3 and 12 below. As for B , one need not check the extended directions EE and NN.

Claim:

The D 1 -automaton C defines a d1-ordering of X × Y for any sets X, Y as stated.

Proof : First we prove that C defines a path, i.e., a walk that does not visit twice a same vertex.

A 2 ×2 square in the grid G 1 (X, Y) is a subgraph induced by [2p, 2p + 2] × [2q, 2q + 2], for p, q ≥ 0. Each of them can be colored black or white, so that two adjacent squares (adjacent by a border, not just a corner) are of different color. Let [0, 2] × [0, 2] be white. By B , it is traversed by the moves NW;NW. The moves of the form SE;SE traverse black 2 ×2 squares.

When defining C, we replace SE;SE by E;S;S;E, so that we go through 2 more vertices, say x and y, in the middle of the left and right borders of that 2 ×2 square. In the surrounding 2 ×2 white squares, the replacements are of NW;NW by N;W;W;N, and these replacements involve neither x nor y. A similar observation holds at the borders.

Hence, we have a path. It is easy to check, by a similar argument based on this coloring of the 2 ×2 squares that it goes through all vertices of G 1 (X, Y).

If X and Y are finite, it terminates at the corner numbered 8, i.e., at (max(X), max(Y)), an example is in Figure 8.

Step 3 : We must handle the three cases where |X| and/or |Y | is even. See Figure 4 showing the four types of borders and corners for finite sets X and Y .

Case 1 : |X| is odd or infinite, |Y | is even, the vertices on the row just below the topmost one are in positions of types 5', 6' and 8' (cf. Figure 12) characterized by the following conditions relative to a vertex x:

5': N,EE,S∈ D G (x), W,NN / ∈ D G (x), 6': N,EE,W,S∈ D G (x), NN / ∈ D G (x), 8': N,EE,W,S∈ D G (x), E,NN / ∈ D G (x).
If X is infinite, positions of types 4,7,8' do not occur.

In order to reach the vertices on the top row, we make small detours defined as follows. In case of the current state is Down: Action E;S;S;E from vertices of type 5 or 6 is replaced by N;E;S;S;S;E, from vertices of type 5' or 6' (see top part of Figure 14).

From vertex 8', action is N, terminating the path.

In case of the current state is Up:

Action E;E from vertices of type 5 is replaced by N;E;S;E from vertices of type 5'.

Action E;E from vertices of type 6 is replaced by N;E;S;S;S;E from vertices of type 6'.

From vertex 8', action is N, terminating the path.

Case 2 : |X| is even, |Y | is odd or infinite. vertices on the column just to the right of the last one are of types 4", 7" and 8", characterized by the following conditions:

4": N,E,W∈ D G (x), S,EE / ∈ D G (x), 7": NN,E,S,W∈ D G (x), EE / ∈ D G (x), 8": E,S,W∈ D G (x), N,EE / ∈ D G (x),
If Y is infinite, positions of types 5,6,8" do not occur.

In case of the current state is Down:

Action N;N from vertices of type 4 is replaced by: E;N;W;W;W;N from vertices of type 4".

Action N;W;W;N from vertices of type 4 is replaced by: E;N;W;W;W;N from vertices of type 4". (See Figure 13).

Action N;N from vertices of type 7 is replaced by: E;N;W;N, from vertices of type 7", From vertex 8", action is E, terminating the path.

Case 3 : |X| and |Y | are even. This case combines Cases 1 and 2. The relevant types of positions replacing 4,5,6,7,8 from the basic case are 4",5',6',7" characterized as above and

8": N,E,S,W∈ D G (x), NN,EE / ∈ D G (x),
From a vertex of type 8", the action is E;N;W, terminating the path. These definitions are collected in Table 3 3 Diagonal orderings of convex subsets of N × N

Figure 15 shows that the automaton B of Section 1 can order proper subsets of N × N that are not Cartesian products. We develop this observation.

D2--orderings of subsets of N × N

We ask the following questions.

Question 3.1. Which subsets Z of N × N have a d2--ordering?

We will consider D-automata, more powerful than D 2 -automata as they can move to North-East in addition to North-West, North, East, South-West and South. As we want them to define d2--paths, i.e., the Hamiltonian paths corresponding to d2--orderings, they will make no move to South-West. Question 3.2. When is a d2--ordering definable by a finite or infinite Dautomaton?

If Z is finite and d2--orderable, then such an ordering is definable by a finite D-automaton with |Z| states. Hence, this question is only interesting for one infinite set Z or for a class of finite and/or infinite sets. (a) We denote by Z k the level k of Z. For each nonempty level Z k , min(Z k) (resp. max(Z k)) is its unique vertex of minimal (resp. maximal) second coordinate.

(b) We define for Z ⊆ N × N containing (0,0) the following conditions.

C1: The graph G 2 (Z) is connected.

C2: Each nonempty level Z k is connected in G 2 (Z), hence, induces a North-West-South-East diagonal path.

C3: Each nonempty level can be labelled by Up or Down, so that if Z k and Z k are two consecutive nonempty levels with k < k , then:

C3.1: if Z k is labelled by Down, then min(Z k) is adjacent in G 2 (Z) to the vertex x defined as follows:

x := min(Z k) if Z k is labelled by Up, or x := max(Z k) if Z k is labelled by Down, or, otherwise, {x} = Z k . C3.2: if Z k is labelled by Up, then max(Z k) is adjacent in G 2 (Z) to x defined as in C3.1.
The label of a singleton level Z k = {x} can be equivalently Up or Down because

x = min(Z k) = max(Z k). Condition C1 implies that, if Z k and Z k are as in C3, then k is k + 1 or k + 2. If G 1 (Z) is connected, then so is G 2 (Z) hence, Condition C1
holds; furthermore, if a level is not empty, all previous levels are not either, that is, we have k =k + 1 for k, k as in C3. (1) It has a d2--ordering if and only if Conditions C1, C2 and C3 hold.

(2) If all levels have at least two vertices except level 0 and, possibly, the last level (when Z is finite), then Z has at most two d2--orderings.

(3) If there are p indices k such that |Z k | = 1 and the following nonempty level has at least two elements, then Z has at most 2 p d2--orderings.

Proof. (1) Clear from definitions.

(2) and (3) Assume that Z has a d2--path P . It yields a labelling of levels satisfying Condition C3.

Consider P [(0, 0), x], the beginning of this path until vertex x, not the last one. Assume there is another d2--path P such that P [(0, 0), x] = P [(0, 0), x]. Let Z k be the level containing x.

These paths can differ immediately after x only if N and E are in D G2(Z) (x). We consider five cases. Case 1 : Z k = {x}. An example is in Figure 2 with x = (0, 0), see Remark 1.1 (1).

Case 2 : Z k is labelled Down and x = min(Z k). The move after x must be to SE in P and in P .

Case 3 : Z k is labelled Up and x = max(Z k). The move after x must be to NW in P and in P .

Case 4 : Z k is labelled Down and x = min(Z k). The move after x must be to E, or if not possible, to N, or if not possible, to NE, in P and in P .

Case 4 : Z k is labelled Up and x = max(Z k). The move after x must be to N, or if not possible to E, or if not possible to NE, in P and P .

The only case where P and P might differ just after x is when Z k = {x} and D G2(Z) (x) contains N and E. Assertion (2) is an immediate consequence of this observation, because there is at most one vertex x satisfying this condition. With the hypothesis of Assertion (3), there are at most p such vertices, hence at most 2 p d2--paths.

Example 3.2 (3) below illustrates Assertion (3).

Example 3.2. (1) Figure 16 shows an example of a set W ⊆ N×N that satisfies Conditions C1 to C3. It has a d2--path starting with (0,0)→(1,0), shown in this figure. An initial step (0,0)→(0,1) can be extended into a d2--path until (0,4) but not after because max(W 4) and max(W 5) are not adjacent. Anticipating the sequel, we observe that W is defined by the conditions i ≤ 3 and j ≤ -i/3 + 4.

(2) The related set X of Figure 17 has no d2--ordering, for a similar reason. It is defined by the conditions j ≤ -i/2 + 4 and j ≤ -2i + 8. It satisfies C1 and C2. It infinite extension Y defined by the conditions j ≤ i/2 + 1 and j ≥ i/2 -1 has infinitely many d2--orderings.

We continue the study of sets Z ⊆ N × N. If G 1 (Z) is connected and has a d2--ordering that is definable by a D-automaton, then this ordering is definable by a D 2 -automaton, actually the same, because no move to North-East can be used.

We recall that automata are deterministic and must have computable transitions, cf. Definition 1.4 (d).

Proposition 3.2.

(1) There exists an infinite set of finite sets Z ⊆ N × N that have unique d2--orderings, but these orderings are not definable by any finite or infinite D-automaton.

(2) There exists an infinite set Z ⊆ N × N that has a unique a d2--ordering that is not definable by any finite or infinite D-automaton.

Proof. We let W ⊆ [0, 3] × [0, 4] shown in Figure 16. It has a unique d2--path (defined by B) from s := (0, 0) to t := (3, 3). Let W ⊆ [0, 4] × [0, 3] be obtained from W a symmetry with respect to the South-West-North-East diagonal. It has a unique d2--path (defined by B #) also from s := (0, 0) to t := [START_REF] Engelfriet | Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure[END_REF][START_REF] Engelfriet | Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure[END_REF].

(1) Let w n be the word 0 n 1. We define X (n) ⊆ N × N by concatenating copies U i of W or W , such that U i is a copy of W if w i = 0 and of W otherwise. Two consecutive copies U i and U i+1 are linked by an horizontal edge between

s 0 t 0 U 0 s 1 t 1 U 1 s 2 t 2 U 2 Figure 19: Set X (2) of Proposition 3.2.
t i and s i+1 . See Figure 19 for X (2) . Each set X (n) has a unique d2--ordering. Assume that a D-automaton (equivalently, a D 2 -automaton) can d2--order all the sets X (n) . When it reaches a vertex s i , it cannot "know" whether the next move must be to North or to East, because it cannot know whether U i is of type W or W . Infinitely many states would not help.

(2) We now construct X similarly from an infinite word w in {0, 1} ω . It has a unique d2--ordering. If w is not ultimately periodic, this ordering cannot be defined by a finite D-automaton, by an argument similar to that used in [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF]. It is definable by an infinite one (whose transitions must be computable, cf. Definition 4(d)) if there exists a computable function f w : {0, 1} * → {0, 1} such that f w (u) defines the letter 0 or 1 that follows u in w in the case where u is a prefix of w (otherwise, it yields 0). As there are uncountably many infinite words and countably many computable functions, there exists uncountably many words w in {0, 1} ω such that f w is not computable, hence uncountably many sets X of the above form with unique d2--orderings that are not definable by any D-automaton. Remark 3.1. One might consider more powerful automata whose transitions from a vertex x are determined from the state and the distance-p neighbourhood of x for some p. A similar proof can be done with sets similar to W , of diameter larger than p. See also the conclusion.

A D-automaton extending B

We define a D-automaton F that extends B, intended to d2--order sets Z such that G 2 (Z) is connected but G 1 (Z) is not. In Table 4 If G 1 (Z) is connected, then, the automata F and B order Z by traversing the levels in order Z 0 , Z 1 , They are in state Down on even levels and in state Up on the others.

Z k) is adjacent in G 2 (Z) to min(Z k). C4.2: if Z k follows Z k labelled by Up, then it is labelled by Down and max(Z k) is adjacent in G 2 (Z) to max(Z k). Note that if G 2 (Z) is connected, we have k = k + 1 in Conditions C4.
If G 2 (Z) is connected but G 1 (Z) is not (some levels may be empty), the automaton F traverses levels in increasing order.

Conversely, consider a Hamiltonian d2--path defined by B. As its moves that increase the height of a vertex are to North and to East only, G 1 (Z) is connected. This path is a sequence of intervals, all elements of which have same height. This proves Condition C2. The transitions between two levels are by moves to North or to East. These transitions prove Condition C4.

The proof is similar for a path defined by F.

Sets that satisfy Conditions C1-C4?

We consider sets defined by conjunctions of arithmetical conditions, that are intersections of finitely many half-planes.

Definition 3.3. Affine subsets of N × N.
We call affine a subset Z of N × N defined by the conjunction of finitely many conditions of the following forms, for specifying (i, j) ∈ Z:

(i) i ≤ a, (ii) j ≤ bi + c or (iii) j ≥ di -e
where a, b, c, d, e ∈ Q, a, c, d, e ≥ 0. That a, c, e ≥ 0 ensures that (0,0) is in Z. We restrict coefficients to rational numbers in order to be able to get algorithms for deciding certain properties of a given affine set Z listed below. Each level Z k can be enumerated in a straightforward (brute force manner). Question 3.3. (1) Is it finite?

(2) Is G 2 (Z) connected?

(3) Are Conditions C1-C3 satisfied? (4) If they are, does there exist a D-automaton6 that defines a d2--ordering?

The following examples show a variety of cases.

Example 3.4. We let Z be defined by the following conditions:

(

1) i/2 -1/3 ≤ j ≤ i/2. Then Z = {(2n, n) | n ∈ N} and G 2 (Z) is infinite without edges. (2
) (i -1)/2 ≤ j ≤ i/2. Then Z = {(2n, n), (2n + 1, n) | n ∈ N}, G 2 (Z) is connected but G 1 (Z) is not. (3) i ≤ j ≤ i. Then G 2 (Z) is an infinite diagonal South-West-North-East path and G 1 (Z) has no edge. (4
) (4i -1)/10 ≤ j ≤ i/2. Then G 2 (Z -{(0, 0)}) is connected but G 2 (Z) is not as Z 1 , Z 2 and Z 3 are empty.
The sets Z of Cases 1 and 4 are not d2--ordered by any automaton. Those of Cases 2 and 3 are by F but not by B.

Definition 3.4. Convexity properties

We define for a subset Z of N × N the following convexity properties:

horizontal convexity: if (i, j) and (i + k, j) ∈ Z, then (i + k , j) ∈ Z for 0 < k < k, vertical convexity: if (i, j) and (i, j + k) ∈ Z, then (i, j + k) ∈ Z for 0 < k < k.
These properties are preserved by intersection. They are satisfied by each set defined by a single inequality, hence by every affine set. Furthermore, a similar argument shows than an affine set satisfies the following In each case, the set Z can be enumerated level by level. One can then check whether it satisfies Conditions C1, C3 and C4.

diagonal convexity: if (i, j + k) and (i + k, j) ∈ Z, then (i + k , j + k -k) ∈ Z for 0 < k < k.
We now assume that Z is infinite. In its definition, we can eliminate an inequality i ≤ a if we already have the inequality i ≤ a with a < a , and similarly for the equalities of types (ii) and (iii) (of Definition 3.3). After these eliminations, we obtain a non redundant description.

Example 3.5. The following affine sets Z are infinite.

(1) Set defined by conditions of type (i) and (iii): j ≥ i/2 and j ≥ i -2, i ≤ 5.

(2) Set defined by conditions of type (ii) and (iii): j ≥ i/2 and j ≥ i -10, i ≤ j.

(3) Set defined by i = j, hence, by conditions of type (ii) and (iii): j ≤ i ≤ j.

We first consider W defined by the corresponding inequalities j ≤ bi + c and j ≥ di-e and we let r, q ∈ N be such that b > r/q > d. Let i ≥ (dq-e-c)/(b-d) and j such that di + dqe ≤ j ≤ bi + c. We have in W the following vertices: (i, j), (i + k, j) and (i + r, j + k) for all k = 1, ..., q and k = 1, ..., r.

Hence, we get a path in G 1 (W) from (i, j) to (i + q, j + r). This path can translated into a path from (i + nq, j + nr) to (i + (n + 1)q, j + (n + 1)r) for each n > 0. These translated paths concatenate into an infinite path in G 1 (W) starting from (i, j). By horizontal and vertical convexity, we obtain that G 1 (W) is connected.

We let

p := max{i + j, i(Z)}. It is clear that Z ⊆ W , Z p is not empty and G 1 (Z [p,∞[) is connected.
We now check Condition C4.3.1. Let (i , j) be minimal in its level. This means that die

+ 1 ≤ j ≤ di + d -e + 1. Then, since G 1 (Z [p,∞[) is connected, (i , j
) is adjacent to some vertex of height h = i + j + 1. The minimal vertex in Z h+1 is adjacent to (i , j) otherwise, (i + 2, j -1) would be in W . But we cannot have j ≥ di + 2de + 1. A similar proof works for maximal elements. We are thus in the same situation as in Case 1.

Case 3 : Z is defined by inequalities among which are j ≤ bi+c and j ≥ bi-e with b = r/q ≥ 0. Let W be the set defined by these two inequalities (we may have b = e = 0 and, necessarily, c ≥ 1). The other possible defining inequalities are of the forms j ≤ b i + c and/or j ≥ die with b > b > d.

Hence Z contains the vertex (nq, nr) for each integer n such that nr + nq ≥ i(Z).We let p = m(r + q) be the minimal integer larger or equal to i(Z) (with m ∈ N). It is clear that Z ⊆ W , Z p is not empty and Open questions 3.1. (1) For handling quickly Case 3 of Proposition 3.3, can one find algebraic conditions relating r, q, c and e insuring that G 1 (W) or only G 2 (W) is connected?

Z [p,∞[= W [p,∞[. However, G 2 (Z [p,∞[) need
(2) Is there an efficient algorithm for the decision problem of Theorem 3.2?

4 Dimension > 2

We consider next the definition of d2--orderings of sets X 1 × X 2 × ... × X p where X 1 , ..., X p are finite or infinite linearly ordered sets, equivalently, [0, m] or N. We will prove that a unique automaton with 2 p-1 states can define a d2--ordering of any such a set, without knowing whether the components X i are finite or infinite. We will use an induction on p for which we require more facts about orderings of X q × ... × X p .

Levels

We generalize the notion of level from Definition 1.1. We define it abstractly in a linearly ordered set. The notion of height will arise from that of level.

Definition 4.1. Levelled linear order (a) A levelled linear order (llo) is a linear order Z defined as a finite or infinite concatenation of finite nonempty intervals Z 0 , Z 1 , ..., Z n , ... such that

Z 0 < Z 1 < ... < Z n < ... Each interval is called a level. If m ∈ Z j , then ht(m) := j is the height of m.
We define Lev(Z) as the linearly ordered set N if Z is infinite (all levels are nonempty), and [0, p] if Z p is the maximal nonempty level.

(b) The product of a linear order X ⊆ N and a llo Z is the llo on the set U := X × Z defined as in Definition 1.2, with a notion of type, that depends here on the levels of Z. The Z-type of a pair (i, m) ∈ X × Z is the triple of integers σ(i, m) := if i + ht(m) is even then (i + ht(m), i, m) else (i + ht(m), ht(m), m).

A pair (i, m) can be determined from its type σ(i, m). The order ≤ U on pairs (i, m) is increasing lexicographically on the Z-types σ(i, m).The level U k is the interval consisting of the pairs (i, m) such that i + ht(m) = k. It is important that each level of Z be finite in the case where Z is infinite.

Intuitively, U is obtained by substituting in X × Lev(Z) ordered as in Definition 1.4, the interval i Z j to (i, j) where i (s 0 , ..., s q) denotes the linear order (x, s 0), (x, s 1), (x, s 2), ..., (x, s q). Example 4.1. (1) An example of a llo is Z (3,6) := [0, 3] × [0, 6] of Definition 1.4, that we can describe as /00/10,01/02,11,20/30,21,12,03/.../26/35/36/ by separating levels. Cf. Figure 2. Every linear order from Definition 1.4 is a llo, as a notion of level is defined.

(2) From a linear order X and an integer p, we can define a llo where each level has p elements, except the last one that may have less. For X := N and p = 3, we get the llo: /012/345/678/....

(3) From a levelled linear order X and an integer q, we can define a llo by restricting X to its first q levels.

(4) The llo on [0, 3] × [0, 3] is:

/00/ 10, 01/ 02, 11, 20/ 30, 21, 12/13, 22, 31/32, 23/33/.

(

If i is even, then U i = (0 Z i) • (1 Z i-1) • ... • (i Z 0). If i is odd, then U i = (i Z 0) • (i -1 Z 1) • ... • (0 Z i).
We can determine the pair (y, z) that follows (x, z) in U , where z ∈ Z j and thus (x, z) ∈ U x+j . There are three cases.

Regarding the determination of the next pair, Cases (a) and (b) described above are applicable. For Case (c) there are several subcases depending on whether x is maximal and Z j is the maximal nonempty level of Z.

If k is even, then

U k • U k+1 = (α Z k-α) • ... • ((k -β) Z β) • ((k + 1 -β) Z β) • ... • (α Z k+1-α) where β := k + 1 -min{k + 1, m X } and α = k + 1 -min{k + 1, M Z }.
We let (x, z) be the last element in (kβ) Z β , followed by (x , z) in

(k + 1 -β) Z β .
There are three cases to consider. Examples are from Figure 20.

(i) If k < m X , then β = β = 0, x = k, x = k + 1, and z is the first element in Z 0 = Z β . Example: z = (2, 00), z = (3, 00). (ii) If k = m X , then β = 0, β = 1, x = x = m X , and z is the first element in Z 1 , hence it follows z in Z. (iii) If k > m X , then β = k -m X , β = β + 1, x = x = m X , and z is the first element in Z β , hence it follows z in Z. Example: z = (3, 01), z = (3, 02). Similarly, if k is odd, then U k • U k+1 = (k -β Z β) • ... • (α Z k-α) • (α Z k+1-α) • ... • (k -β Z β). We let (x, z) be the last element in α Z k-α , followed by (x , z) in α Z k+1-α . (iv) If k < M Z , then α = α = 0, x = x = 0, and z is the first element in Z k+1 . Hence it follows z in Z. Example: z = (0, 23), z = (0, 33). (v) If k = M Z , then α = 0 = x, α = 1 = x , and z is the first element in Z k = Z M Z . (vi) If k > M Z , then α = x = k -M Z , α = 1 =
x , and z is the first element in Z M Z .

In case (i) we have a transition z -→ z inside Z 0 . In cases (v), (vi), it is inside Z M Z . Definition 4.2. Back steps from last elements in their levels. (a) If Z is a llo, we define back Z as the set of pairs (max(Z k), min(Z k-1)) such that k > 0 and Z k is not empty. If Z k and Z k-1 are singleton, then min(Z k-1) is just the element preceding max(Z k) in Z.

(b) The Last in level test Lil Z applied to z ∈ Z means that z is the last element in its level. Level U 4 has a transition (0,31)→(1,30) based on a back step in Z from 31 to 30 that decreases height in Z. In the llo on U := [0, 3] × Z, some other Back Z transitions are 20→10, 33→ 32, 36→26,16→06 and 01→00. (2) Conversely, determine the tuple of given rank i.

This is easy in the case of Definition 1.2, i.e. when n = 2 and m 1 = m 2 = ∞. Then rk(i, j)= if i + j is even then (i + j + 1)(i + j + 2)/2j else (i + j + 1)(i + j + 2)/2i.

Conversely, given rk(i, j) = n, one determines i + j as the least integer m such that (m + 1)(m + 2)/2 ≥ n from which one obtains i and j depending on its parity.

Conclusion

We presented open questions in the previous sections. Here are some more.

(1) Which "simple" automata can define d1-orderings of N × N × N, and more generally of every product N × N × ... × N?

(2) Which automata can define d2-orderings (not respecting levels)?

(3) What about sets defined by Boolean combinations of affine inequalities? They may not be convex.

(4) Consider an affine subset Z ⊆ N × N × ... × N defined by conditions of the form a 1 i 1 + ... + a n i n ≤ b with b ≥ 0 so that it contains (0,0,..0). Does there exist a finite automaton that d2--orders it? We need to generalize Conditions C1-C4 to larger dimensions. See Example 3.2 (2) Figure 17.

Appendix

The Enum package is part of the TRAG 7 system which is written in Common Lisp. The code can be found at https://idurand@bitbucket.org/idurand/trag. git. The first version of this package was presented in [START_REF] Durand | Object enumeration, European LISP Conference[END_REF]. It offered the possibility of creating basic enumerators (inductive, from a list, ...) and combining then using operations like products, sequences, filters... The general product built on the binary product does not give a d2-ordering. Here we give some hints about how we programmed a bidirectional leveled enumerator which enumerates a (possibly infinite) cartesian product with a d2--ordering.

Enumerators and bidirectional enumerators 1.General enumerators

In the following, an enumerator E may be identified with the enumerated sequence. In the Enum package, each enumerator E has at least the following operations:

• next-element-p (E): does there exist a next element?

• next-element (E): move to the next element.

For the implementation, we also need

• init-enumerator (E): put E in its initial state

• copy-enumerator (E): independent copy of E 7 trag.labri.fr

The implementation of a bidirectional enumerator uses two stacks past-objects and future-objects, the first one containing the already enumerated objects that are before the latest enumerated object and the second the ones that are after, and a slot latest-object containing the latest enumerated object. If the enumerator is moving backwards, the top element of past-object will be enumerated and moved to latest-object; otherwise the top element of future-object will be enumerated and moved to latest-object.

Creation and initialization of a bidirectional enumerator

Given a non empty enumerator E, enumerating e 0 , e 1 , . . ., one can obtain its bidirectional version B-E with (make-bidirectional-enumerator E initial-way). In B-E, one has access to E, the underlying enumerator, by (enum B-E). At initialization, if initial-way is -1, we move forward (enum B-E) towards the first element in the positive way, so towards the first element of E, e 0 , in order to go back to this element at the next call of next-element. Consequently, the first call (next-element-p B-E) will return T, the first call (next-element B-E) will return the first element of E that is e 0 ; then (next-element-p B-E) will return Nil as long as its way remains -1.

Example of creation and use of a bidirectional enumerator

Enumeration of cartesian products

Let E 1 , . . . , E p be non empty enumerators (finite or not) such that E i enumerates e i 0 , e i 1 , . . . if E i is infinite, e i 0 , e i 1 , . . . , e i ci-1 where c i = card(E i) otherwise. Let T p = E 1 × E 2 . . . × E p the cartesian product of the sets associated with the E i . If all the E i are finite, card(T p) = Π p i=1 c i otherwise T p is infinite. The necessity of diagonal enumeration of a cartesian product arises in particular when at least one of the components is infinite. For instance in the example above, when enumerating *ABC* × *naturals*, we would no want to enumerate: (A 0) (A 1) (A 2) (A 3) ... and never switch to the B value of the *ABC* enumerator. We would rather want something like where we move forward regularly on all enumerators.

Leveled enumerators (of cartesian products)

For diagonal enumeration we need the notion of height of a tuple in the cartesian product. The height of a tuple t = (e 1 j1 , e 2 j2 , . . . , e p jp) ∈ T p , is the sum of the indices of the elements in the E i : l(t) = Σ p i=0 j i . Let the cartesian product T p = Π p i=1 E i . We note L i , the i-th level (finite) of T p which the set of tuples of height i. If T p is finite, it has a finite number of levels and can be written as the partition of its levels. If T p is infinite, its number of levels is infinite.

The definition of height and level in Definition 1.1 of Section 1 are a particular case the two above definitions when the enumerated sequences are N or intervals [0, p] ⊂ N.

A leveled enumerator enumerates the levels L 0 , L 1 , . . . in increasing order. We call major step, a step giving a change of level and minor step a step inside a level. The leveled enumerators have in addition the predicate: minor-step-p (E) which is true if the next step (next-element) does not change the level. In other words, it is false when we are done with the enumeration of the current level.

Bidirectionals leveled enumerators

A leveled bidirectional enumerator is a leveled enumerator which in addition, is bidirectional (it has a way and an initial-way). When going forward (way = +1), it enumerates the levels in increasing order: L 0 , L 1 , . . . When going backwards (way = -1), it enumerates the levels in decreasing order: L i , L i-1 , . . . while keeping the forward order inside the levels.

Diagonal product of a bidirectional enumerator with a bidirectional leveled enumerator

Let X be a bidirectional enumerator and Y be a bidirectional leveled enumerator which when going forward enumerates the levels Y 0 , Y 1 , . . . We define below DP(X, Y), the diagonal product of X and Y. When created DP(X, Y), the initial way of X is set to +1 and the initial way of Y is set to -1. A minor step on level is a step that changes the level of X in a way and the level of Y in the opposite way but not the level of D. In addition to the usual operations

Figure 1 :

 1 Figure 1: A d2--ordering of N × N.

Figure 2 :

 2 Figure2: The diagonal enumeration of Z(3,6) .

Figure 3 :

 3 Figure 3: The different types of border used by B.

Proposition 1 . 1 .Figure 4 :

 114 Figure 4: The automaton B of Proposition 1.1.

 000, 001, 002, 012, 011, 010, 020, 021, 022, 122, 121, 120, 110, 111, 112, 102, 101, 100, 200, 201, 202, 212, 211, 210, 220, 221, 222. It is thus of the form 0 P → 1 P → 2 P where P is: 00 → 01 → 02 → 12 → 11 → 10 → 20 → 21 → 22, and P is the opposite path.

Figure 5 :

 5 Figure 5: A d1-ordering of N × N.

Figure 6 :

 6 Figure 6: A d1-ordering for [0,2n]×N

 or on the South border, and not the origin: D G (x)={N,E,W}, or on the West border, and not the origin:D G (x)={N,E,S} or in the middle: D G (x)={N,E,S,W}.We first run the automaton on N × N. Let P be a Hamiltonian path defined by A in G 1 (N × N). It has a subpath P [a, b] from a to b, for some a on the South border and some b on the West border, such that all intermediate vertices x have neighbourhood D G (x)={N,E,S,W}.The initial part P [(0, 0), a] of P is inside the finite portion R of G 1 (N × N) (drawn on the plane, cf.

 Figure 5) determined by P [a, b] and the West and South borders by an obvious planarity argument. We let R contain the vertices of P [a, b] and the initial parts of the borders, from (0,0) to (a, 0) and from (0,0) to (0, b)).

Figure 7 :

 7 Figure 7: A d1-ordering of N × N that is adaptable to X × Y where X and/or Y is finite.

 corresponding to the case |X| = 7, |Y | = 5 extends to N × N, cf. Step 2 of the proof. Difficulties arise in the cases where X and/or Y have even cardinality. One typical case is shown in Figure 9 corresponding to the case |X| = 7, |Y | = 6. Another one is for |X| = 8, |Y | = 6 (Figure 10). Dotted lines indicate modifications from Figure 8.

Theorem 2 . 2 .

 22 There exists a finite E-automaton that constructs a d1-ordering of X × Y for arbitrary (linearly ordered) sets X and Y .

Figure 8 :Figure 9 :

 89 Figure 8: The basic case of X × Y with sets X, Y of odd cardinalities.

Figure 10 :

 10 Figure 10: Extended the previous order to accommodate sets X, Y of even cardinality.

Figure 11 :Figure 12 :

 1112 Figure 11: The E-automaton of Theorem 2.2.

Figure 14 :Figure 15

 1415 Figure 14: The detour at South-East corner.

Definition 3 . 1 .

 31 Conditions on a set Z ⊆ N × N.

Example 3 . 1 .

 31 The set Z := {(0, 2i), (1, 2i + 1) | i ≥ 0} satisfies Conditions C1,C2 and C3, with all levels labelled by Up. It has no level of odd height. Proposition 3.1. Let Z ⊆ N × N that contains (0,0).

Figure 16 :Figure 17 :

 1617 Figure 16: The set W of Example 3.2 (1) used in Proposition 3.2.

Figure 18 :(3)

 183 Figure 18: Set Y of Example 3.2 (3)

Example 3 . 3 .Definition 3 . 2 .

 3332 [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF] Let Z be defined by 2i/3 ≤ j ≤ 3i/2. Its first levels are {(0,0)},∅, {(1,1)}, ∅,{(2,2)}, {(2,3),(3,2)}. A d2--ordering can be defined by F that makes North-East moves (0,0)→(1,1)→(2,2) and then continues with the transition rules of B.(2) Let Z be defined by i/2 ≤ j ≤ (i + 1)/2. Its first levels are{(0,0)},∅, {(1,1)},{(2,1)} ∅,{(3,2)}. All levels are singleton. It satisfies Conditions C1, C2 and C3. Our next aim is to characterize the sets Z ⊆ N × N that are d2--ordered by the D-automaton F and the D 2 -automaton B. More conditions on sets Z ⊆ N × N. We consider the following variant of Condition C3 C4: Each nonempty level is labelled by Down or by Up, in such a way that: C4.0: Z 0 is labelled by Down, C4.1: if Z k follows Z k labelled by Down, then it is labelled by Up and min(

Theorem 3 . 2 .Lemma 3 . 1 .

 3231 One can decide if an affine subset of N × N satisfies Conditions C1, C3 and C4. We recall that an affine subset of N × N satisfies Condition C2. One can decide if an affine subset of N × N is finite. If so, one can enumerate it and check Conditions C1, C3 and C4. Proof. Let Z be an affine subset of N×N. It is finite if and only if its description contains (among others) one inequality of the form: (a) j ≤ bi + c with b < 0, or two inequalities of the following forms: (b) i ≤ a and j ≤ bi + c, or (c) j ≤ bi + c and j ≥ die with d > b ≥ 0.

Figure 20 :

 20 Figure 20: The d2--ordering of Example 4.1 (5).

Example 4 . 2 .

 42 Back steps in Cartesian products. Let Z := [0, 3] × [0, 3], U := [0, 3] × Z and consider on Figure 20 the level U 4 = ((0, 31), (1, 30), (1, 21), (1, 12), ..., (2, 20), (2, 10), (2, 10)). We write ij a pair (i, j) of Z and (k, ij) a pair in U corresponding to a triple (k, i, j) in [0, 3] × [0, 3] × [0, 3].

 next 6 (x) = 3•next 5 (02400). State is now Down. Lil 5 (02400) =F alse, next 6 (x) = 3•0•next 4 (2400) Lil 4 (2400) = Lil 3 (400) = T rue next 4 (2400) = 2•next 3 (400) = ... = 2401. Hence next 6 (x) = 302401. Note that we did not need to compute back in this case. (4) Example: x = 4323 ∈ N 4 , m 4 = 5, m 1 = m 2 = m 3 = 1. Lil 4 (4323)=F alse, Lil 3 (323)=T rue, next 4 (x) = (4+1)•back 3 (323) =5313.

Remark

 ENUM> (defparameter *B-NATURALS* (make-bidirectional-enumerator *naturals*)) => *B-NATURALS* ENUM> (next-element *B-NATURALS*) => 0 ENUM> (next-element *B-NATURALS*) => 1 ENUM> (next-element *B-NATURALS*) => 2 ENUM> (way *B-NATURALS*) => 1 ENUM> (inverse-way *B-NATURALS*) => -1 ENUM> (way *B-NATURALS*) => -1 ENUM> (next-element *B-NATURALS*) => 1 ENUM> (next-element *B-NATURALS*) => 0 ENUM> (next-element-p *B-NATURALS*) => NIL ENUM> (inverse-way *B-NATURALS*) => 1 ENUM> (next-element-p *B-NATURALS*) => T ENUM> (next-element *B-NATURALS*) => 1 ENUM> (next-element *B-NATURALS*) => 2 ENUM> (latest-element *B-NATURALS*) => 2 ENUM> (way-next-element -1 *B-NATURALS*) => 1

 ENUM> (defparameter *p* (make-product-enumerator (list *ABC* *naturals*))) *P* ENUM> (collect-n-enum *p* 10)((A 0) (A 1) (B 0) (C 0) (B 1) (A 2) (A 3) (B 2) (C 1) (C 2))

Table 1 :

 1 Automaton B

	State	Position Action Next state
	Down	0,1	E	Up
		2,3,5,6	SE	Down
		4,7	N	Up
	Up	1,3,4,7	NW	Up
		2	N	Down
		5,6	E	Up
	Up or Down 8		End

 Table 1 is appropriate if X and Y are not singletons. However, the definition of next works well in all cases.

.

 Remark 2.2. It is clear that Z has no d1-ordering, and that, curiously, Z × Z has one, that is a kind of spiral around the origin. So has N × Z and thus Z p for p > 2.

	State Position Action	New state
	Down 0,1	E;E	Up
		2,3,5,6	E;S;S;E (instead of SE;SE) Down
		4,7	N;N	Up
	Up	1,3,4,7	N;W;W;N (instead of NW;NW)	Up
		2	N;N	Down
		5,6	E;E	Up
	Up or 8		End
	Down			

Table 2 :

 2 The automaton C

Down Up End 3,2,5,6 / ESSE 5',6' / NESSSE 0,1 / EE 7,4 / NN 7",4" / ENWN 8' / N 8" / E 8''' / ENW 8' / N 8 8 8" / E 8''' / ENW 1,3,4,7 / NWWN 4" / ENWWWN 7" / ENWN 5,6 / EE 2 / NN 5' / NESE

Table 3 :

 3 Figure 13: Some detours for vertices close to the North border. The E-automaton of Theorem 2.2.

	5		5'	
		E;S;S;E		N;E;S;S;S;E
	5	E;E	5'	N;E;S;E

Table 4 :

 4 , in the "Possible directions" column, "..." means "any". (The list of cases read from top to bottom can be implemented by if then else expressions). The initial state is Down and the final one is End. The D-automaton F.

	State Possible directions Action Next state
	Down SE,...	SE	Down
	Up	¬SE, E,... ¬SE,¬E, N,... ¬SE,¬E,¬N, NE,... ¬SE,¬E,¬N, ¬NE,... NW,...	E N NE NW	Up Up Up End Up
		¬NW, N,... ¬NW, ¬N, E,... ¬NW,¬N,¬E,NE.. ¬NW,¬N,¬E,¬NE..	N E NE	Down Down Down End

 Theorem 3.1. Let Z ⊆ N × N. It is d2--ordered by F if and only if it satisfies Condition C1,C2 and C4. It is d2--ordered by B if and only if G 1 (Z) is connected (which implies C1) and Z satisfies Condition C2 and C4. Proof. Let Z ⊆ N × N satisfy Condition C2 and C4.

	1 and
	C4.2.
	Example 3.1 satisfies Conditions C1-C3 but not Condition C4. By the next
	theorem, Conditions C1, C2 and C4 imply Condition C3. This fact can be
	checked directly without considering automata.

 not be connected (seeExample 3.4 (1)). The finite set Z [p,p+r+q+1[is isomorphic to Z [p+r+q,p+2(r+q)+1[by a translation of vector (r, q), their intersection isZ p+r+q . The set Z [p,∞[is the union of the pairwise isomorphic sets Z [p+n(r+q),p+(n+1)(r+q)+1[. Then G 1 (Z [p,∞[) (resp. G 2 (Z [p,∞[)) is connected if and only if G 1 (Z [p,p+r+q+1[) (resp. G 2 (Z [p,p+r+q+1[) is. Also Z [p,∞[satisfies C3 (resp. C4) if and only if Z [p,p+r+q+1[satisfies C3 (resp. C4.3.1 or C4.3.2). These conditions are thus decidable. Let Z be given by inequalities. One can decide if it is finite, and decide Conditions C1, C3 and C4 by Lemma 3.1. If Z is infinite, one eliminates the redundant equations and one uses Proposition 3.3. By Lemma 3.2, one can decide Conditions C1, C3 and C4.

	Proof. of Theorem 3.2

 Concrete description of the levels of X × Z. If X and Z are infinite, the levels U i of the llo on U := X ×Z of Definition 4.1 are as follows (where • denotes concatenation of sequences).

) The llo on [0, 3] × ([0, 3] × [0, 3]) is (see Figure 20):
	/000/ 100, 010, 001/ 002, 011, 020, 110, 101, 200/
	300, 210, 201, 102, 111, 120, 030/013, 022, 031, 130, 121, 112,103,
	202, 211, 220, 310, 301/.../233, 332, 323/333/.
	Observation 4.1.

 4.1. Computation is accelerated if we note the following facts, state as in Proposition 4.1. Claim 1 : Lil i (y i , ..., y n) implies Lil i+1 (y i+1 , ..., y n). and Claim 2 : ¬Lil i+1 (y i+1 , ..., y n) implies next i (y i , ..., y n) = y i •next i+1 (y i+1 , ..., y n).

	Open

questions 4.1. (1) With the hypothesis of Proposition 4.1, give an algorithm to determine the rank rk(x) of tuple x in the ordering ≤ U .

Enumeration is taken in the sense of "listing" not in that of "counting", as in enumerative combinatorics.

These labels are related with edge directions.

If X is singleton and Y is not, then 0 and

coincide, and so do 2 and 7 and

and 8.

As in fly-automata, cf.[START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF], we allow countable sets of states but transitions must be computable.

For defining the path of Figure5, one can use a finite D 1 -automaton that can test whether the current vertex is on the South-West-North-East diagonal.

One might also wish to order Z by a d2-ordering, that does not necessarily respect levels. We leave this study for future research.

Acknowledgements: This research was supported by the GraphEn project of Agence Nationale pour la recherche and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, under grant agreement No 787367 (PaVeS).

If Z ⊆ N × N, and p < q, with p, q ∈ N ∪ {∞}, we denote by Z [p,q[the union of the levels Z k for p < k < q. Lemma 3.2. Let Z be an infinite subset of N × N . Let Z p be a nonempty level.The following equivalences hold:

(1) G (2) Clear from [START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF] and the definition of C3.

(3) Clear from (1) and the definitions. In the labelling of the levels of Z [p,∞[, instead of Condition C4.0, we require that, Z p , the first nonempty level of Z [p,∞[has the same label for Z [0,p+1[and Z [p,∞[. We now show how such an integer p can be determined in order to complete the proof of Theorem 3.2. We will use two variants of Conditions C4.1 and C4.2, relative to a set Z ⊆ N × N: C4.3.1: if Z k follows Z k , then, in G 1 (Z), the vertex min(Z k) is adjacent to min(Z k) and max(Z k) is adjacent to max(Z k), C4.3.2: same condition with G 2 (Z) instead of G 2 (Z).

Proposition 3.3. Let Z be an infinite affine subset of N × N . One can determine if there exists an integer p such that the conditions of Lemma 3.2 are satisfied.

Proof. Let Z be given by a non redundant description. We let I(Z) be the set of pairs of coordinates (x, y) ∈ Q × Q of the intersection points in the plane of the lines associated with the defining inequalities, including the inequalities i ≥ 0 and j ≥ 0. We let i(Z) be the smallest integer i such that i ≥ x + y for all (x, y) in I(Z).

As Z is assumed infinite, it follows from the proof of Lemma 3.1 that we have three cases.

Case 1 : If Z is defined by i ≤ a and inequalities of type (iii) (j ≥ die). We can take p = i(Z). (a) z is not last in Z j (so that (x, z) is not last in U x+j). Then y = x and z follows z in Z j .

(b) (x, z) is not last in U x+j but z is last in Z j . If x + j is even, we must have j > 0, otherwise z is last in Z 0 and (x, z) is last in U x+j = U x . Hence, we have y = x + 1 and z is the first element in Z j-1 .

If x + j is odd, we must have x > 0, otherwise (x, z) = (0, z) is last in U x+j = U j . Hence, we have y = x -1 and z is the first element in Z j+1 (cf. the definition of back Z below).

(c) If (x, z) is last in U x+j (hence, z is last in Z j), we have two cases: if x + j is even, then j = 0, z is last in Z 0 , y = x + 1 and z is the first element in Z 0 ; (possibly equal to z):

Here, the height of (y, z) is one more than that of (x, z). In the previous two cases, it is the same.

We can visualize Case (c) as follows:

If i is even, then

In Case (b) the transition from the last element of Z j to the first one in Z j-1 is called a back step in Z. In Case (c) the transition from z, last in Z 0 , to z , first in Z 0 , is also a back step inside the level Z 0 of Z, in the case where Z 0 is not singleton. However, Z 0 is singleton if Z = X q × ... × X p .

If X and/or Z is finite, this description must be modified. We define m X in N ∪ {∞} as the least upper bound of X, and, similarly, M Z as the least upper-bound of Lev(Z). We fix k ≤ m X + M Z (U m X +M Z is the last nonempty level). To describe U k , we define

If k is even, we have:

If k is odd, we have:

Construction 4.1. We define an automaton A U intended to define the llo on U := X ×Z (cf. Definition 4.1) where X and Z are llo's that satisfy the following conditions:

(1) All levels of X are singleton, and so are the minimal level Z 0 and the maximal one (if Z is finite).

(2) We are given an automaton A Z for Z that defines back steps, and more precisely, such that, based on it, we have routines for the following tests and actions:

For X, Lil X (x) is always true, and back X is nothing but prev X . We will use for it the routines first X , last X , next X and prev X .

Describing automata with directions N,E,SE etc. is no more convenient. If X is an interval of integers, then first X (x) is implemented by the test (x = 0)?, last X (x) is implemented by the test (x = m X)?, next X by x := x + 1, and

We use this notation for uniformity with those for Z that cannot be easily expressed from integers. (However, see Algorithm 4.9 below).

The minimal level U 0 and the maximal one (if U is finite) are singleton. This will allow us to use recursively this construction. For the same reason, we will build an automata A U that defines the same five tests and actions as for Z.

Examples will be given concerning U := [0, 3] × Z, where Z := [0, 3] × [0, 3], see Figure 20.

Construction:

The states of A U are pairs (Up,s) and (Down,s) where s is a state of A Z . The initial state is (Down,Init Z) where Init Z is the initial state of A Z . We define:

Lil U is defined by Table5.

In Tables 5,6 Theorem 4.1. There is a d2--ordering of U = X 1 × X 2 × ... × X n defined by an automaton with 2 n-1 states.

Proof. We use Construction 4.1 recursively by writing

To have a d2-ordering, we must check that the distance between consecutive elements is at most 2.

We consider the following property of a llo Z (intended to be X i × (... × X n) for some i).

P (Z): (a) Z 0 is singleton and so is the maximal Property P (Z) holds if all levels of Z are singleton. This so for X n ⊆ N. Note that Lil Z always holds and back Z is prev Z .

Next we consider P (U) where U := X × Z and P (Z) holds.

We have (a). (b) holds by the definition of back U in Table 8 and assertion (b) for Z.

(c) Assume that Lil U holds. From Table5, we have Lil U in all cases, because last Z implies Lil Z and so does first Z because Z 0 is singleton (by (a)).

Consider Table 6. The transition whose action is next X ; back Z and precondition is ¬last X ∧ ¬first Z is not compatible with the condition Lil U which needs, in state Down, first Z or last X . By P (Z), all transitions change a single component. Similarly, consider Table 7. The transition whose action is prev X ; next Z and precondition is ¬first X ∧ ¬last Z is not compatible with the condition Lil U which needs, in state Up, first X or last Z . This proves (c).

(d) Clear from the tables.

Condition (a) is necessary for Construction 4.1 to work.

The automaton is the same for sets X i either infinite or finite with maximal value m i .

Avoiding enumeration for computing the next element.

We take each X i to be [0, m i] or N, with known least upper-bound m i . We wish to compute the n-tuple following a given one, say (3,0,0,2,4,0,0) to take an example, by a "direct" algorithm, without having to enumerate U until one reaches the given tuple and the one following it. There exists an algorithm that, for input x = (x 1 , ..., x n) such that x i ≤ m i for all i, determines in time O(n) the n-tuple that follows x in ≤ U without enumerating U .

Proof. We will compute next U ((x 1 , ..., x n)) by means of at most n auxiliary computations of Lil Xi×...×Xn ((y i , ..., y n)) , next Xi×...×Xn ((y i , ..., y n)) and back Xi×...×Xn ((y i , ..., y n))) for 1 ≤ i ≤ n and tuples (y i , ..., y n).

To simplify notation, we will use Lil i (y i , ..., y n) , for Lil Xi×...×Xn ((y i , ..., y n)), and similarly for next and back. We fix U := X 1 × X 2 × ... × X n such that the values m i are known.

If (y i , ...,

We compute Λ 1 (x 1 , ..., x n) by recursion, by means of Λ 2 (...),...,Λ n (...) for appropriate arguments.

For computing Λ i (y i , ..., y n), we use Tables 5,6, 7 and 8. The state is Up if y i + ... + y n is odd and Down it is even.

We now examine how to compute Λ i (y i , ..., y n) if i < n.

For computing Lil i (y i , ..., y n) (cf. Table5), we use:

(y i = 0)? for first X , (y i = m i)? for last X , Lil i+1 (y i+1 , ..., y n) for Lil Z and ((y i+1 , ..., y n) = (m i+1 , ..., m n))? for last Z .

For computing next i (y i , ..., y n) and back i (y i , ..., y n)(cf. Tables 6, 7 and 8), we use: ((y i+1 , ..., y n) = (0, ..., 0))? for first Z , next i+1 (y i+1 , ..., y n) for next Z , back i+1 (y i+1 , ..., y n) for back Z and, the same definitions as above for first X , last X and last Z . (

(2) If x = (2p, 0, ..., 0) and 0 ≤ 2p < m 1 , or x = (0, 0, ..., 0, 2p + 1) and 0 < 2p + 1 < m n , then, x is last in its level and the following element x is, respectively, (2p + 1, 0, ...,) or (0, 0, ..., 0, 2p + 2).???

(3) Example: • way-next-element-p (way B): does there exist a next element in this way?

• way-next-element (way B): move to the next element in this way.

• latest-element (B): last object enumerated.

The operations next-element-p and next-element can be written with way-next-element-p and way-next-element: The call (sliding-step X Y 1) corresponds to a jump-up (move to upper level) and (sliding-step X Y -1) corresponds to a jump-back (move to lower level). In the case where neither X nor Y can move in their current way and the enumeration is not over, we are in a case called corner step which may happen only when at least one of the enumerators is finite (otherwise there is always a possible sliding step). In the corner step case, we change inverse the way of the enumerator which goes in the opposite direction of way (of the product enumerator) and move it to the next level according to way. If way = 1, we move to the upper level. If way = -1, we move to the lower level. The other enumerator changes way (it could not contribute to the level change because it is blocked in the direction way).

(defun corner-step (X Y way)

;; change the way of the enumerator which goes in opposite direction ;; to way and move it; the other enumerator changes way (when (plusp (* way (way enum-x))) ;; put in enum-x the one that goes in direction -way (psetf enum-x enum-y enum-y enum-x)) (inverse-way enum-x) ;; enum-x will move in direction way (next-element enum-x) ;; enum-y will move in direction -way (inverse-way enum-y))

3 Diagonal enumeration of a cartesian product Let Nil be the bidirectional leveled enumerator corresponding to the empty product enumerating the singleton set containing a single tuple of length 0: Nil = {()}; it has only one level L 0 = {()}.

We may show that recusrive use of DP yields the leveled--ordering defined in Definition 4.1 and described in Observation 4.1.

Proposition 3.1. Let E 1 , E 2 , . . . , E p be bidirectional enumerators. The enumerator DP(E 1 , DP(E 2 , DP(..., DP(E p , Nil)))) is a bidirectional leveled enumerator and a leveled--ordering of T p = Π p i=1 E i .

In the examples, we will use only integers so that the level of a tuple is the sum of its elements.

ENUM> (defparameter *e2* (make-list-enumerator '(0 1))) => *E2* ENUM> (defparameter *e3* (make-list-enumerator '(0 1 2))) => *E3* ENUM> (collect-enum *e2*) => (0 1) ENUM> (collect-enum *e3*) => (0 1 2) ENUM> (collect-enum (make-product-enumerator (list *e3* *e3*))) ((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (2 1) (1 2) (2 2)) ENUM> (collect-enum (make-product-enumerator (list *e3* *e3* *e3*))) ((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1) (2 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1) (1 1 2) (2 0 2) (2 1 1) (2 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2)) ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 30) ((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0) (4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1) (5 2) (6 2) (7 1) (8 0) (9 0) (8 1) (7 2) (8 2) (9 1) (10 0)) ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3*)) 20) ((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (3 0) (2 1) (1 2) (2 2) (3 1) (4 0) (5 0) (4 1) (3 2) (4 2) (5 1) (6 0) (7 0) (6 1)) ENUM> (collect-n-enum (make-product-enumerator (list *naturals* *e3* *e3*)) 20) ((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1) (2 0 0) (3 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1))