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Abstract Monthly-average estimates of latent heat flux have been derived from a combination of
satellite-derived microwave emissivities, day-night differences in land surface temperature (from
microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible
and near-infrared surface reflectances. The estimates, produced with a neural network, were compared
with data from the Noah land surface model, as produced for GLDAS-2, and with two alternative estimates
derived from different datasets and methods. Areas with extensive, persistent, substantial discrepancies
between the satellite and land surface model fluxes have been analyzed with the aid of data from flux
towers. The sources of discrepancies were found to include problems with the model surface roughness
length and turbulent exchange coefficients for midlatitude cropland areas in summer, inaccuracies in
the precipitation data that were used as forcing for the land surface model, and model underestimation
of transpiration in some forests during dry periods. At the tower sites analyzed, agreement with tower
data was generally closer for our satellite-derived fluxes than for the land surface model fluxes, in terms
of monthly averages.

1. Introduction

Land surface fluxes of water mass and latent heat are among the highly uncertain components of the water
and energy cycles, with substantial disagreement among fluxes estimated by land surface models and
various types of retrievals from satellite and other data sets [Jiménez et al., 2011; Vinukollu et al., 2012;
Peters-Lidard et al., 2011]. No single data set ormethodology has emerged as a standard for land flux estimation.
The uncertainties among model results are of particular concern for addressing scientific questions for which
reliable models are essential, including understandingwater cycle processes and predictingwater cycle aspects
of global change. In contrast to the problem over ocean, the land flux process is complicated by biological
processes of vegetation, terrain and landcover structure, and variable soil texture and moisture. From a global
remote sensing standpoint, the difficulties over land are compounded by the fact that some key elements of
flux processes (e.g., stomatal resistance and turbulent forcing by wind) are, at best, retrievable only with
application of parameterizations that have large uncertainties. Nevertheless, visible, infrared, and microwave
satellite data contain information about near-surface soil and vegetative properties that are strongly related to
surface water and heat fluxes, but the relationships of the satellite measurements to surface water fluxes are
indirect and incomplete.

Numerous methods have been developed for estimating land surface water fluxes using remote sensing
data, as have been reviewed byWang and Dickinson [2012] and others referenced therein. These methods
rely, to varying degrees, on empirical relationships, energy balance constraints, and diagnostic models of
physical processes related to surface fluxes. Most of these methods rely on products derived from visible
and infrared satellite data, such as vegetation indices and land surface temperature, in combination with
near-surface meteorological data from atmospheric data assimilation or other sources. Microwave data
have been used in a relatively small number of methods [e.g., Miralles et al., 2011; Sun et al., 2012; Jiménez
et al., 2009]. Microwave data have the disadvantage of relatively coarse spatial resolution (~20 km at best)
but have the advantage of being available in cloudy and clear areas, avoiding the biases of visible and
infrared measurements toward clear-sky conditions.
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Data assimilation systems are an attractive option for flux estimation because they have the potential to
optimally account for the information content and the error characteristics of all the data sources, while
imposing constraints associated with the relevant physical processes represented by a numerical model
[Reichle et al., 2002; Rodell et al., 2004]. When satellite measurements are used for data assimilation, they can
be introduced in the form of radiometric measurements or in the form of retrieved characteristics. Land data
assimilation has thus far emphasized the latter approach [e.g., Berg et al., 2003]. Assimilated parameters of
particular relevance to evaporation include the radiative flux, surface temperature, and soil moisture [e.g.,
Rodell et al., 2004; Bosilovich et al., 2007; Reichle et al., 2007]. The use of retrieved parameters is most
appropriate when the relationship between the surface characteristics and the radiometric measurements is
simple and direct, and is more problematic when there are multiple surface characteristics that can have
ambiguous effects on the measurements. In the case of soil moisture, currently available measurement
systems leave considerable ambiguity between effects of moisture and other variables. The retrieved
moisture products thus rely heavily on assumed parameters. When those parameters disagree with the
formulations in the assimilating land surface model (LSM), there may be substantial biases [Reichle et al.,
2004]. Biases can be empirically reduced to the point that useful assimilation occurs [Reichle et al., 2007], but
information can be corrupted in this process because there is no way to be sure the bias-adjusted moisture is
consistent with the satellite measurements. A related problem is an insufficient dynamic response of a
retrieval algorithm to changes in soil moisture [Reichle et al., 2007], in which case there is information lost
upstream of the assimilating system. Successful assimilation requires that the model parameterizations and
variables are consistent not only with evapotranspiration processes but also with the related visible, infrared,
and microwave radiative processes that produce the signals measurable by satellite instruments. When they
are inconsistent, the satellite information is effectively rejected or misguides the analysis.

As a step toward improved capabilities for estimating fluxes by land data assimilation, this paper addresses
the identification and understanding of situations where model-produced fluxes are inconsistent with
satellite data products. In particular, we focus on seasonally persistent regional discrepancies. Such
discrepancies may result from the model behavior being inconsistent with the actual behavior of surface
properties represented in the satellite measurements, from shortcomings in the methodology used in
satellite data processing, or from both.

The LSM considered here is the widely used Noah model [Ek, et al., 2003]. The LSM latent heat fluxes were
compared with fluxes retrieved from a combination of visible, infrared, and microwave satellite data, on
monthly time scales, using a neural network similar to the one used by Jiménez et al. [2009]. For context, these
fluxes are compared with two widely used flux estimates generated from satellite and other data sources. We
then go beyond comparisons to investigate the sources of some discrepancies between the flux estimates, in
instances where these discrepancies are prominent by their magnitude, their regional extent, and their
persistence over at least 2 months. These regional discrepancy analyses incorporate time series of in situ data
from flux towers. The discrepancy investigations presented here are restricted to instances for which flux
tower data were available, due to the importance of the independent in situ data for drawing conclusions
regarding the sources of discrepancies.

2. Methodology
2.1. Neural Network Approach

Neural network (NN) training for prediction of latent heat fluxes (LE) depends on matching the predictor data
(section 2.2.1) with reference LE data, using a data set with a sufficient number and diversity of conditions
for robust modeling of the statistical relationships. We required reference data that were largely independent
of the satellite information sources being evaluated in this study. These criteria are not met by tower
measurements or global flux analyses (section 2.2.4). Instead, we used LE data from the Noah LSM in the
training. This approach has the weakness that the NN inherits global biases from the particular LSM and its
skill is, to some degree, constrained by the accuracy of the LSM. The regional and temporal variability of the
NN-derived LE is, however, determined entirely by the variability of the satellite-derived inputs, so these
aspects of the NN-derived LE are not inherited from the LSM. This property follows from our approach of
training the NN with a single pool of data covering all seasons, regions, and surface types, with no explicit
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information about location or time among the NN inputs. The NN products can, therefore, provide a degree
of independent skill, with the capability to detect potential problems in the LSM fluxes [Jiménez et al., 2011].

2.2. Data Sources
2.2.1. Satellite Data
The selection of satellite data types to use in the flux estimation was based on the selection by Jiménez et al.
[2009], while more recent data sources were used for some of the data. All of the selected data sets spanned
the year 2003, which was the period of focus for this study.

Visible and near-infrared reflectances from the Moderate Resolution Imaging Spectroradiometer (MODIS)
on the Aqua spacecraft were used primarily for their information regarding green vegetation. Specifically,
we used surface reflectances in the blue, red, and near-infrared (bands 3, 1, and 2, respectively) that are
intermediate products in generation of the Enhanced Vegetation Index (EVI) monthly 1 km data set
(MYD13A3) [Huete et al., 1999]. We used the individual reflectances to allow the nonlinear neural network
access to the full information content of the channels rather than use data reduced to EVI.

Passive microwave surface emissivities from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E)
provide information regarding surface moisture and vegetative properties including the water content
[Ferrazzoli et al., 1992; Prigent et al., 2001]. The emissivities were taken from the merged product of Moncet
et al. [2011], which resulted from filtering and averaging over monthly intervals. These emissivities were
produced on a fixed global sinusoidal grid with 27.8 km spacing, for vertical and horizontal polarizations at
10.65, 18.7, 36.5, and 89GHz.

Land surface temperatures (LST) retrieved from AMSR-E data were included to represent the diurnal change in
surface temperature, whose relationship to the partition of energy between latent and sensible heat fluxes has
been exploited in satellite remote sensing of these fluxes [Diak, 1990; Wang et al., 2006; Anderson et al., 2007].
These and most other applications of LST for flux estimation have relied on infrared data sources [e.g., Price,
1980; Stisen, et al., 2008; Venturini et al., 2008; Lu and Zhuang, 2010; Tang et al., 2010; Ryu et al., 2011]. AMSR-E
data cannot represent the full diurnal cycle because measurements were made just twice per day, according to
the Aqua sun-synchronous orbit; however, themeasurement times (01:30 and 13:30 local time) were suitable for
approximating the diurnal range of LST. We retrieved LST from 10.65 GHz vertical-polarization brightness
temperatures (TB) by solving a simple form of the radiative transfer equation:

TB ¼ T↑ þ τ εTe þ 1� εð ÞT↓� �
; (1)

where Te is the effective emitting temperature of the surface, τ is the total atmospheric transmittance along the
sensor line of sight, T↑ and T↓ represent the upwelling and downwelling atmospheric emission, respectively,
and ε is the surface emissivity [Moncet, et al., 2011]. The retrievals of day (13:30) and night (01:30) LSTwere based
on emissivities retrieved from separate day and night data. In applying this equation, we used Te to represent
the LST and we used emissivities derived at a monthly time scale with a nonpenetration approximation. For
surfaces with significant penetration, these approximations introduce errors that offset each other to the extent
that the day and night differences between the LST and Te are each constant over the monthly period
represented by the emissivities. Issues related to penetration are discussed more extensively by Galantowicz
et al. [2011]. A radiative transfer model was used to compute τ, T↑, and T↓ [Liebe et al., 1992; Rosenkranz, 1998]
with atmospheric data derived from the Global Data Assimilation System (GDAS) analysis [Kanamitsu, 1989;
Kalnay et al., 1990]. As input to the neural network, we used the day-night difference in LST (ΔLST).

The net radiative flux at the surface (Rn) can be viewed as the available energy source for the combination of
latent, sensible, and ground heat fluxes [Wang and Dickinson, 2012]. While satellite-derived Rn products are
available, they depend heavily on data from numerical models. We chose to avoid this influence of numerical
models on our retrieved fluxes by using satellite-derived downward shortwave and longwave radiative fluxes as
inputs to the neural network rather than Rn. The reflected (upward) shortwave radiation is indirectly and
approximately represented by the MODIS reflectance data discussed above. In particular, we used radiative
fluxes from the International Satellite Cloud Climatology Project (ISCCP) FD product [Zhang, et al., 2004].
2.2.2. Land Surface Model Data
The LSM data against which we compared the satellite-derived products were taken from the Global
Land Data Assimilation System 2 (GLDAS-2) [Rodell et al., 2004]. The data available for the work reported
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here were from Experiment 1, which used the Noah LSM (version 2.7.1) at 1° spatial resolution. More
recently, subsequent versions of Noah and the GLDAS-2 experiments have been produced. Considering
that LSMs and their input data are being constantly updated, our analyses of LSM data were not aimed
at validation or development of this specific version but rather at understanding the behavior of this
model in relation to the information from satellite data toward identifying factors that may present
challenges to land data assimilation.
2.2.3. Flux Tower Data
Eddy covariance flux measurements and other relevant data were taken from several sites in the FLUXNET
[Baldocchi, et al., 2001] and Ameriflux [Ocheltree and Loescher, 2007] networks. For Ameriflux sites, we used
level-4 data, which are gap filled [Moffat et al., 2007]. Flux estimates from eddy covariance instruments
are subject to several significant sources of error, including local heterogeneity and insensitivity to scales
of motion that contribute to time-averaged fluxes, and which may result in the estimated components
of the surface energy budget being unrealistically out of balance with each other [Baldocchi, 2003;
Massman and Lee, 2002; Mauder and Foken, 2006; Mauder, et al. 2010]. When used as reference for analyzing
flux data from satellites and LSMs [e.g., Fisher et al., 2008; Vinukollu et al., 2011], an additional hindrance is
the scale discrepancy between the area represented by the tower measurements and the averaging area of
the satellite and LSM gridded fields, the significance of which depends on the degree of surface heterogeneity
at these scales [Li et al., 2008]. Despite these limitations, flux tower measurements are useful reference because
they are independent of the satellite and LSM-based estimates. The availability of tower data at high time
resolution (30min) is valuable because it allows analysis of relationships among variables to provide insight
into the processes affecting monthly and longer-term averages.
2.2.4. Other Flux Analyses
As additional points of reference for our satellite-derived fluxes and those from Noah, we considered widely
used flux data from upscaled FLUXNET data and from the MODIS global terrestrial evapotranspiration product
(MOD16). Both of these data sets are derived from a combination of surface-based and satellite-based
measurements. The former data set was derived with amodel tree ensemble (MTE) machine learning technique
[Jung et al., 2011]. The upscaling incorporates 29 input variables to stratify environments and/or predict fluxes,
including remotely sensed fraction of absorbed photosynthetically active radiation (PAR), and monthly and
annual surface measurements. MOD16 fluxes are modeled based on the Penman-Monteith equation [Monteith,
1965] with inputs from daily meteorological data and MODIS land cover type, PAR, leaf area index, and albedo
[Mu et al., 2011, 2013].

2.3. Neural Network Training

The architecture for the NN was a multilayer perceptron, with the satellite data as the first-level inputs and LE
as the final output. The training data set was built from a sample of 100,000 data points, randomly selected
from the data available in February, May, August, and November 2003, which prior work verified was
sufficient to capture the annual variability [Jiménez et al., 2009]. The selection of data was equalized such that
the training data set LE were uniformly distributed across the range of LE. Only points with valid data from all
the observations and highest-quality AMSR-E emissivity data (according to the emissivity algorithm’s quality
criteria) were included in the training data set. Sites were excluded from the training and the analysis data
sets where simple tests indicated likely snow cover or inundated land. After training, the NN was executed
with data from each month of 2003.

Each of the satellite products were resampled to a 0.25° equal-area grid, except the ISCCP data that
originated on that grid. The Noah data were produced on a 1° grid and were mapped to the 0.25° grid by
selecting the nearest neighbor, so there would be a common grid for inputs and outputs of the NN
training. The number of grid points with valid input data varied by month from 103,060 for January to
133,753 for September. The training data set was thus a small fraction of the domain (in space and time)
over which the NN was applied.

3. Global Analyses

Some general characteristics of LE from each of the sources at global scales are evident in maps for July
2003 (Figure 1). Along with the broad similarities that follow the climate zones, there are substantial
differences among the sources. The areas of highest LE are more spatially compact for Noah than for the
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other sources, such as in northern Brazil and in North America. The LE from MOD16 differs substantially
from both of the other products of remote sensing, particularly over South America, Africa, and
southeastern Asia. The satellite/NN product has higher LE over much of southern Europe than the other
products have. The satellite/NN LE differs less from the FLUXNET-MTE LE than from either Noah or MOD16
LE (14.4, 17.4, and 22.8W/m2 annual RMS, respectively). These relationships hold in every month, despite
the facts that (1) the satellite/NN was trained using samples of these same Noah data and (2) the satellite/NN

Figure 1. Latent heat fluxes for July 2003 from the data sources as labeled. Missing data over land (white) was, for the Sat/NN,
mostly due to lack sufficient stable emissivity samples for monthly averaging (e.g., due to persistent cloud cover over India).
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and FLUXNET-MTE statistical methods use completely different inputs. These results indicate that the temporal
and spatial features of the satellite/NN product are significantly independent from the Noah model. That
independence, along with the relative consistency of the satellite/NN and FLUXNET-MTE, lends confidence
in usefulness of satellite/NN LE for evaluating Noah model behavior.

4. Regional Analyses
4.1. Central Great Plains

There is a large, persistent discrepancy between Noah and satellite/NN LE over the Great Plains in the
summer (Figure 2). The satellite/NN-derived LE has a pronounced gradient along the Great Plains in July,
which weakens and becomes more locally concentrated in August. The Noah LE is similarly low in the
west but has substantially different maxima toward the eastern plains. The largest differences are around
the intersections of Nebraska, South Dakota, and Iowa in July.

The gradient in the satellite/NN LE generally follows a gradient in the green vegetation (EVI), and the
microwave-derived ΔLST difference is also consistent with more diurnal surface heating and less latent
heat flux to the west of the main LE gradient (Figure 3). These satellite products indicate high LE around
the Nebraska / South Dakota / Iowa intersection, persisting from July to August, where the Noah LE is
relatively low.

The analysis is supported by data from Ameriflux tower sites. Through July and August, the Nebraska site
(in an irrigated corn field) [Suyker and Verma, 2009] has the highest LE among the tower sites in this region
(Figure 4), with decreasing LE southward through the Kansas and Oklahoma sites. For these sites, the
monthly-average satellite/NN LE for June–August generally agrees with the tower LE within 25W/m2,
with both indicating a strong drop in LE from the Nebraska site to the Oklahoma site. The Noah LE at these
sites varies less than the other products from site-to-site and month-to-month, as the vegetative cycle
evolves. These results are corroborated by analyses of the evaporative fraction (EF) over the July–August
period (approximated as LE divided by the sum of LE and sensible heat flux, H), which is higher for the
tower data than for Noah in Nebraska and is lower in Oklahoma, in each case by about a factor of 2
(not shown).

Figure 2. (left) LE from Noah, (right) the satellite/NN product, and the (middle) difference between the two for (top) July
and (bottom) August. Instances where the satellite/NN LE is missing due to a missing NN input are gray in the difference
plots and white in the satellite/NN plots. Selected flux tower sites are marked and labeled A–D.
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A significant factor in the LE discrepancies is the band of relatively low Noah LE running from eastern
South Dakota through Ohio and another in the central Mississippi River valley (Figure 2, top). This relatively
low LE corresponds to low EF but is not associated with low soil moisture (Figures 5a and 5b). We found
that the low Noah LE is related to the predominant landcover type (Figure 6). Comparing cropland to
the surrounding landcover types, while excluding the arid grassland and scrubland areas to the west,
the July LE is distinctly lower and satellite/NN�Noah LE discrepancies are distinctly higher for the areas
classified as cropland. This relationship is not confined to the Great Plains area. The relationship is apparent
when considering all of these land types in the 30°–60° band of the northern hemisphere (Figure 6). Frequency
distributions of the discrepancies indicate that positive discrepancies are larger for croplands than for other
landcover types throughout the summer in the central US, but only in July do croplands have a greatly different
distribution than other landcover types (Figure 7). For the full 30°–60° band, only in July does the cropland
distribution stand out from the others. Considering that (1) the discrepancies are highly distinct for cropland
surfaces types, (2) the surface type classification is a Noah parameter that affects modeled fluxes, and (3) the
satellite/NN products are derived without any regard to surface type classifications, these findings point to
potential problems with the elements of the Noah parameterization dependent on the cropland type in this
summer midlatitude environment.

In the configuration of Noah used for these runs, there are several parameters that depend on landcover type
for the snow-free conditions relevant here. These parameters include the following:

1. The number of soil layers penetrated by roots has a direct effect on evapotranspiration (ET), which is
closely related to LE, by way of the soil moisture volumetric content. Croplands have roots in three
layers, versus four layers for the other landcover types represented in the eastern Great Plains. This
difference is accounted for in the root-zone soil moisture plotted in Figure 5b, with the approximation
that the root depth was taken as constant for the grid cell, while the Noah model treats fractional cover

Figure 3. (left) Enhanced vegetation index (EVI) fromMODIS and (right) day-night LST difference from AMSR-E for (top) July
and (bottom) August.
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of types during its integration. The root-zone soil moisture is relatively high in the relevant areas
(discussed above) where the LE is relatively low, indicating that the root depth is not a driving factor
in these features.

2. There are two parameters related to the stomatal resistance factor associated with solar radiation [Chen
et al., 1996]. We computed the net effect of these two parameters as a function of solar irradiance for each
landcover type, while assuming there is no stress due to air temperature, vapor pressure deficit, or soil
moisture availability. The net effect was for cropland to have lower resistance than any of the other types
represented in the eastern Great Plains (Figures 6 and 7), indicating that these parameters were not
driving factors in the low-LE features.

3. A parameter used to compute the stomatal resistance factor associated with the vapor pressure deficit is
inversely related (by a series of equations) to ET. The cropland type has a lower value of this parameter
than the other types represented in the eastern Great Plains, indicating that these parameters were not
driving factors in the low-LE features.

4. The leaf area index (LAI) has a secondary dependence on landcover type, and a primary dependence on
monthlymaps of LAI, adjusted according tomonthly maps of fractional green vegetation [Rodell et al., 2004].
The primary effect of LAI on ET is a direct relationship, by way of the canopy resistance, and there is a
secondary inverse influence via the radiation stress factor of the canopy resistance. The LAI is not relatively
low in the areas that have relatively low LE running from eastern South Dakota through Ohio, nor is the
fraction of green vegetation low in those areas (not shown). Both these parameters are relatively low in
the central Mississippi river valley and thus contributed to the low LE and large discrepancies with the
satellite/NN product in that area.

Figure 4. Daily-average LE from Noah (brown), the flux tower (blue), and the satellite/NN (red), for the sites marked A–D in
Figure 2. The tower site identifiers are labeled at the right. The markers indicate the monthly averages.
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5. The roughness length (z0) in Noah for cropland
(0.035m) is much lower than for the other,
forested/wooded, types in the eastern Great
Plains, by factors ranging from 16 to 31. The
roughness length affects the surface exchange
coefficient for heat and moisture through
several terms, with a net direct relationship.
As discussed by Mitchell et al. [2004, p. 23], a
lower exchange coefficient would tend to
lead to increased daytime surface temperature,
decreased daytime available energy for
evapotranspiration (the net radiation minus
the heat flux into the soil), and decreased
LE. The lower exchange coefficient, by itself,
would also tend to reduce H, but an increased
difference between the surface and air
temperatures would have an opposite and
partially compensating effect on H. The
combined effects would tend to decrease
EF. Figure 5c shows that Noah midday LST is
indeed high relative to AMSR-E LST in these
cropland areas with low LE. The relatively
low Noah LST in relation to AMSR-E in arid
areas toward the west is consistent with
the findings of Zheng et al. [2012].

Beyond the Noah parameters controlled by the
landcover type, the fraction of green vegetation
also affects ET and LE, in a negative sense for
direct evaporation from the soil, in a direct
relationship with evaporation of canopy surface
water (when wet), and in a direct relationship
with potential transpiration. The net effect on ET
would generally be direct, except possibly
during short periods after rainfall when the soil
surface is wet. As discussed in the context of its
secondary influence on LAI, the values of this
parameter in the low-LE areas that coincide with
cropland are such that it would contribute to
discrepancies in the central Mississippi river
valley but not in the region from eastern South
Dakota through Ohio.

Taken as a whole, the analyses discussed above
give substantial evidence that the z0 in cropland
areas was too low during the summer growing
season in these Noah runs, and the discrepancies
with the satellite/NN LE in this region were

Figure 5. (a) July-average Noah evaporative fraction,
(b) soil moisture volumetric content for the root zone,
and (c) difference between Noah and AMSR-E midday
(~13:30 local) LST. The soil moisture accounts for
Noah’s dependence of root zone depth on predominant
land cover type.
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largely attributable to this factor. Low LE in cropland areas of the Great Plains was evident also in summer
season averages for years 2002–2008 for Noah v2.7.1 as configured for the North American Land Data
Assimilation System (NLDAS), but they were not evident in NLDAS runs that used Noah v 3.2 [Peters-Lidard
et al., 2011]. The consistency between our findings using GLDAS runs and the NLDAS findings using Noah
v2.7.1 indicate that the features we analyzed are systematic features of this version of
Noah parameterizations.

4.2. Northern California

In much of Northern and Central California, the discrepancies between satellite/NN and Noah LE were
negative in the late spring and early summer and became positive frommidsummer through the fall (Figure 8).
These discrepancies covered portions of the Central Valley and the surrounding foothills and mountains.

Figure 6. (top) Noah predominant landcover type and July-average values of Noah LE and satellite/NN�Noah LE, as
labeled, (middle) for surface types in the central US, excluding the arid types of the western Great Plains, and (bottom)
for the latitude band 30°N–60°N across all longitudes. The types are based on AVHRR data, as produced at the University of
Maryland. Abbreviations are evgrn = evergreen, decid = deciduous, needle = needleleaf, broad = broadleaf, for = forest,
grass = grassland, and shrub = shrubland.
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Over this period, flux tower data were
available from Tonzi Ranch and Vaira
Ranch Ameriflux sites (at 169m and
133m elevation, respectively). These
sites are only 3 km apart in the Sierra
Nevada foothills, but there are systematic
differences between energy and
water fluxes at the two sites related to
differences in vegetation cover, with
the Tonzi site classified as oak savanna
woodland and the Vaira site as grassland
[Baldocchi et al., 2004]. A third site
(Blodgett Forest) at higher (1280m)
elevation is in a ponderosa pine plantation,
mixed-evergreen coniferous forest
[Goldstein et al., 2000]. The sloping
terrain and variable vegetation cover
accentuate the scale differences
between the tower, satellite, and model
data, but the discrepancies in LE are
of sufficient magnitude and extent
that the scale differences are not a
major hindrance in this analysis.

The time series at Vaira and Tonzi are the same for the Noah and satellite/NN data because both sites are
within a single grid box. The tower LE has a spring maximum at these sites and a secondary maximum in
November (Figure 9). The early-summer drop in LE is sharper for Vaira than for Tonzi, where the predominant
grasses at Vaira go dormant during the summer dry period while the scattered oak trees at Tonzi continue to
transpire [Baldocchi et al., 2004]. The Blodgett data indicate a summer maximum in LE associated with the
maximum of net radiation in this heavily forested area (with correlation 89% for noon daily measurements
over this 8-month period, in contrast to the 19% correlation at Vaira).

The Noah LE over these sites (which are all within a single grid box) responds strongly to the precipitation
(Figure 10) and the corresponding surge in soil moisture and subsequent dry-down (not shown). In
comparison with the tower data (which was similar at all 3 sites), the Noah precipitation is less frequent and
more intense. The Noah model has major precipitation events in middle-late May, while the tower data
indicate the spring precipitation season ending in early May. In relation to the precipitation, the Noah LE

Figure 7. Frequency distribution of the number of grid cells as a function
of the difference in LE between the satellite/NN and Noah products, for
(top) the central US and (bottom) the latitude band 30°N–60°N for July
2003. The color scheme is as in Figure 6.

Figure 8. The difference in LE between the satellite/NN LE and the Noah LE for (left) June, (middle) August, and (right)
October. The markers indicate the Tonzi Ranch and Vaira Ranch tower sites (A) and the Blodgett Forest site (B).
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Figure 9. Daily-average LE from Noah (brown), the flux tower (blue), and the satellite/NN (red), for the Vaira, Tonzi, and
Blodgett sites. The markers indicate the monthly averages.

Figure 10. Daily precipitation at the Tonzi Ranch Ameriflux site from (top) the tower data and (middle) the Noah model,
and (bottom) ΔLST (filled markers) and ΔTair (unfiled markers). The temperature data sources are Noah (brown), the flux
tower (blue), and AMSR-E (red).
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continues to rise throughout May while the tower LE at Vaira and Tonzi begin to decrease by the end of the
month. The tower data indicate substantial precipitation in November, with corresponding increases in LE,
particularly at Vaira and Tonzi, while November precipitation in Noah was restricted to the end of the month
and Noah LE was very low throughout the month. Precipitation is treated as an external forcing for Noah and,
with this version of the GLDAS model, the precipitation data were from the Princeton data set [Sheffield et al.
2006], which merges data from several sources.

The monthly-average LE from the satellite/NN is generally within about 30W/m2 of averages from the tower
data at these sites. These products agree with respect to the rise in LE from April to May and the drop in LE
fromMay to June at Vaira and Tonzi but disagree significantly with respect to the May LE at Blodgett. At Vaira
and Tonzi sites, the satellite/NN data lack the small rise in monthly-average LE in November. The satellite/NN
data are consistent with the tower data with respect to the higher summer LE at Blodgett than at the
other sites.

Time series of ΔLST and day-night air temperature differences (ΔTair) at Tonzi show the relationships
between LE and the surface thermal diurnal cycle (Figure 10). In the tower data, ΔTair is highest in the
June–October period, corresponding to the relatively low EF over that period. At the end of October the
tower ΔTair decreases by about a factor of 2, corresponding to the onset of precipitation and the increase in
LE, as would be expected with a shift from sensible heat to latent heat flux as moisture availability rises. The
AMSR-E ΔLST (an input to the NN) follows a trend similar to the tower data and, as expected, the ΔLST is
higher than the ΔTair. The ΔLST and the ΔTair vary less over this period for Noah than for the corresponding
AMSR-E ΔLST and tower ΔTair. Statistically, the correlations with tower ΔTair are higher for AMSR-E ΔLST
(83%) than for Noah ΔLST and ΔTair (both 58%), for the period covered by Figure 10. The May–July period
when ΔLST is substantially higher for AMSR-E than for Noah corresponds to the period when the LE is
substantially lower for the satellite/NN than for Noah.

It is apparent from these analyses that inaccuracies in the Noah precipitation forcing contributed to the LE
discrepancies in this region over the summer and fall months. An additional factor in the discrepancies was
the inability of the Noahmodel to represent the contribution of transpiration by trees toward elevating the LE
in the summer dry season in the lower and upper mountain areas.

4.3. Southeast Australia

In Southeast Australia there were positive discrepancies between the satellite/NN and Noah LE in the
January–April period, primarily in the coastal and near-coastal mountainous regions, with some negative
discrepancies inland (Figure 11). The discrepancies were associated with relatively high satellite/NN LE in
those coastal areas, with especially strong gradients in January. These features of the satellite/NN LE reflected
corresponding gradients in the AMSR-E ΔLST that was among the inputs to the NN.

The Tumbarumba FLUXNET site [Leuning et al., 2005; van Gorsel et al., 2013] was located within the area of
large January positive discrepancies. This site was in a broadleaf evergreen (Eucalyptus) forest. Due to large
variations in vegetation, terrain, and other factors, we would not expect the controls on LE at this site to be
representative of the entire area of positive discrepancies, but the site data are nevertheless useful for
analyzing LE-related phenomena in a portion of that area.

According to the tower data, the LE decreased frommonth-to-month over the January–April period (Figure 12).
The satellite/NN LE decreased similarly. The Noah LE was generally lower, particularly in January. The Noah
LE surged with each precipitation event represented in the Noah forcing data (Figure 12), in accord with
the simulated moistening and subsequent dry-down of the soil (not shown). The precipitation recorded at
the tower site differed greatly from the Noah precipitation, and the tower LE tended to be lower during
precipitation events than in surrounding periods (Figure 12). Over this period, the tower LE was highly
correlated with the net radiation and the vapor pressure deficit (82% and 78%, respectively, for noon daily
measurements), indicating that the amounts of available energy and atmospheric moisture (relative to
a saturated surface) were primary factors in the LE variability. These correlations, along with the lack of
tower LE response to precipitation (Figure 12), imply that soil moisture availability was not a primary factor
in LE variability within this period. In the 2 months prior to January, there were 78mm of precipitation
accumulated over several events at the site, contributing to significant available water at the start of the
analyzed period. The precipitation over late 2002 through early 2003 was, however, well below the 30 year
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Figure 11. (left) LE from Noah, (right) the satellite/NN product, and (middle) the difference between the two for (top)
January and (bottom) March 2003. The FLUXNET site at Tumbarumba is marked, near the southeast corner.

Figure 12. (top) Daily-average LE from Noah (brown), the flux tower (blue), and the satellite/NN (red), and precipitation
from (middle) Noah and (bottom) the tower for the Tumbarumba site. The markers indicate the monthly averages of LE.
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average, and the leaf area was diminished by drought-related insect damage [van Gorsel et al., 2013]. The
trees at this site were nevertheless able to extract water deep within the soil and thus could maintain
relatively high transpiration (and LE) over this dry period, even as the carbon flux was highly anomalous
[Leuning et al., 2005; van Gorsel et al., 2013].

The analyses at the Tumbarumba site have significant similarities to the findings at the Tonzi and Blodgett
sites in California (section 4.2). Here also the Noah simulation is hindered by inaccuracies in the precipitation
and by inability of the model to represent the forest transpiration over dry periods.

5. Conclusion

Estimates of latent heat flux (LE) derived from microwave, infrared, and visible satellite data products using a
neural network were found to have broad similarities and distinct differences when compared with LE
estimates derived from other sources. We focused particularly on comparisons between our satellite-derived
LE and LE from the Noah land surface model. In several regions with extensive LE discrepancies that persisted
for 2 months or more, data from flux towers elucidated the sources of the discrepancies. The primary
conclusions of the comparisons and analyses were as follows:

1. LE from our satellite-driven neural network analysis was generally more similar to an analysis generated
by upscaling FLUXNET tower data than to LE from the land surface model, despite use of the model LE to
train the neural network and the independence of our method from the data used in the upscaled LE.

2. Analysis of data from the Central Great Plains and of land surface model formulations indicated potential
problems with the modeled roughness length and turbulent exchange coefficients for midlatitude
cropland areas in summer.

3. Inaccuracies in the precipitation data that were used as forcing for the land surface model contributed to
LE discrepancies in areas of Northern California and Southeast Australia where water availability was a
major control on LE.

4. In forested areas of Northern California and Southeast Australia, the land surface model did not adequately
represent the degree to which transpiration by trees maintains elevated LE in dry summer months.

5. The results presented here demonstrate the usefulness of analyzing land surface model data in conjunction
with satellite-derived products and flux tower data for identifying circumstances where the land surface
model system may benefit from further evaluation and improvement.

For the eight tower sites and the periods of time analyzed in this paper, along with several months of data
from four tower sites not presented here (one in Maine and three in the Northern Great Plains), there was
generally greater agreement in monthly-average LE between the satellite product and the tower data than
there was between the land surface model and the tower data. Mean, RMS, and maximum differences were,
respectively, 21, 25, and 60W/m2 for the satellite product and 36, 46, and 147W/m2 for the land surface
model. These statistics cannot be considered representative of performance over all land areas or all seasons,
since the discrepancies for which we had sufficient tower data were all midlatitude, and snow areas were
avoided; nevertheless, these results are encouraging regarding the usefulness of our satellite-derived LE data
set for other applications.
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