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We study light propagation in nanoscale periodic structures composed of 
dielectric and metal in the visible range. We demonstrate that diffraction 
can be tailored both in magnitude and in sign by varying the geometric 
features of the waveguides. Diffraction management on a subwavelength scale 
is demonstrated by numerical solution of Maxwell equations in frequency 
domain. 
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The miniaturization of photonic devices for confining and guiding electromagnetic energy

down to nanometer scale is one of the biggest challenges for the information technology

industries [1]. In the last years, photonic crystals technology allowed to gain one order of

magnitude factor in the miniaturization of components such as waveguides and couplers

with respect to conventional (i.e. based on total internal reflection) optics. However when

the size of a conventional optical circuit is reduced to the nanoscale, the propagation of

light is limited by diffraction. One way to overcome this limit is through surface plasmon

polaritons [2], which are evanescent waves trapped at the interface between a medium with

positive real part of dielectric constant and one with negative real part of dielectric

constant, such as metals in the visible range. Even though this phenomenon has been known

for a long time, in the last years there is a renewed interest in this field, mainly motivated

by the will to merge integrated electronic circuits to photonic devices [3].

In this Letter we study the propagation of light in nanostructured metal-dielectric waveg-

uide arrays (plasmonic arrays). As well known, an array of evanescently coupled single-mode

waveguides exhibits power exchanges among the waveguides leading to discrete diffrac-

tion. [4, 5]. In plasmonic arrays we find peculiar diffractive phenomena and we show the

possibility of diffraction management on a subwavelength scale.

The basic building block of a uniform waveguide array is the directional coupler; in the

following, for the sake of clarity, we will consider only two dimensional cases: we have trans-

lational invariance along the z axis, with y being the propagation direction and x the other
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transverse coordinate. In its simplest form, a directional coupler consists of two identical

parallel waveguides in close proximity; as well known, the power exchange between the two

waveguides can be described by ordinary differential equations coupling the modal field am-

plitude A1,2(y) of waveguides 1 and 2:

i
dA1

dy
+ β A1 + CA2 = 0

i
dA2

dy
+ β A2 + CA1 = 0 (1)

where β is the propagation constant of the waveguide mode and C is the coupling coefficient,

whose expression can be obtained in the framework of Coupled Mode Theory. Limiting our

attention to the TM case (i.e the non vanishing field components are Hz,Ex,Ey) we have an

expression valid both for y-homogeneous and y-periodic (photonic crystal) waveguides (see

[6,7] for a derivation of C and a discussion of the role played by the longitudinal

field components):

C = ω

∫∞
−∞

∫ Ly/2

−Ly/2
(ε− ε1)

(
e∗x1ex2 +

ε2

ε
e∗y1ey2

)
dxdy

2Ly <e
(∫∞

−∞ ex1h∗z1 dx
) , (2)

where ε(x, y) is the permittivity of the directional coupler, ε1,2(x, y) is the permittivity of

the isolated single waveguide 1 or 2, ex1,2(x, y), ey1,2(x, y) and hz1,2(x, y) are the electric and

magnetic field of the mode (or the Bloch mode in case of periodic waveguide) of waveguide

1 or 2, Ly is the unit cell length for a photonic crystal structure and an arbitrary length in

the case of translational invariance along y.

In contrast with conventional optical devices based on total internal reflection where C

must be always positive, in the following we introduce two different plasmonic directional

couplers having opposite sign of the coupling coefficient.

Let us first consider a system composed of alternate layers of metal (for example Silver)

and dielectric (air). We describe the optical properties of the metal using a Drude free-

electron model ε(ω) = 1− ω2
p/[ω(ω − iωτ )], where ωp is the plasma frequency and ωτ is the

collision frequency. As an example we consider a structure composed of 30nm of Silver and

120nm of air. We neglect absorption in metal (ωτ = 0) since it does not affect strongly the

dispersive properties of the propagating modes. In Fig. 1 we show the dispersion relation

and the profiles of the two modes supported by this directional coupler (to be called DC1

in the rest of the paper). In stark contrast with conventional waveguides, the fundamental

mode of this structure is odd [8]. Moreover we can see that the fundamental mode has one

node whereas the second one has no. This feature seems to struggle against the well known

Sturm oscillation theorem [9], which states that the Nth order mode has exactly N−1 nodes

(N = 1, 2, . . .); however it has to be remembered that the theorem holds only if the dielectric

2



constant is everywhere positive. Note also that the reversal of modes parity implies a negative

value of the coupling coefficient [10,11] C = (βeven−βodd)/2. For example at a wavelength of

600 nm C∆β = (βeven − βodd)/2 = −6.59 · 105m−1 and from Eq. (2) CCMT = −5.75 · 105m−1.

The difference between the two values (around 13%) is due to the strong coupling between

the waveguides.

Another well known plasmonic guiding structure is the metal nanoparticle array [12], where

the energy transport is supplied by electromagnetic resonant coupling between metal particles

arranged in a linear chain. Double nanoparticle chains, where the electromagnetic energy is

confined between two linear chains, offer a more flexible structure since the propagation is

less determined by resonances [13], allowing for a larger bandwidth for the guided modes.

As an example we considered double chain waveguides composed of Silver nanoparticles

with a radius of 50 nm immersed in air with a longitudinal separation of 110 nm and a

distance between the chains of 150 nm. We neglected losses in the metal since it was found

from previous band diagram calculations of metallic photonic crystals that this is reasonable

for realistic absorption coefficients [14]. In Fig. 2 we show the dispersion relation and the

mode profiles of two coupled waveguides composed of three nanoparticle chains (to be called

directional coupler DC2 in the rest of the paper). Since we are interested in guided modes we

consider only the region in the (k, ω) space that lies below the light line ω = ck. This coupler

supports several modes, however in the working range [450nm-750nm] (light shaded region

in Fig. 2a)) only two modes are reasonably below the light line. As opposed to the previous

directional coupler, the fundamental mode here is even and the second order mode is odd,

implying positive coupling constant. For example at 600nm we obtain C∆β = 1.29 · 106m−1

and CCMT = 1.15 · 106m−1.

Let us now consider the uniform arrays A1 (A2) obtained using directional couplers DC1

(DC2) as basic building blocks. The set of equations modelling the evolution of the modal

field amplitude An in each waveguide of an uniform array reads as: [4, 5]

i
dAn

dy
+ β An + C(An+1 + An−1) = 0. (3)

The diffraction coefficient [15,16] of the waveguide array can be derived from Eqs. (3):

D = −2Cd2 cos(kxd), (4)

where d is the spacing between the centers of adjacent waveguides and then kxd is the

imposed input field phase shift between them.

From the above reported analysis we expect, at normal incidence (kx = 0), the waveg-

uide array A1 to be an anomalous-diffraction array (D > 0), whereas waveguide array A2

is expected to behave as a normal-diffraction array (D < 0). The field evolution along

the waveguide arrays has been simulated without any approximation by solving Maxwell’s
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equations through a frequency-domain finite-element method, using arrays composed by 17

waveguides. The central waveguide of the arrays is excited with a Gaussian field, which

spreads during propagation and generates the typical diffraction pattern observed also in

conventional waveguide arrays: two outermost wings and a few less intense peaks in the cen-

tral waveguides. The same qualitative behavior is observed for both arrays since the intensity

evolution is not influenced by the diffraction sign. On the other hand the phase front curva-

ture of the propagating field depends on the diffraction sign. Therefore, if we alternate arrays

characterized by normal and anomalous diffraction, the input field shape can be periodically

recovered.

In Fig. 3 we report the finite element simulation of the diffraction-managed device. The

first array section (A1) is L1=3900nm long, the second (A2) L2=1600nm. We excited only the

central waveguide with a normal-incident 120nm FHWM intensity Gaussian field at 600nm.

The input excitation spreads during propagation in the first section, whereas it exhibits an

opposite behavior in the second one, and the initial field distribution is recovered at the

output end of the device. The reported phenomena are a clear signature of the inversion of

the sign of the diffraction coefficient, in perfect agreement with our theoretical analysis. It

is worth noting that all the dynamics takes place in a 2µm× 5µm device.

As far as losses are concerned, we verified that the propagation in the diffraction managed

devices is not influenced at all by including a lossy model for the metal (Drude model

gives ε(600nm) ≈ −15 − 0.37i): the evolution showed in Fig. 3 is indistinguishable from

the analogue calculated with a lossy metal. Moreover the decay length of the fundamental

mode of the waveguides composing A1 is, for example, LD(600nm) = [2Im(β)]−1 = 17µm,

much longer than the device length, indicating that all the relevant dynamics can take place

without being suppressed by absorption.

We now turn our attention to the bandwidth of the reported phenomena. By observing the

band structure of the metal nanoparticle coupler (Fig. 2 a)), we expect the bandwidth of this

device to be the interval [450nm,750nm], i.e all the visible range from blue to red. We studied

the dynamics of diffraction management in this range and we found that, even if the two

guiding structures have very different dispersive properties, the diffraction compensation

is reasonably good for all the wavelengths range. Figures 4a)-b) show the time average

power flow evolution at the edges of the operating frequencies interval. At short wavelengths

(Fig. 4a)) the magnitude of the dielectric constant of metal is relatively low (≈ −8), the

fundamental mode of the waveguides is poorly confined and the coupling is strong, leading to

large diffraction in both arrays. Whereas at long wavelengths (Fig. 4b)) the large magnitude

of the dielectric constant of metal (≈ −24) leads to strong confinement and small diffraction.

The average value of diffractive spreading however remains low, considering the huge band

we are looking at. Figure 4 c) displays the dispersion of the diffraction parameter (coupling

4



coefficient times propagation length C ·L) for the arrays A1 and A2 and for the entire device;

the agreement between finite-element simulations Fig. 4 a)-b) and the prediction

of Coupled Mode Theory is quite remarkable

In conclusion, diffraction properties of uniform arrays of plasmonic waveguides have been

studied. Starting from the analysis of coupling between adjacent waveguides we have demon-

strated that diffraction can be controlled both in amplitude and sign with normal incidence

input excitations. Diffraction management in an ultracompact device composed of alternated

sections with opposite diffraction sign has been demonstrated on a wavelength interval cov-

ering the visible range from blue to red.
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List of Figures

Fig. 1 (Color online) a) Dispersion relation of the fundamental (odd) and second order

(even) mode of the coupler DC1. b) Fundamental (continuous red) and second order

(dash-dot blue) mode @ 600nm.

Fig. 2 (Color online) a) Dispersion relation of the coupler DC2. Thick curves, fun-

damental (even) and second order (odd) mode. Dashed curves, high order modes.

Thin horizontal line denotes a wavelength of 600 nm. Dark shaded region, light

cone; light shaded region, operating bandwidth 450nm-750nm. b) Fundamental and

second order mode @ 600nm.

Fig. 3 (Color online) Time average power flow in y direction (normalized to the

maximum) in the diffraction managed device @ 600nm.

Fig. 4 (Color online) Time average power flow in y direction (normalized to the

maximum) in the diffraction managed device at different wavelengths : a) 450nm,

b) 750nm. c) Diffraction coefficient times propagation length (C · L) for array A1

(red), array A2 (blue) and for the entire device (C1 · L1 + C2 · L2) (black).
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Fig. 1. (Color online) a) Dispersion relation of the fundamental (odd) and second order (even)

mode of the coupler DC1. b) Fundamental (continuous red) and second order (dash-dot blue)

mode @ 600nm.
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Fig. 2. (Color online) a) Dispersion relation of the coupler DC2. Thick curves, fundamental

(even) and second order (odd) mode. Dashed curves, high order modes. Thin horizontal

line denotes a wavelength of 600 nm. Dark shaded region, light cone; light shaded region,

operating bandwidth 450nm-750nm. b) Fundamental and second order mode @ 600nm.
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Fig. 3. (Color online) Time average power flow in y direction (normalized to the maximum)

in the diffraction managed device @ 600nm.
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Fig. 4. (Color online) Time average power flow in y direction (normalized to the maximum) in

the diffraction managed device at different wavelengths : a) 450nm, b) 750nm. c) Diffraction

coefficient times propagation length (C · L) for array A1 (red), array A2 (blue) and for the

entire device (C1 · L1 + C2 · L2) (black).
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