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Restricted Discrete Invariance and Self-Synchronization For
Stable Walking of Bipedal Robots

Hamed Razavi1, Anthony M. Bloch2, Christine Chevallereau3 and J. W. Grizzle4

Abstract— Models of bipedal locomotion are hybrid, with a
continuous component often generated by a Lagrangian plus
actuators, and a discrete component where leg transfer takes
place. The discrete component typically consists of a locally
embedded co-dimension one submanifold in the continuous
state space of the robot, called the switching surface, and a reset
map that provides a new initial condition when a solution of the
continuous component intersects the switching surface. The aim
of this paper is to identify a low-dimensional submanifold of the
switching surface, which, when it can be rendered invariant by
the closed-loop dynamics, leads to asymptotically stable periodic
gaits. The paper begins this process by studying the well-known
3D Linear Inverted Pendulum (LIP) model, where analytical
results are much easier to obtain. A key contribution here is
the notion of self-synchronization, which refers to the periods of
the pendular motions in the sagittal and frontal planes tending
to a common period. The notion of invariance resulting from
the study of the 3D LIP model is then extended to a 9-DOF
3D biped. A numerical study is performed to illustrate that
asymptotically stable walking may be obtained.

I. INTRODUCTION

While steady progress is being made on the design and
analysis of control algorithms for achieving asymptotically
stable walking in high-dimensional 3D bipedal robots, the
problem remains a very active research area. The control
method most widely used on humanoid robots is based on
the Zero Moment Point (ZMP) criterion [13], [19], [12],
[5], [6], which imposes restrictions on the gaits, such as
walking flat-footed. A foot positioning method based on
“capture points” has been introduced in Pratt et. al [16],
and allows some gaits with partial foot contact with the
ground. Both of these methods are based on the Linear
Inverted Pendulum model (LIP) [14]. Ames [2] and Greg
et. al [7] developed Routhian reduction for fully-actuated
3D bipeds to allow some controllers developed for planar
robots an immediate extension to the 3D setting. Grizzle
et. al [20], [17], use virtual constraints on an underactuated
robot to create an invariant submanifold in the closed-loop
hybrid model, and reduce the design of asymptotically stable
motions to the study of a low-dimensional system, the hybrid
zero dynamics; initial 3D experiments are reported in [4].
These last two methods do not rely on simplified models.
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The aim of the present paper is to identify a low-dimensional
submanifold of the switching surface–instead of the entire
hybrid model–which, when it can be rendered invariant by
the closed-loop dynamics, leads to asymptotically stable
periodic gaits. The paper begins this process by studying
the well-known 3D LIP model, where analytical results are
much easier to obtain. A key contribution here is the notion
of self-synchronization, which refers to the periods of the
pendular motions in the sagittal and frontal planes tending to
a common period. The notion of invariance resulting from the
study of the 3D LIP model is then extended to a 9-DOF 3D
biped, corresponding to a simplified version of the ATRIAS
robot designed by Hurst [8], [17], [10]. A numerical study
is performed to illustrate that asymptotically stable walking
may be obtained.
The paper is organized as follows. In Section II we introduce
a discrete invariant gait for the 3D LIP. Then the concept of
synchronization is introduced and it is proven that under the
discrete invariant gait the 3D LIP will have a periodic motion
in which the oscillations in the sagittal and frontal planes are
self-synchronized. In Section III, after introducing the model
of the 9-DOF 3D biped, inspired by the 3D LIP, we define
a discrete invariant gait for the 9-DOF 3D biped. Then we
perform a reduction based on this gait, and corresponding
to this reduction we define a restricted Poincaré map. After
presenting an example of the controllers which enforce the
discrete invariant gait, we show that the eigenvalues of the
restricted poincare map lie in the unit circle and the walking
motion of the biped is stable. The final section includes the
concluding remarks.

II. DISCRETE INVARIANCE AND
SELF-SYNCHRONIZATION OF THE 3D LIP

In this section we introduce the notion of discrete invariant
gait for the 3D LIP and we will show that under this gait the
oscillations in the sagittal plane and frontal plane can be self-
synchronized. The 3D LIP is known to be a simple walking
model that can capture many properties of more complex 3D
walking models. For example, in [15] the authors introduce
the concept of capturability and find what they call capture
regions based on different types of the 3D LIP model. Later
they apply these results to a 12-DOF 3D biped [16]. To
generate walking patterns for a humanoid robot, Kajita et. al
[14] use the 3D LIP model. Even though the 3D LIP models
are simple and have been found to be successful, they have
some limitations. For example, the energy loss due to the
impact is not usually considered in these models and some



Fig. 1. 3D LIP Biped Model

researchers have modified the LIP model to overcome this
limitation [9]. We first define a hybrid model of a 3D LIP
biped with massless legs as shown in Figure 1. Let (x, y, z)
denote the position of the point mass, m, of the 3D LIP
in the inertial coordinate frame, I , centered at the point of
support. Assuming that the mass moves in the plane z = z0,
(x, y, ẋ, ẏ) defines a set of generalized coordinates for the
3D LIP. Without loss of generality we can assume m = 1.
The equations of motion in the continuous phase are [14]:

ẍ = ω2x
ÿ = ω2y,

where ω =
√
g/z0. Also, we define the discrete map as

follows

ẋ+ = ẋ−

ẏ+ = −ẏ−
x+ = x−FH
y+ = −y−FH

(x−, y−, ẋ−, ẏ−) ∈ S, (1)

where (x−FH , y
−
FH) is the position vector from the swing leg

end to the point mass represented in I right before the impact
and S is the switching manifold which is defined as

S = {(x, y, ẋ, ẏ)|f(x, y) = 0},

for a smooth function f : S → R with rank 1.
The reason that in equation (1) sign of ẏ changes after the
impact and y+ = −y−FH (and not y−FH ) is that by changing
the support point we switch the direction of the y coordinate
of the inertial frame which is centered at the new support
point.

Definition 1. (3D LIP Discrete Invariant Gait) Consider a 3D
LIP as described in Figure 1. Suppose that at the beginning
of the step (x, y) = (−x0, y0) for x0 > 0 and y0 > 0. We
say that the 3D LIP takes an (x0, y0)−invariant step if the
switching manifold is defined as

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20}, (2)

and at the moment of double support (xFH , yFH) =
(−x0,−y0).

Remark 2. This gait is called (x0, y0)-invariant because we
are assuming that the swing leg is exactly at the desired

position so that (x−FH , y
−
FH) = (−x0,−y0) at impact and

hence we are assuming that at the beginning of the current
step and the next step (x, y) = (−x0, y0). We refer to this
as Discrete Invariance since it only imposes conditions on
the discrete phase of motion.

Definition 3. In the 3D LIP, Ex = ẋ2 − ω2x2 and Ey =
ẏ2 − ω2y2 are called the orbital energies in the x and y
directions [14].

Proposition 4. Let K0 be the kinetic energy of the 3D LIP
at the beginning (end) of the step. Suppose that the 3D LIP
biped completes an (x0, y0)-invariant step and K1 is the
kinetic energy of the 3D LIP at the beginning (end) of the
next step. We have K1 = K0.

Proof. If Ex0
and Ey0 are the orbital energies at the begin-

ning of the step,

Ex0
+ Ey0 = ẋ20 + ẏ20 − ω2(x20 + y20)

= 2K0 − ω2r20, (3)

where K0 is the kinetic energy at the beginning of the step
and r20 = x20 + y20 . On the other hand, if right before the
impact x = x1, y = y1, Ex = E−x1

, and Ey = E−y1 , then

E−x1
+ E−y1 = 2K−1 − ω2r21,

where K−1 is the kinetic energy right before the impact
and r21 = x21 + y21 . However, because by definition of the
switching surface at impact x21 + y21 = r20 , from the equation
above

E−x1
+ E−y1 = 2K−1 − ω2r20. (4)

Since, the orbital energies are conserved quantities during
each step, Ex0

= E−x1
and Ey0 = E−y1 . Therefore, comparing

equations (3) and (4), we have K−1 = K0. By equation (1)
there is no loss in velocities due to impact, therefore, K1 =
K0, i.e. the kinetic energy at the beginning of the next step
is equal to the kinetic energy at the beginning of the current
step.

Definition 5. (Synchronization) Suppose that at the begin-
ning of a step Ex > 0 and Ey < 0. The motion in the step
is said to be synchronized if ẏ = 0 when x = 0.

One can easily check that if at the beginning of the step
(x, y) = (−x0, y0) and the motion in the step is synchro-
nized, then at the end of the step (x, y) = (x0, y0).

Proposition 6. If the initial conditions are such that the first
step of the 3D LIP under the (x0, y0)-invariant step is syn-
chronized then the subsequent step will also be synchronized
and the 3D LIP follows a 1-periodic motion.

Proof. The proof follows from the fact that the velocities at
the end of the step are equal to the velocities at the beginning
of the step except that the velocity in the y direction is
reversed.

Definition 7. Suppose that for the 3D LIP at the beginning of
the step x = −x0 < 0, y = y0 > 0 and the initial velocities



are ẋ0 > 0 and ẏ0 < 0. The synchronization measure for
this step is defined as L0 = ẋ0ẏ0 + ω2x0y0.

In the next proposition we see that the motion in the step
is synchronized if and only if the synchronization measure
is zero. Later, to show that the motion is self-synchronized
we show that the synchronization measure approaches zero
in the subsequent steps.

Proposition 8. Suppose that the 3D LIP has an (x0, y0)-
invariant gait with initial velocities ẋ = ẋ0 > 0 and ẏ =
ẏ0 < 0. Also, suppose that Ex > 0 and Ey < 0. Let L0

denote the synchronization measure of this step. The motion
of the 3D LIP is 1-periodic if and only if L0 = 0.

Proof. With the given initial conditions the solution to the
3D LIP system in the continuous phase is

x(t) = −x0 cosh(ωt) +
ẋ0
ω

sinh(ωt) (5)

y(t) = y0 cosh(ωt) +
ẏ0
ω

sinh(ωt). (6)

We want to find (ẋ0, ẏ0) such that the solution that starts
from (−x0, y0) is synchronized. Therefore, if we set the
second equation above to zero, we find the time, ty , which
it takes for ẏ to become zero:

tanh(ωty) = − ẏ0
y0ω

(7)

Similarly, from equation (5) the time tx, at which x = 0 is
found by the following equation:

tanh(ωtx) =
x0ω

ẋ0
(8)

According to the definition of the synchronization, synchro-
nization occurs if tx = ty , therefore from equations (7) and
(8), the motion of the 3D LIP in this step is synchronized if
and only if

− ẏ0
y0ω

=
x0ω

ẋ0

Hence, from this equation we have synchronization if and
only if ẋ0ẏ0 + ω2x0y0 = 0. This result together with
Proposition 6 complete the proof.

So far, we have shown that if the initial conditions are such
that L0 = 0, the solution is synchronized. We are also
interested in stability in the synchronization. Interestingly, as
we will show in the next proposition, the discrete invariant
gait can result in self-synchronization of the 3D LIP, that is,
eventually the synchronization measure approaches zero.

Proposition 9. Suppose that the 3D LIP biped model takes
an (x0, y0)-invariant step with initial velocities ẋ = ẋ0 > 0
and ẏ = ẏ0 < 0. Suppose that K0 is the initial kinetic energy
of the system and K0 − ω2x0y0 > 0. Let L0 and L1 denote
the synchronization measure in the current step and next step,
respectively. We have

lim
L0→0

L1

L0
= −λ.

where

λ = 1− 2ω2(y20 − x20)

ω2(y20 − x20) + 2
√
K2

0 − ω4x20y
2
0

. (9)

If y0 > x0, we have |λ| < 1.

Proof. One can easily check that the orbital energies, Ex,
Ey , and synchronization measure, L = ẋẏ − ω2xy are
conserved quantities in the continuous phase of the motion.
Also, at impact x2 + y2 = x20 + y20 . Therefore, if the state
right before the impact is (x1, y1, ẋ

−
1 , ẏ

−
1 ),

(ẋ−1 )2 − ω2x21 = ẋ20 − ω2x20 (10)
(ẏ−1 )2 − ω2y21 = ẏ20 − ω2y20 (11)

ẋ−1 ẏ
−
1 − ω2x1y1 = ẋ0ẏ0 + ω2x0y0 (12)

x21 + y21 = x20 + y20 . (13)

By Proposition 8, if L0 = 0 the motion is periodic and it can
be checked that on this periodic orbit we have the following
equations for the orbital energies E∗x and E∗y .

E∗x = K0 +
√
K2

0 − ω4x20y
2
0 − ω2x20 (14)

E∗y = K0 −
√
K2

0 − ω4x20y
2
0 − ω2y20 . (15)

If L0 = 0 then x1 = x0, y1 = y0, ẋ−1 = ẋ0 and ẏ−1 = −ẏ0.
Now, assuming L0 is infinitesimally small, we have

x1 = x0 + δx0, y1 = y0 + δy0

ẋ−1 = ẋ0 + δẋ0, ẏ−1 = −ẏ0 + δẏ0.

If we substitute these equations into equations (10-13), we
can show that,

lim
L0→0

δx0
L0

=
2y0

Ey∗ − Ex∗
. (16)

By definition, if ẋ1 and ẏ1 are the velocities at the beginning
of the next step, L1 = ẋ1ẏ1 + ω2x0y0. Also, because
ẋẏ − ω2xy is conserved during the step, and (ẋ1, ẏ1) =
(ẋ−1 ,−ẏ

−
1 ), we have L0 = −ẋ1ẏ1 − ω2x1y1. From these

last two equations for L0 and L1, and equation (16) we can
show that

lim
L0→0

L1

L0
= −1− 2ω2(y20 − x20)

E∗y − E∗x
. (17)

From equations (14) and (15),

E∗y − E∗x = −2
√
K2

0 − ω4x20y
2
0 − ω2(y20 − x20),

Therefore, substituting this into equation (17) we get equa-
tion (9) for λ. From equation (9), if y0 > x0 we have |λ| < 1.

As we will see in the analysis of the Poincaré map, this
proposition proves that if y0 > x0 and K2

0−ω4x20y
2
0 > 0, the

motion of the 3D LIP is self-synchronized. Inspired by this
proposition we define an alternative generalized coordinate
for the 3D LIP which allows us to simplify the analysis of
stability.



Definition 10. For the 3D LIP define α = tan−1(xy ), r =√
x2 + y2, γ = ẋẏ and v =

√
ẋ2 + ẏ2. Then, if y 6= 0,

(r, α, γ, v) defines a coordinate system for the 3D LIP.

Under the (x0, y0)-invariant gait, at impact r2 = x20 + y20 .
Therefore (α, γ, v) is a coordinate system for the switching
manifold S defined in (2). In the next proposition we study
the Poincaré map of the 3D LIP in the coordinate system
(α, γ, v).

Proposition 11. Let P : S → S be the Poincaré map
corresponding to the (x0, y0)-invariant gait of the 3D LIP.
In the coordinate system (α, γ, v) of S, the Poincaré map
P has the fixed point (α∗, γ∗, v∗) where α∗ = tan−1(x0

y0
),

γ∗ = −ω2x0y0 and v∗ =
√

2K0. The Jacobian of the
Poincaré map at this fixed point is

DP =

 0 ? 0
0 −λ 0
0 ? 1

 ,

where λ is defined in equation (9).

Proof. Let P = (Pα, Pγ , Pv)
T . By Proposition 8 under

the (x0, y0)-invariant gait γ∗ = −ω2x0y0 and α∗ =
tan−1(x0/y0). By Proposition 9, since at the beginning of
each step L = γ + ω2x0y0,

lim
L0→0

L1

L0
=

∂Pγ
∂γ
|γ=γ∗

= −λ

where λ is defined in equation (9). Because the legs are
massless the value of α at impact won’t effect the dynamics
of the 3D LIP biped in the next step, hence, ∂P∂α = (0, 0, 0)T .
Finally, by Proposition 4, v∗ =

√
2K0, and by Proposition 8

under the (x0, y0)-invariant gait P (α∗, γ∗, v) = (α∗, γ∗, v).
This proves that the last column of DP is (0, 0, 1)T .

Corollary 12. Consider a 3D LIP biped with Ex0 > 0 and
Ey0 < 0. Let K0 be the initial kinetic energy of the 3D LIP.
Define the constant energy submanifold SK0

of the switching
manifold S as follows:

SK0 = {(α, γ, v) ∈ S|v =
√

2K0}.

Under the (x0, y0)-invariant gait, the restricted Poincaré
map PK0 : SK0 → SK0 is well defined and the eigenvalues
of PK0

are {−λ, 0} with λ defined in equation (9).

This Corollary shows that by definition of λ, if y0 > x0,
after a perturbation the level of the kinetic energy of the 3D
LIP might change but its motion remains self-synchronized.

III. THE 9-DOF 3D BIPED

In this section we generalize the definition of the discrete
invariant gait of the 3D LIP to the notion of restricted discrete
invariance for a 9-DOF 3D biped which is a simplified
model of ATRIAS [17]. Under the invariance assumption
for the 9-DOF 3D biped, we perform a reduction and define
a restricted Poincaré map which naturally emerges from the
reduction. Finally, we define a set of controllers that can

enforce the invariance. At the end, simulation results are
provided to illustrate that asymptotically stable walking is
achieved.

A. Configuration

In this section we study the configuration of the system
and different generalized coordinates that we might use to
represent the biped. Figure 2 shows the 9-DOF 3D biped and
ATRIAS [17].

Fig. 2. ATRIAS vs. the 9-DOF 3D Biped

1) Generalized Coordinates: As shown in Figures 3, a set
of generalized coordinates that we might use to describe the
biped’s configuration is q = (θy, θr, θp, q1, q2, q3, q4, q5, q6).
The Euler angles (θy, θr, θp), are the yaw, roll and pitch
angle of the torso which describe the orientation of torso
with respect to the inertial frame. As shown in Figure 3,
(q1, q2, q3, q4, q5, q6) are relative angles with respect to the
torso and they describe the configuration of the stance and
swing legs in a coordinate system attached to the torso. For
later reference, we define q̂ = (θr, θp, q1, q2, q3, q4, q5, q6).
2) Alternative Coordinates; Quasi-Velocities: Let W denote
the inertial (world) frame. Define the coordinate system I to
be parallel to W and centered at the support point. Also, let
the rotating coordinate system Y be centered at the support
point and rotated by θy , where θy is the yaw angle of the
torso with respect to I.
Let rH and rF denote the position vector of the hip (see
Figure 3) and swing leg end in W, respectively. Define
rFH = rH − rF . Let (xI , yI , zI) and (xFHI

, yFHI
, zFHI

)
be the coordinates of rH and rFH in I and let (x, y, z),
(xFH , yFH , zFH), (vx, vy, vz) be the coordinates of rH ,
rFH and ṙH in Y.

Lemma 13. We have xvx+yvy+zvz = xI ẋI+yI ẏI+zI żI .

In the next proposition we introduce two alternative sets of
generalized coordinates for the 9-DOF 3D biped, which will
be used later.

Proposition 14. If

ξ1 = (θy, θr, θp, x, y, z, xFH , yFH , zFH)

ζ1 = (θ̇y, θ̇r, θ̇p, vx, vy, vz, ẋFH , ẏFH , żFH),

then (ξ1, ζ1) is a coordinate system for T Q, the tangent
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bundle of the configuration space Q. Assuming y 6= 0, let

α = tan−1(xy ), r =
√
x2 + y2

γ = vxvy, v =
√
v2x + v2y,

with α ∈ [−π/2, π/2], and define

ξ2 = (θy, θr, θp, r, α, z, xFH , yFH , zFH)

ζ2 = (θ̇y, θ̇r, θ̇p, v, γ, vz, ẋFH , ẏFH , żFH) .

Then (ξ2, ζ2) is a coordinate system for T Q. Moreover,
if ξ̂2 = (θr, θp, r, α, z, xFH , yFH , zFH), then (ξ̂2, ζ2) is a
function of (q̂, q̇). Furthermore, if S = {(q, q̇)|zF (q) = 0},

then,

ξS = (θy, θr, θp, r, α, z, xFH , yFH)

ζS = (θ̇y, θ̇r, θ̇p, v, γ, vz, ẋFH , ẏFH , żFH),

defines a coordinate system on S.

Note that ζ1 and ζ2 are not the derivatives of ξ1 and ξ2. They
are called quasi-velocities [3].

B. Equations of Motion

Walking is modeled as having continuous and discrete
phases. The continuous phase is governed by the Euler-
Lagrange equations. The equations of motion in the con-
tinuous phase are of the form

D(q)q̈ +H(q, q̇) = Bu, (18)

where u6×1 = [uS , uF ]T with uS and uF denoting the
controllers in the stance and swing legs respectively. Also,
B = [03×6; I6×6]. In the discrete phase the velocities are
transformed instantly due to the change of support point
(from left to right or right to left). Using methodology of
[11] which is illustrated for legged robots in [20] we obtain
the impulse matrix ∆q(q) which maps the velocities q̇− right
before the impact to the velocities immediately after impact,
q̇+. In order to use the same set of equations when either
the left or the right leg is the stance leg, we implement
a matrix R to swap the roles of stance and swing legs.
Therefore, setting x = (q, q̇), if we rewrite equation (18)
and the impulse map in terms of x and ẋ, we obtain

Σ =

{
ẋ = f(x) + g(x)u x− /∈ S
x+ = ∆(x−) x− ∈ S,

where ∆(q, q̇−) = (Rq,R∆q(q)q̇
−) and S is the switching

manifold, which is defined as

S = {(q, q̇)|zF (q) = 0},

where zF is the height of the swing leg end in W.

Lemma 15. The kinetic and potential energies of the 9-DOF
3D biped are independent of θy [18]. As a result, under the
assumption that the controllers are independent of θy , if θy0
is the initial value of θy right after the impact, the evolution
of (q̂, q̇) and θy − θy0 are independent of θy0 .

Lemma 16. The impact map is independent of θy in the
sense that q̇+ = ∆q(q̂)q̇

− [18].

C. Restricted Invariance and Reduction

In this section we introduce a generalization of the discrete
invariant gait of the 3D LIP to the 9-DOF 3D biped. This gait
enables us to reduce the system dimension to four dimensions
and to describe the dynamics in a set of variables which are
particularly amenable to analysis.

Definition 17. Let M be a submanifold of the switching
surface S of the 9-DOF 3D biped. We say that the biped
completes an M-invariant step if the solutions starting in
M end in M.



Proposition 18. Let θdp > 0, x0 > 0, y0 > 0 and qdk > 0,
and define the quadruple P = (θdp, x0, y0, q

d
k). Suppose that

the 9-DOF 3D biped completes a step such that at the time
of impact,

(i) θp = θdp , θr = 0, q3 = qdk , θ̇p = 0, θ̇r = 0, q̇3 = 0
(ii) xFH = −x0, yFH = −y0, q6 = qdk , ẋFH = 0, ẏFH =

0, q̇6 = 0.

Then the biped has completed anMP -invariant step, where,
MP is a submanifold of S which is the image of the local
embedding fP : S → S defined as fP(ξS , ζS) = (ξP , ζP),
where

ξP = (θy, 0, θ
d
p, r0, α, z0, x0, y0)

ζP = (θ̇y, 0, 0, v, γ, vz, 0, 0, 0),

for constants r0 and z0 which are functions of P . Moreover,
MP is 5-dimensional and,

ξr = (θy, α), ζr = (γ, θ̇y, v),

defines a coordinate system on MP . In the closed-loop
system the evolution of (q, q̇) in the next step is uniquely
determined by the value of (ξr, ζr) at impact.

The goal of the controllers is then that of rendering MP
invariant. We will discuss this in more details in Section III-
D.

Proof. Step 1. We first show that, by assumptions (i) and
(ii) we have x2 + y2 = x20 + y20 and z = z0, where

z0 =
√
r21 − x20 − y20 ,

r21 = L2
1 + L2

2 +W 2/4 + 2L1L2 cos(qdk).

From the kinematic equations of the biped,

‖rH‖2 = L2
1 + L2

2 +
W 2

4
+ 2L1L2 cos(q3), (19)

‖rFH‖2 = L2
1 + L2

2 +
W 2

4
+ 2L1L2 cos(q6). (20)

At impact, xFH = −x0, yFH = −y0 and q6 = qdk .
Therefore, looking at equation (20), we have x20 + y20 +
z2FH = r21 . Thus, by definition of z0, at impact zFH = z0.
Consequently, since zFH = z − zF and at impact zF = 0,
we have z = z0. Also, since at impact q6 = q3 = qdk , from
equations (19) and (20) at impact ‖rH‖ = ‖rFH‖. Hence,
x2 + y2 + z2 = x20 + y20 + z20 . Since we just showed that at
impact z = z0, we have x2 + y2 = x20 + y20 .
Step 2. By Propositions 14 and Step 1, at impact,

ξ2 = (θy, 0, θ
d
p, r0, α, z0, x0, y0, z0)

ζ2 = (θ̇y, 0, 0, v, γ, vz, 0, 0, 0),

where r0 =
√
x20 + y20 . By equation (19), Lemma 13 and

the assumption that at impact q̇3 = 0, we have vz =
− 1
z0

(xvx + yvy). Therefore, vz is a smooth function of α,
γ and v. So, the reduced coordinates of MP at impact are
ξr = (θy, α), ζr = (γ, θ̇y, v). Thus the evolution of (q, q̇) in
the next step is uniquely determined by the value of (ξr, ζr)
at impact.

Corollary 19. If the biped performs an MP -invariant step
and the controllers are independent of θy , then the evolution
of (α, γ, θ̇y, v) and θy − θy0 in the next step is uniquely
determined by the value of (α, γ, θ̇y, v) at impact.

Proof. Since, as stated in Proposition 14, (α, γ, θ̇y, v) is only
a function of (q̂, q̇), the proof follows from Lemma 15,
Lemma 16 and Proposition 18.

Corollary 20. Corresponding to anMP -invariant step there
exists a 4-dimensional invariant embedded submanifold M̂P
of the switching manifold S such that (α, γ, θ̇y, v) is a
coordinate system of M̂P .

Definition 21. Assuming thatMP is invariant, i.e. solutions
starting from MP end in MP , we can define the M̂P -
restricted Poincaré map, P̂ : M̂P → M̂P , as the function
that maps the value of (α, γ, θ̇y, v) at the end of the current
step to its value at the end of the next step.

Remark 22. For simplicity, we assume that the coordinate
systems I and Y are right handed when the right leg is the
stance leg and they are left handed when the left leg is the
stance leg. This choice allows us to analyze the periodic
motion and its stability in one step rather than two steps.

Proposition 23. If the submanifold MP is invariant and
the controllers are independent of θy , then the restricted
Poincaré map has a fixed point x∗r = (α∗, γ∗, θ̇∗y, v

∗)
if and only if the hybrid system has a periodic solution
for (q̂, q̇) which passes through x∗r . This periodic orbit is
asymptotically stable if and only if x∗r is an asymptotically
stable fixed point of P̂ . Moreover, if the fixed point x∗r exists
and is asymptotically stable, then θy is 2-periodic and is
neutrally stable.

Proof. (Sketch) The equivalence of periodicity and asymp-
totic stability of (q̂, q̇) with P̂ having an asymptotically stable
fixed point follows from Corollary 19. Also, because by
Corollary 19, the evolution of θy depends on θy0 , we can
show that θy is 2-periodic and is neutrally stable (it is not
asymptotically stable because θy0 might change due to a
perturbation even though θy − θy0 is stable).

By this proposition, if we find the controllers that renderMP
invariant, then the periodicity and stability of the motion of
the biped can be checked by just looking at the variables
(α, γ, θ̇y, v) at impact. In the next section we discuss such
controllers.

D. Controllers
To achieve an MP -invariant gait, we find the controllers
uS and uF such that the conditions in Proposition 18 hold.
To this end, we define two goals for our control algorithm:
posture control and foot placement. The goal of the posture
control is to make y1 zero and the foot placement algorithm
drives y2 to zero, where

y1 =

 θr
θp − θdp
q3

 , y2 =

 xFH − x0
yFH − y0
q6 − qd6

 .
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Fig. 5. (α, γ, θ̇y , v) vs. Step Number

To let the swing foot clear the ground, in the first half of the
step qd6 is nonzero and in the second half it is set to zero.
For posture control, we only use uS . If uF is involved in the
posture control then the flight leg would swing in a direction
opposite to the torque it applies to the torso. This will disrupt
foot placement. Thus, uF is only used to accomplish the
foot placement. As a comparison to the 3D LIP, this foot
placement algorithm aims to achieve an (x0, y0)-invariant
gait. More details of the controllers will appear in a future
paper.

E. Simulation Results

Under the above controllers, the biped was able to start
walking from zero velocity and exhibit a stable gait. The
animations can be found in [1]. Figure 5 shows how the
sequence (αn, γn, θ̇yn , vn) converges to a fixed point. The
dominant eigenvalue of the restricted Poincaré map was
found to have an absolute value of 0.96.

IV. CONCLUSION

In this paper, we introduced a discrete invariant gait for
the 3D LIP and we proved that under this gait the 3D
LIP is self-synchronized and neutrally stable with respect
to the kinetic energy. Then we generalized the definition
of the discrete invariant gait to the notion of MP -invariant
gait of a 9-DOF 3D biped. After performing a reduction
based on this invariant gait we showed that the periodicity
and asymptotic stability of the motion of the 9-DOF 3D
biped can be determined by studying a restricted Poincaré
map in four variables. Finally, we provided an example of
a controller that may satisfy the conditions of the MP -
invariant gait. By applying this controller to the 9-DOF 3D
biped we showed numerically that it performs stable walking.
The MP -invariant gait introduced here is not limited to the
particular 9-DOF 3D biped which was studied here. For
example, we tested this gait on a half scale biped model

of the 9-DOF 3D biped we studied here and were able to
achieve stable walking.
Acknowledgements: We gratefully acknowledge partial sup-
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