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Three–wave trapponic solitons for tunable
high–repetition rate pulse train generation

Fabio Baronio, Member, IEEE, Matteo Conforti, Antonio Degasperis, and Stefan Wabnitz, Member, IEEE

Abstract—We demonstrate that the parametric mixing of an
ultra-short Zakharov–Manakov (ZM) soliton pulse with a quasi–
continuous wave (CW) signal in a weakly quadratic nonlinear and
dispersive medium may lead to the generation of a three–wave
soliton with variable speed, or trappon. We show that trappons
may provide a novel mechanism of cavity–less ultra–short pulse
train generation. The time width, the amplitude and the repetition
rate of the generated pulse trains may be controlled in a stable
manner by adjusting the intensity level of the CW signal and/or
the ZM short soliton pulse.

Index Terms—Three wave interaction, Solitons, Pulse train
generation.

I. INTRODUCTION

EFFICIENT mechanisms for the generation of high–
contrast, ultra–short pulse trains are of interest in a

broad range of domains, such as time–resolved spectroscopy
and microscopy, selective femtosecond chemistry, quantum
coherent control in high–field physics, and optical commu-
nications. Relevant application examples include quantum–
path control of high–harmonic generation [1]; multi–pulse
excitation of atoms, molecules, and solids [2]; multiple–laser–
pulse excitation of high–gradient plasma accelerators [3];
high–fluence THz wave–train generation for radar, microwave
[4] and optical communication systems. Several techniques
for generating trains of ultra–short pulses at repetition rates
beyond those achievable by active laser mode locking or
by means of electrically–controlled modulation have been
explored in recent years. For example, linear pulse train gen-
eration techniques include the repetition–rate multiplication of
a lower rate source by applying amplitude [5], [6] or phase–
spectral filtering [7], [8], [9]. Moreover, different all–optical
techniques that may result in up to THz pulse train rates
have also been proposed by using both quadratic and cubic
nonlinear media. Consider for example induced modulation
instability [10], [11], multiple four-wave-mixing [12], [13],
and backward quasi-phase-matched second harmonic genera-
tion [14], [15].

In this Paper, we present a novel nonlinear technique for
the flexible generation of a train of ultra–short optical pulses
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with light-controlled time width, amplitude and repetition
rate. This technique originates from the interaction of three
waves at resonance. Though this process is of interest in
various physical contexts, our treatment here is phrased in the
language of nonlinear optics where its potential applicability
appears to be higher. The physical model describing three–
wave interactions (TWI) is completely integrable by spectral
methods [16], and it exhibits soliton solutions, i.e. particular
waveforms that preserve their shapes upon collisions. The
simplest of such soliton solutions of the TWI equations was
discovered by Zakharov and Manakov (ZM), and it consists of
hyperbolic secant pulses. We propose to exploit the parametric
interaction of an ultra-short ZM soliton pulse [16] with a
quasi–continuous wave signal, which collide in a weakly
dispersive and nonlinear quadratic optical crystal. As we shall
see, the phase–matched three–wave interaction of the ultra-
short pulse with the CW signal may lead to the high–contrast
modulation of the CW signal into a sequence of ultra–short
pulses. Quite remarkably, the above pulse train generation
process is analytically described in terms of the adiabatic
reshaping of the initial single–wave ZM soliton into a three–
wave locked soliton with variable speed, which is also known
as the trappon [17]. By exploiting the degrees of freedom of
such trapponic soliton solutions, we shall demonstrate here that
the time width, amplitude and repetition rate of the generated
pulse train may be controlled in a stable manner by simply
adjusting the parameters of the two input pulses, namely the
intensity level of the CW signal, and/or the intensity level and
time width of the short ZM soliton pulse.

II. THREE-WAVE INTERACTION EQUATIONS

The dimensionless equations that describe the quadratic
resonant interaction of three waves in a nonlinear optical
medium read as

∂A1

∂ξ
+ δ1

∂A1

∂τ
= iA∗2A3,

∂A2

∂ξ
+ δ2

∂A2

∂τ
= iA∗1A3, (1)

∂A3

∂ξ
+ δ3

∂A3

∂τ
= iA1 A2,

with

Aj = πχ(2)

√
njω1ω2ω3

n1n2n3ωj
Ej . (2)

Here τ = t/t0, t0 is an arbitrary time scale; ξ = z/z0, z0 is
an unit space–propagation parameter. Ej is the slowly varying
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electric field envelope of the wave at frequency ωj , nj is its
refractive index, χ(2) is the quadratic nonlinear susceptibility,
δj = z0/(vjt0) (vj being the linear group velocity), and j =
1, 2, 3. We assume that the group velocity v3 of the wave with
the highest frequency (ω3 = ω1 + ω2) lies between the group
velocities of the other waves, i.e. v1 > v3 > v2. With no loss
of generality, we shall write Eqs. (1) in a coordinate system
such that δ1 = 0, which implies 0 < δ3 < δ2. Eqs. (1) exhibit,
among others, the conserved quantities

U13 = U1 + U3 =
1
2

∫ +∞

−∞
(|A1|2 + |A3|2)dτ, (3)

U23 = U2 + U3 =
1
2

∫ +∞

−∞
(|A2|2 + |A3|2)dτ, (4)

which is reported here for future reference, where U1, U2 and
2U3 represent the energies of waves at the frequencies ω1, ω2

and ω3, respectively.

III. SOLITON–BASED ULTRA–SHORT PULSE TRAIN
GENERATION

Let us first present numerical evidence of the train gener-
ation process. Figure 1 illustrates the possibility of obtaining
an efficient modulation of the input CW signal into a train of
ultra–short pulses, as a result of its parametric mixing with an
ultra-short ZM soliton pulse at a different carrier wavelength.
In particular, in Fig. 1 we numerically solved Eqs. (1), where
the initial excitation conditions at ξ = 0 were provided by
a quasi–CW signal at frequency ω1 (a standing signal in a
coordinate system where δ1 = 0) and a short ZM soliton
pulse at frequency ω2 (with delay parameter δ2 > 0). The
two input pulses were pre-delayed, so that they could collide
at some distance inside the crystal. Figure 1 shows that as
soon as the faster ZM soliton pulse starts to overlap in time
with the slower quasi–CW signal, their parametric mixing
leads to the generation of an idler short pulse at frequency
ω3. Additionally, Fig. 1 also shows that the TWI leads to a
periodic oscillation with distance ξ of the intensity of the two
short pulses at carrier frequencies ω2 and ω3. As a result, it
turns out [18] that the centre of mass of these two pulses
periodically oscillates in time around an average value, which
grows larger with distance according to a common average
group velocity which is apparently (see Fig. 1) different from
the group velocity of the incoming short pulse. As for the
incoming CW signal, Fig. 1 also shows that a train of short
pulses is carved on the CW background at frequency ω1.
Finally, Fig. 1 also illustrates that at the end of the three–
wave interaction process the quasi–CW background at ω1 is
modulated into a sequence of ultra–short pulses, the soliton
pulse at ω2 returns back to its original shape, and the generated
sum-frequency pulse at ω3 vanishes.

Quite remarkably, we shall demonstrate now that the entire
three–wave interaction process which is displayed in Fig. 1
may be analytically represented in terms of particular an-
alytical TWI soliton solutions. In the notation of Eqs. (1),
the arbitrary input quasi CW signal at frequency ω1 may be
described as

Fig. 1. Sum–frequency parametric interaction of a quasi–CW control at ω1

and a short pulse at ω2. The characteristic delays are δ1 = 0, δ2 = 2, δ3 = 1.

A1 =
Ce−iγτ

2
[tanh(

τ − τi

τr
)− tanh(

τ − τf

τr
)],

A2 = 0,

A3 = 0, (5)

where C is the complex amplitude and γ is the frequency shift
with respect to ω1 of the quasi-CW signal; τi (τf ) and τr are
the switch–on (switch–off) time and the rise/fall time of the
quasi–CW signal, respectively.

On the other hand, the input ZM single–wave soliton pulse
[16] at frequency ω2 reads as

A1 = 0,

A2 = 2P
√

%δ2δ3
ei%φτ2

cosh(2P%τ2)
,

A3 = 0, (6)

where

% = δ3/(δ2 − δ3),
τ2 = −τ + δ2ξ. (7)

For a given choice of the three linear group velocities, or
characteristic delays δj , the above ZM soliton is determined in
terms of the two real parameters P > 0, φ. The parameter P
fixes both the soliton peak amplitude and its temporal width.
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Whereas the parameter φ corresponds to a phase shift which
is linear in both τ and ξ.

After the collision of the ZM pulse with the CW back-
ground, we surmise that their parametric interaction generates
a three-wave trapponic soliton, which consists of a group-
velocity locked bright-bright-dark triplet. Similar triplet so-
lutions have been already considered in nonlinear optics in
the form of simultons [19], [20] or boomerons [21]. Trappon
soliton solutions of the TWI Eqs. (1) may be found as dis-
cussed in the recent analysis of Ref. [18], [19]. TWI trappons,
whose potential impact on nonlinear optics is suggested here
for the first time, are characterized by a periodic (or trapped)
spatio–temporal evolution of the energy distribution of the
three waves, as well as of their locked propagation speed.
As a result, the center of mass of a trappon also periodically
oscillates within a limited time interval. As far as the potential
applications are concerned, the most significant property of the
trappon dynamics consists in the carving of a train of short
pulses into the CW–background at frequency ω1. Indeed, as
shown in the next section, the entire three–wave interaction
dynamics after the collision of the short pulse with the CW
background as shown by Fig. 1 may be analytically described
in terms of the trappon solution

AT
1 = ia

√
δ2δ3e

iq1τ1 − i
∆
4p

(
δ2 − δ3

δ2δ3
)A∗2A3,

AT
2 = −2pδ3

∆

√
2δ2

δ2 − δ3
eiq2τ2(H∗

+ −H∗
−),

AT∗
3 =

2pδ2

∆

√
2δ3

δ2 − δ3
eiq3τ3(H+eiβ −H−e−iβ), (8)

where

∆ = 1 + |H+|2 + |H−|2 − 2 cos(β)Re(H+H∗
−eiβ),

H± = e−(B±iχ)τ e
2δ2δ3
δ2−δ3

pξ,

χ =
√

a2 − p2,

B = p
(δ2 + δ3

δ2 − δ3

)
, tan(β) =

√
a2 − p2/p,

δ =
2δ2δ3

δ2 + δ3
,

qn = q(δn+1 − δn+2), n = 1, 2, 3 mod(3),
τn = −τ + δnξ. (9)

For a given choice of the characteristic linear velocities in Eqs.
(1), the trappon solution of Eqs. (8) is completely determined
by just three independent real parameters, namely p, q, a (with
the restrictions that p > 0, a > 0 and a2 > p2). The parameter
p is associated with the rescaling of the wave amplitudes, and
of coordinates τ and ξ. Whereas a measures the amplitude
of the CW background in wave AT

1 . The parameter q adds a
phase shift which is linear in both τ and ξ.

The trappon solution (8) extends in time from τ = −∞ to
τ = +∞ and at large distances (i.e., for ξ → +∞) it exhibits
a time–periodic behavior. Nevertheless, as we shall see in next
section, Eqs. (8) exactly describe the mixing of the ZS soliton
(6) with the quasi–CW (5) background signal over the finite
interval [τi, τf ] (which correspond to the times of turning on
and off the CW wave at frequency ω1, respectively).

−5 15
0

9

τ

|A
| 1

Fig. 2. Numerical evolution (continuous lines) and theoretical prediction
from Eqs. (8) (dotted lines) of the energy at ω2 and of the output pulse
profile at ω1 for the case of Fig. 1.

IV. THREE-WAVE ADIABATIC SOLITON SHAPING

Indeed, one may analytically predict the characteristic pa-
rameters p, q, a of the generated TWI trappon from the cor-
responding P, φ parameters of the isolated input ZM soliton,
and the complex amplitude C and the frequency shift γ of
the CW signal. In order to demonstrate this, it is sufficient to
suppose that the input ZM soliton adiabatically (i.e., without
emission of radiation) reshapes into a trappon soliton after
its collision with the quasi–CW background at a given point
in time (say, at τ = τi). In the spectral domain [16] this
hypothesis is equivalent to imposing that the input ZM soliton,
after the collision with the CW background, transfers its
discrete eigenvalue to the trappon soliton. In the frame of
this basic hypothesis, the conservative nature of the three–
wave interaction permits us to suppose that: i) the energy U23

(4) of the input TWI soliton is conserved in the generated
trappon soliton; ii) the phase of the ω2 frequency components
of the input TWI soliton and of the generated TWI soliton
varies in a continuous manner across their time interface (i.e.,
at τ = τi); iii) the amplitude and the phase of the CW
background coincide with the corresponding values of the
asymptotic plateau of the component at frequency ω1 of the
generated TWI trappon. The above three conditions, after some
straightforward calculations, permit us to obtain the following
equations that relate the parameters of the incident and of
the transmitted solitons (i.e., before and after the collision,
respectively)

P = p, a = |C|/
√

δ2δ3, q(δ2 − δ3) = φ, (10)

with the restrictions that |C|2 > P 2δ2δ3 and γ = φ. The above
conditions define the matching relations among the amplitudes
and the phases of both the input ZM soliton and of the CW
signal which should be satisfied in order to excite the trapponic
soliton. As an example, consider the case of Fig. 1, where the
CW background control is described by Eqs. (5) with C = 3,
γ = 1, and the input ZM soliton (6) is obtained from Eqs.
(6) with P = 1.5, φ = 1. After the collision with the CW
background, Eqs. (10) predict that the generated trappon is
obtained from Eqs. (8) with p = 1.5, q = 1, and a = 3/

√
2.

We confirmed the accuracy of this prediction by means of
extensive comparisons of the analytical expression (8) with
numerical solutions of the TWI Eqs. (1). For example, Fig. 2
displays both numerically computed and analytical evolutions
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Fig. 3. Output pulse train (11) amplitude (blue line) and its time–average
value (red line) for: a) C = 2.5

√
2, P = 1 and b) C = 2.5

√
2, P = 2;

Pulse train frequency f = 1/T c) vs. P (C = 10); and d) vs. C (p = 2).

for the energy U2 (along the crystal length ξ) and for the output
transverse profile of wave A1 (along τ ) (these correspond to
the same interaction process previously shown in Fig. 1).

V. CONTROLLED PULSE TRAIN GENERATION

The amplitude profile of the generated train of ultra–
short pulses at frequency ω1 may be exactly described by
performing the limit for ξ → +∞ of the first of Eqs. (8),
which yields

|AT
1∞(τ)| = |C|

∣∣∣1− 4 cos(β)
sin(πτ/T ) sin(πτ/T − β)

1− cos(β) cos(2 πτ/T − β)

∣∣∣
(11)

where |C| = a
√

δ2δ3 (see (10)), tan(β) =
√

a2 − p2/p (see
(9)) and period T = π/

√
a2 − p2. Two different examples of

the generated pulse trains as described by Eqs.(11) are shown
in Fig. 3 a)–b).

Equation (11) provides relatively simple expressions that
relate the parameters of the injected soliton pulse and CW
background to the main features of the generated output
pulse train. Indeed, |AT

1∞| is a time periodic signal (with
period T ) with average value approximatively equal to |C|.
Moreover, from Eqs.(11) one obtains that the peak amplitude
of the generated pulses is M = |C| + 2

√
δ2δ3P ; whereas

the minimum amplitude is m = |C| − 2
√

δ2δ3P . Hence
the maximum intensity contrast for the generated train is
obtained for |C| = 2P

√
δ2δ3: in this case, the field amplitude

at the minima vanishes and the peak amplitudes reads as
M = 4

√
δ2δ3P .

In Figure 3 c)–d) we illustrate the analytically predicted
dependence of the repetition rate of the ultra–short pulse
train R = 1/T =

√
|C|2/(δ2δ3)− p2/π, as a function of the

amplitudes of the input short pulse and of the CW signal,
respectively. As it can be seen in Fig. 3 c), the repetition

rate is the largest whenever the amplitude of the input soliton
vanishes. Whereas there is a critical input soliton amplitude,
above which the period of the generated pulse train diverges to
infinity. On the other hand, Fig. 3 d) shows that when varying
the CW background amplitude, a finite repetition rate is only
obtained for amplitudes |C| above a certain threshold level,
and the rate grows larger with |C| in a linear fashion.

The above results show that the peak amplitude, the time
width and the repetition rate of the pulse train which is
generated at ω1 may be controlled in a stable manner by
simply adjusting the intensity level of the input CW signal
|C| and/or the amplitude level (hence the time width) P of
the input short soliton pulse.

It is worth noting the efficiency of the proposed method for
generating pulse trains, since theoretically the entire energy of
the pump pulse A1 is converted into the train. Indeed, from
the energy conservation relation (3) and the fact that at the
end of the interaction A3 = 0, it follows that the energy of
the quasi-CW pulse is conserved before and after the collision
with the control pulse A2.

It should be pointed out that the generation process we have
so far described may be thought of as a way of ”writing” a
pulse train on a quasi CW signal. The opposite process of
”erasing” such wave train to go back to a flat, quasi CW, signal
is also possible. Indeed, it is easy to realize that this reverse
process is well described in a similar way by the formation
of the trappon soliton solution of the TWI Eqs. (1) which is
obtained from the expression (8) via the invariance transforma-
tion ξ → −ξ , τ → −τ , A1 → A1 , A2 → A2 , A3 → −A3.

We would like to point out that the observation of the
above described three–wave phenomena appears to be readily
achievable in nonlinear optical experiments. For instance, let
us consider the eee interaction of three–waves with carrier
wavelengths of λ1 = 1.55µm, λ2 = 3.4µm, λ3 = 1.064µm
in a 8cm long periodically poled bulk Lithium Tantalate crystal
with 28µm periodicity. In this case, the parametric mixing of
a 200fs incident pulse with a quasi–CW signal (say, with a
3ps time duration) leads to the generation of a train of 250fs
pulses with a repetition rate of about 2THz; the corresponding
peak power levels of the incident and of the generated fields
are of the order of a few hundreds of MW/cm2. In practical
terms, the upper limit to the maximum repetition rate of the
generated pulse train which can be achieved by the present
technique will be set by the limit of validity of Eqs. (1),
which hold true in three–wave physical systems whenever the
presence of group velocity dispersion within each wave can
be neglected.

VI. CONCLUSIONS

We revealed that the three–wave parametric interaction of
an ultra-short ZM soliton pulse with a quasi–continuous wave
(CW) signal in a weakly quadratic nonlinear and dispersive
medium may lead to the generation of a trapped soliton, or
trappon. Moreover, we predicted that the excitation of trapped
solitons may lead to a new class of optically controlled, cavity-
less sources of ultra-short pulse trains with up to multi–THz
repetition rates.
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