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1. Introduction

In a variety of applications, the precise synthesis and manipulation of the profile of optical
pulses, i.e. optical pulse shaping, is required. Among others we like to mention spectroscopy,
biological imaging, metrology and industrial tests [1-2] The demand for controlled temporal
profiles equally applies to all timescales, from femtosecond to pico- and nano-second laser
excitations and in various spectral ranges. Shapers should ideally provide high-quality pulses
with the desired profiles and (central) wavelength, similar to electronic waveform generators
but in distinct time and frequency scales.

To date, conventional picosecond-femtosecond pulse shaping has been implemented using
linear effects, for example with free-space bulk optics including diffraction grating pairs and
lenses [3]. The drawbacks associated with this approach relate to the need for high-quality op-
tical elements of appreciable size, together with very strict alignment tolerances and the conse-
quently limited integrability with waveguides. In such linear pulse shapers, the input spectrum is
modulated (in amplitude and phase) in order to obtain the desired output profile in time. In most
cases the input pulse is considered a given constraint and its bandwidth determines the maxi-
mum bandwidth of the output. Even though the latter drawback can be overcome using wide
bandwidth inputs, this approach often limits the efficiency, inasmuch as desired waveforms of
both narrow and large bandwidths can be required from the same input, e.g. in spectroscopy.
For instance, the detection of a specific Raman transition might require the shaping of two laser
pulses: the Raman pump field (e.g. at 750 nm) with a narrow bandwidth and ps duration; and the
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Raman probe with a broadband femtosecond pulse (e.g. from NIR to 750 nm) that stimulates
the scattering of a particular vibrational mode [1]. Nowadays, since femtosecond laser sources
are available in the wavelength range from 1.3 to 2.0 micrometers, an alternative approach to
pulse synthesis in the visible or near-infrared consists in simultaneously frequency doubling
and shaping a broadband fundamental frequency (FF) source.

Hereby we propose and numerically demonstrate a novel approach which, starting with a
femtosecond near-infrared source, is able to produce and shape both the picosecond Raman
pulse and a suitable broadband probe pulse at twice the input frequency. The method is based on
Backward Second Harmonic Generation (BSHG) from the fundamental frequency source in an
engineered Quasi-Phase-Matching (QPM) grating realized by periodically poling a ferroelectric
lithium niobate waveguide.

Over the past decade, BSHG has become a subject of intense investigation ([4] and references
therein), owing to a wealth of predicted new phenomena [5, 6] and to the technological progress
in fabricating short period QPM gratings [7-10]. Since backward optical parametric oscillation
was first proposed in [11], extensive theoretical and experimental studies have been carried out
on various backward frequency conversion processes [5-6,11-14]. Experimental demonstration
of BSHG with high order QPM was reported in periodically poled lithium niobate and KTP
crystals [10,16-20].

In BSHG, since the fundamental and second harmonic (SH) waves propagate in opposite
directions, the group velocity mismatch (GVM) plays an essential role in the process of second
harmonic generation. In this context, GVM is usually considered a very detrimental effect for
the conversion efficiency and, in contrast with the forward SHG case, does not stem from mate-
rial properties but from the process geometry itself: FF and SH propagate in opposite directions
and therefore, even in the absence of material dispersion, GVM is not zero but equal to the sum
of the group velocities (V1 and V2) of the two waves coupled by the nonlinear process; hence,
the temporal walk-off per unit length between FF and SH is δ = (1/V2+1/V1). Although GVM
is indeed undesired when high doubling efficiencies are sought, in the framework of pulse shap-
ing it can be conveniently exploited to yield and optimize the pulse shaping process. Shaping
of second-harmonic pulses has been previously considered in the case of forward SHG [21-26]
but never discussed with reference to a backward process, where a huge GVM may allow for
shaping possibilities not accessible in forward configurations.

As we will demonstrate in the following, as a general rule of thumb one can think of a shaped
output SH generated by a given FF according to two major constraints:
(i) the duration T of the SH pulse is bounded by: T < δL, being L the length of the structure:
e.g. for a 1 mm long lithium niobate sample, the upper bound is of the order of 10 ps. This max-
imum duration determines the minimum bandwidth B SH of the shaped pulse. In femtosecond
stimulated Raman spectroscopy, a small bandwidth is required for the Raman pump because it
determines the instrument resolution; typical required values are of the order of 3− 17 cm −1,
corresponding to transform limited pulses with a few ps duration (B SHT ≥ 0.44). Note that,
for a Lithium Niobate sample, the temporal walk-off per unit length between FF and SH in the
backward case is roughly 30 times larger than in the forward case; thus pulse shaping using
backward interactions could lead to devices 30 times smaller. For example, if a temporal du-
ration T of 30 ps is envisaged, then a pulse shaper based on forward-SHG would require an
unpractical device 10 cm long, while a pulse shaper based on BSHG could be designed using a
length of 0.33 cm.
(ii) The bandwidth BSH of the SH pulse is upper bounded by BSH ≤ 2BFF , being BFF the
bandwidth of the FF input.

From a theoretical point of view (i. e. assuming the domain size has no technical limits),
in BSHG a fundamental frequency of bandwidth BFF can be shaped into a SH signal with a
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maximum bandwidth 2BFF (easily up to 2000 cm−1) and a minimum of a few cm−1.

2. Theoretical analysis

In the process of (Type I) second harmonic generation in a non uniform quasi-phase-matching
structure, the coupled nonlinear partial differential equations governing the propagation of the
complex electric field amplitudes Em(z,t) (m = 1 fundamental frequency field FF, m = 2 second
harmonic field SH) of two plane waves of central frequencies ω m (ω2 = 2ω1) and wave numbers
km travelling along the ±z axis read:

i
∂E1

∂ z
=

β1

2
∂ 2E1

∂ t2 −G(z)exp(−iΔkz)E∗1 E2,−i
∂E2

∂ z
= iδ

∂E2

∂ t
+

β2

2
∂ 2E2

∂ t2 −G(z)exp(iΔkz)E2
1 ,

(1)
with Δk = 2k1 +k2 being the wave-number mismatch, δ the sum of the inverse group velocities
at FF and SH, β1,2 the group velocity dispersions at FF and SH, respectively. The modulation
of the second-order susceptibility is described by the grating function G(z), which represents
a square wave with variable duty cycle and period. If the variations of period and duty cycle
are slow compared to the spatial frequency of the grating, we can expand G(z) in the Fourier
series G(z) = χ0Σrgr(z)exp(ir f (z)) [χ0 = ωde f f /(nmc)] and, in the spirit of the rotating–wave
approximation, retain only the terms ±r that are effective (i.e., resonant) to get [27]:

i
∂E1

∂ z
=

β1

2
∂ 2E1

∂ t2 − χ(z)E∗1E2,−i
∂E2

∂ z
= iδ

∂E2

∂ t
+

β2

2
∂ 2E2

∂ t2 − χ∗(z)E2
1 , (2)

where χ(z) = χ0gr(z)exp(ir f (z)− iΔkz).
The coupled equations (2) can be numerically solved with various techniques. Since this is

a two boundary problem (the FF input is given in z = 0 and the SH in z = L) we can employ a
shooting approach. To solve eqs. (2) in the forward direction we used a fast Fourier transform
method and a fourth-order Runge-Kutta routine [28, 29]. First, we calculated BSHG profiles
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Fig. 1. BSHG conversion efficiency versus z (1) and SH pulse profile (2) (in z = 0) for
perfect QPM (Δk = 0), for various δ : black (δ=0), blue (δ=2), red (δ=5) and green (δ=10).
BSHG conversion efficiency versus z (3) and SH pulse profile (4) (in z = 0) for δ = 10 and
various Δk: black (Δk=0), blue (Δk=20), red (Δk=50) and green (Δk=100). In (4) the dashed
profile is the input FF pulse.

from transform-limited FF inputs in longitudinally uniform (perfectly periodic) QPM gratings.
To this extent we set Eqs. 1 in dimensionless format and assumed a unity FF pulse duration
(FWHM), L = 1, β1,2 = 0 and G(z) = 1, respectively. Figure 1(1-2) show the resulting BSHG
conversion efficiency vs z and the generated pulses (in z = 0) for Δk = 0 and various δ . Clearly,
the role of GVM in the BSHG process is essential. The temporal profiles of the frequency
doubled pulses broaden with δ and the conversion efficiency tends to a linear dependence on
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z, in agreement with Ref. [30]. In the case of a mismatched QPM (Δk �= 0) and a fixed δ (Fig.
1(3-4)), the results show that Δk severely affects the SH profiles, leading e.g. to splitting for
Δk > 50 (Fig. 1(4)). In the case of interest here, i. e. shaping by BSHG with a non-uniform
QPM grating, the control of the output (z = 0) SH profile can be stated as follows: having
fixed the FF input at z = 0, we need to determine the complex function χ(z) that minimizes
the departure of the SH output [E2(z = 0,t)] from the target pulse shape [E2,target(t)]. Once the
complex χ(z) is obtained, we derive the non-uniform QPM modulation able to implement it.

For real functions, to measure the “distance” between target and SH output we use:

J1 =
1
2

∫ +∞

−∞

[
E2(z = 0,t)−E2,target(t)

]2
dt . (3)

Extending the algorithm described in [21, 31], the problem can be solved by finding the function
χ(z) that minimizes the cost function J = J1 +J2 +c.c.,[32, 33] where J1 takes into account the
distance from the target and J2:

J2 =
∫ L

0

∫ +∞

−∞
[λ1

(
∂E1

∂ z
+

β1

2i
∂ 2E1

∂ t2 − iχE∗1E2

)
−λ2

(
∂E2

∂ z
+ δ

∂E2

∂ t
+

β2

2i
∂ 2E2

∂ t2 + iχ∗E2
1

)
]dtdz

(4)
imposes the fulfillment of eqns. (2); λ1,2(z,t) play the role of Lagrange multipliers.
Setting to zero the functional derivatives of J with respect to λ 1(z,t), λ2(z,t), E1(z,t), E2(z,t),
E1(z = L,t), E2(z = 0,t), we then get six equations with the functional derivatives with respect
to λ1 and λ2 providing the evolution equations for FF and SH, namely Eq. (2). The functional
derivatives with respect to E1, E2 are the evolution equations for the Lagrange multipliers:

i
∂λ1

∂ z
=−β1

2
∂ 2λ1

∂ t2 − χ∗ (λ ∗1 E∗2 −2λ2E1) ,−i
∂λ2

∂ z
= iδ

∂λ2

∂ t
− β2

2
∂ 2λ2

∂ t2 + χλ1E∗1 . (5)

Finally, the functional derivatives with respect to E1(z = L,t), E2(z = 0,t) give the boundary
conditions for Eq. (5): λ1(z = L,t) = 0 and λ2(z = 0,t) =−[E2(z = 0,t)−E2,target(t)].
Using the functional derivative with respect to χ(z):

δJ
δ χ

=
∫ ∞

−∞

(−iλ1E2E∗1 + iλ ∗2 E2∗
1

)
dt. (6)

we update the algorithm and determine the optimum χ(z) by the procedure:
I: choose an initial guess for χ(z) and solve Eqs. (2);
II: use the results obtained in the previous step to solve the evolution equations for the La-

grange multipliers (Eqs. (5));
III: update χ(z): χ(z)← χ(z)+ α δJ

δ χ , with α a suitable constant;
IV: if/when the obtained result is close enough to the target, the iterative procedure stops,

otherwise it goes back to point 2.
Once the optimal nonlinear profile is found (i. e. we obtained the function χ(z) that min-

imizes the distance J1 between target and SH output), the QPM can be implemented by
assuming the use an r-order grating and considering only its r-th Fourier coefficient, i.e.
gr(z) = 2

rπ sin(πrdc(z))exp[−irπdc(z)], from which we get the duty cycle dc(z) and the period
Λ of the square modulation:

dc(z) =
1
rπ

arcsin

(
± rπ

2
|χ(z)|

χ0

)
,Λ(z) = r2π

(
Δk +

d
[
Arg[χ(z)]+ rπdc(z)

]
dz

)−1

. (7)

#89476 - $15.00 USD Received 6 Nov 2007; revised 19 Dec 2007; accepted 15 Jan 2008; published 31 Jan 2008

(C) 2008 OSA 4 February 2008 / Vol. 16,  No. 3 / OPTICS EXPRESS  2119



0 10 20
0

0.5

1

t [ps]

In
te

n
s
it
y
 [
a
.u

.]

a)

690 700 710
0

0.5

1

P
o

w
e

r 
S

p
e

c
tr

u
m

 [
a

.u
.]

λ [nm]

b)

0 1 2
0

0.5

1

z [mm]

|χ
|/

χ
m

a
x

c)

0 1 2
−1

−0.5

0

0.5

1

z [mm]

A
rg

[χ
]’
 

d)

Fig. 2. (a) SH output (circles) and target (solid line) intensity profiles versus time. (b) SH
output (circles) and target (solid line) spectral intensities. (c) Amplitude of the optimal non-
linearity distribution. (d) Derivative of the argument of the complex nonlinear coefficient,
related to the residual wavevector mismatch (see eq.(7)).
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Fig. 3. Same as in Fig. 2, but for a chirped SH target pulse and a 10% conversion efficiency.

3. Results and discussion

To demonstrate the method, we consider L = 2mm periodically poled lithium niobate (PPLN)
crystals for which χ0 = 6.35 ·10−5V−1, δ ≈−100 ·10−10s/m, β1 ≈ 1.5 ·10−25 s2/m and β2 ≈
4.5 · 10−25 s2/m. [34] We took a transform limited FF gaussian input with peak intensity I =
20GW/cm2 and full width at half maximum (FWHM) TFF = 40 f s, centered in λ = 1400nm.
Since the dispersion length for the pump pulse is considerably larger than the sample length,
we can neglect dispersion effects.

As a first target, we choose a transform limited SH gaussian pulse with FWHM TFF = 5 ps
and a conversion efficiency of 20%. Figure 2(a) displays the output SH intensity (circles) com-
pared to the target (solid line): the agreement is perfect (after 100 iterations the relative error
is < 10−4). Fig. 2(b) graphs the output SH spectrum, transform limited with a bandwidth of
0.14nm (2.9cm−1). Figure 2(c) plots the normalized amplitude of the nonlinear coefficient
χ(z). Since we sought a transform limited (i.e. real) target and neglected dispersion, the non-
linear coefficient is purely real, as visible also in Fig. 2(d).

Next, we consider a chirped gaussian SH pulse with bandwidth equal to a transform limited
SH pulse of duration TSH = 40 f s and a 10% conversion efficiency. A long chirped SH target
(rather than short and transform-limited) allows us to use the entire length of the crystal for
frequency conversion. In such a way the maximum conversion efficiency, ultimately limited
by the maximum value of the nonlinear coefficient, can be significantly enhanced. Figure
3(a) shows the agreement between SH output (circles) and target (solid line) pulses. Fig. 3(b)
displays the output SH spectra, with a wide bandwidth of about 20nm FWHM (i.e., 400cm−1).

Let us now address the feasibility of the proposed devices. The current state of the art on pe-
riodic poling of Lithium Niobate allows for the realization of domain lengths as short as 200nm
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[8]. In our examples, the implementation of the grating exploiting first-order QPM would re-
quire minimum domain lengths of about 65nm. This value appears to be well within reach
thanks to the continuous progress in poling technology for ferroelectric crystals. The require-
ment on minimum pitch, however, could be relaxed by using higher-order QPM at the expense
of conversion efficiency. For example, the target of Fig. 2 can be obtained with second-order
QPM if we use a peak excitation of 40GW/cm2 and limit the conversion efficiency to 10%:
with the latter specifications the minimum domain length would be 100nm.
Finally, considering the device sensitivity to fluctuations in input characteristics (i.e. intensity,
chirp and duration), we verified that the design is rather robust against such variations, the ef-
fects of them on the output pulses being substantially limited to slight changes in amplitude
(i.e. conversion efficiency) and shape.

4. Conclusions

By using Lagrange multipliers and shooting we demonstrated that pulse shaping can be
achieved by engineering the domain distribution of a Quasi-Phase-Matching grating for back-
ward SHG, exploiting the large group-velocity-mismatch. These results, contemporary relevant
due to the progress in short-period poling of ferroelectrics and the interest in counterpropagat-
ing wave mixing, enrich the applicative scenario of backward three-wave interactions.
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