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Abstract—Negotiation diagrams are a model of concurrent
computation akin to workflow Petri nets. Deterministic ne-
gotiation diagrams, equivalent to the much studied and used
free-choice workflow Petri nets, are surprisingly amenable to
verification. Soundness (a property close to deadlock-freedom)
can be decided in PTIME. Further, other fundamental questions
like computing summaries or the expected cost, can also be
solved in PTIME for sound deterministic negotiation diagrams,
while they are PSPACE-complete in the general case.

In this paper we generalize and explain these results. We
extend the classical “meet-over-all-paths” (MOP) formulation
of static analysis problems to our concurrent setting, and
introduce Mazurkiewicz-invariant analysis problems, which
encompass the questions above and new ones. We show that
any Mazurkiewicz-invariant analysis problem can be solved in
PTIME for sound deterministic negotiations whenever it is in
PTIME for sequential flow-graphs—even though the flow-graph
of a deterministic negotiation diagram can be exponentially
larger than the diagram itself. This gives a common explanation
to the low-complexity of all the analysis questions studied so
far. Finally, we show that classical gen/kill analyses are also
an instance of our framework, and obtain a PTIME algorithm
for detecting anti-patterns in free-choice workflow Petri nets.

Our result is based on a novel decomposition theorem, of
independent interest, showing that sound deterministic negoti-
ation diagrams can be hierarchically decomposed into (possibly
overlapping) smaller sound diagrams.

1. Introduction

Concurrent systems are difficult to analyze due to the
state explosion problem. Unlike for sequential systems, the
flow graph of a concurrent system is often exponential in the
size of the system, so that analysis techniques for sequential
systems cannot be directly applied. One approach to analyze
concurrent systems is to take a general model and design
heuristics that work for relevant examples. Another, that
we pursue in this paper, is to find a restricted class of
concurrent systems and design provably efficient algorithms
for particular analysis problems for this class.

In [6] Esparza and Desel introduced negotiation dia-
grams, a model of concurrency closely related to workflow
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Petri nets. Workflow nets are a very successful formal-
ism for the description of business processes, and a back-
end for graphical notations like BPMN (Business Process
Modeling Notation), EPC (Event-driven Process Chain), or
UML Activity Diagrams (see e.g. [28], [30]). In a nutshell,
negotiation diagrams are workflow Petri nets that can be
decomposed into communicating sequential Petri nets, a
feature that makes them more amenable to theoretical study,
while the translation into workflow nets (described in [3])
allows to transfer results and algorithms to business process
applications.

A negotiation diagram describes a distributed system
with a fixed set of sequential processes. The diagram is
composed of “atomic negotiations”, each one involving a
(possibly different) subset of processes. An atomic negoti-
ation starts when all its participants are ready to engage in
it, and concludes with the selection of one out of a fixed
set of possible outcomes; for each participant process, the
outcome determines which atomic negotiations the process
is willing to engage in at the next step. As workflow Petri
nets, negotiations can simulate linearly bounded automata,
and so all interesting analysis problems are PSPACE-hard
for them.

A negotiation is deterministic if for every process the
outcome of an atomic negotiation completely determines
the next atomic negotiation the process should participate
in. As shown in [3], the connection between negotiations
diagrams and workflow Petri nets is particularly tight in the
deterministic case: Deterministic negotiation diagrams are
essentially isomorphic to the class of free-choice workflow
nets, a class important in practice1 and extensively studied,
see e.g. [8], [9], [10], [13], [16], [17], [29]). The state space
of deterministic negotiations/free-choice workflow nets can
grow exponentially in their size, and so they are subject to
the state explosion problem. However, theoretical research
has shown that, remarkably, several fundamental problems
can be solved in polynomial time by means of algorithms
that avoid direct exploration of the state space (contrary
to other techniques, like partial-order reduction, that only
reduce the number of states to be explored, and still have
exponential worst-case complexity). First, it can be checked
in PTIME if a deterministic negotiation diagram is sound [7],
a variant of deadlock-freedom property [17]2. Then, for

1. For example, 70% of the almost 2000 workflow nets from the suite
of industrial models studied in [8], [12], [31] are free-choice.

2. About 50% of the free-choice workflow nets from the suite mentioned
above are sound.
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sound deterministic negotiation diagrams PTIME algorithms
have been proposed for: the summarization problem [8], the
problem of computing the expected cost of a probabilistic
free-choice workflow net [9], and the identification of some
anti-patterns [10].

In this paper we develop a generic approach to the
static analysis of sound deterministic negotiation diagrams.
It covers all the problems above as particular instances,
and new ones, like the computation of the best-case/worst-
case execution time. The approach is a generalization to
the concurrent setting of the classical lattice-based approach
to static analysis of sequential flow-graphs [22]. A flow-
graph consists of a set of nodes, modeling program points,
and a set of edges, modeling program instructions, like
assignments or guards3. In the lattice-based approach one
(i) defines a lattice D of dataflow informations capturing
the analysis at hand, (ii) assigns semantic transformers
[[a]] : D → D to each action a of the flow-graph, (iii)
assigns to a path a1 · · · an of the flow graph the functional
composition [[an]] ◦ · · · ◦ [[a1]] of the transformers, and (iv)
defines the result of the analysis as the “Merge Over all
Paths”, i.e, the join of the transformers of all execution
paths, usually called the MOP-solution or just the MOP of
the dataflow problem. So performing an analysis amounts to
computing the MOP of the flow-graph for the corresponding
lattice and transformers.

Katoen et al. have recently shown in [20], [5] that in
order to adequately deal with quantitative analyses of con-
current systems, like expected costs, one needs a semantics
that distinguishes between the inherent nondeterminism of
each sequential process, and the nondeterminism introduced
by concurrency (the choice of the process that should per-
form the next step). Following these ideas, we introduce
a semantics in which the latter is resolved by an external
scheduler, and define the MOP for a given scheduler. The
result of a dataflow analysis is then given by the infimum
or supremum, depending on the application, of the MOPs
for all possible schedulers.

The contributions of the paper are the following:
(1) We present an extension of a static analysis frame-

work to deterministic negotiation diagrams. In particular,
we identify the class of Mazurkiewicz-invariant frameworks
that respect the concurrency relation in negotiations. We
prove a theorem showing a first important property of sound
deterministic negotiations, namely that the MOP is inde-
pendent of the scheduler for Mazurkiewicz invariant frame-
works. This allows to compute the result of the analysis by
fixing a scheduler, and computing the MOP for it. As an
another motivation for Mazurkiewicz-invariant frameworks
we observe that there are static analysis frameworks for
which analysis is NP-hard, even for sound deterministic
negotiation diagrams.

(2) The main contribution of the paper is a method to
compute MOP problems for sound deterministic negotiation

3. In some papers the roles of nodes and edges are reversed: Nodes
are program instructions, and edges are program points. The version with
program points as nodes is more convenient for our purposes.

diagrams. The method does not require the computation
of the reachable configurations. We prove a novel decom-
position theorem showing that a deterministic negotiation
diagram is composed of smaller subnegotiations involving
only a subset of the processes, and that these subnegotiations
are themselves sound. This allows us to define a generic
PTIME algorithm for computing the MOP for Mazurkiewicz-
invariant static analysis frameworks.

(3) Finally, we show that the problems studied in [8],
[9], and others, are Mazurkiewicz-invariant. Further, we
show that the MOP of an important class of analyses –
all four flavors of gen/kill problems, well known in the
static analysis community – can be reformulated as invariant
frameworks, and computed in PTIME.

Organization of the paper: Section 2 introduces the
negotiation model and static analysis frameworks. Section 3
proves the decomposition theorem. Section 4 presents the al-
gorithm to compute the MOP of an arbitrary Mazurkiewicz-
invariant analysis framework. Section 5 deals with gen/kill
analyses. Omitted proofs can be found in the extended
version [?].

Related work. As we have mentioned, deterministic nego-
tiations are very close to free-choice workflow Petri nets,
also called workflow graphs. Algorithms for the analysis of
specific properties of these nets have been studied in [8], [9],
[10], [13], [16], [17], [27], [29]. We have already described
above the relation to these works.

We discuss the connection to work on static analy-
sis for (abstract models of) programming languages. The
synchronization-sensitive analysis of concurrent programs
has been intensively studied (see e.g [1], [2], [11], [14], [15],
[18], [21], [23], [25], [26]). A fundamental fact is that inter-
procedural synchronization-sensitive analysis is undecidable
[23], and intraprocedural synchronization-sensitive analysis
has high complexity (ranging from PSPACE-completeness
to EXPSPACE-completeness, depending on the communi-
cation primitive), see e.g. [?]). This is in sharp contrast to
the linear complexity of static analysis in the size of the
flow graph for sequential programs, and causes work on the
subject to roughly split into two research directions. The
first one aims at obtaining decidability or low complexity of
analyses by restricting the possible synchronization patterns.
Many different restrictions have been considered: parbegin-
parend constructs [11], [26], generalizations thereof (see
e.g. [21]), synchronization by nested locks (see e.g. [14]),
and asynchronous programming (see e.g. [18]). The other
direction does not restrict the synchronization patterns, at
the price of worst-case exponential analysis algorithms (see
e.g. [2], [15], where control-flow of parallel programs is
modelled by Petri nets, and a notion similar to Mazurkiewicz
invariance is also used).

Compared with these papers, the original feature of our
work is that we obtain polynomial analysis algorithms with-
out restricting the possible synchronization patterns; instead,
deterministic negotiation diagrams restrict the interplay be-
tween synchronization and choice. This distinction can be
best appreciated when we compare these formalisms, but



excluding choice. In the programming languages of [11],
[14], [18], [21], [26], excluding choice means excluding if-
then-else or alternative constructs, while for deterministic
negotiations it means considering the special case in which
every node has exactly one outcome. Sound deterministic
negotiation diagrams can model all synchronization patterns
given in terms of Mazurkiewicz traces, which is not the
case for the formalisms of [11], [14], [18], [21], [26].
For example, the languages of [11], [26] cannot model
a synchronization pattern with three processes A,B,C in
which first A synchronizes with B, then A synchronizes
with C, and finally B synchronizes with C. Observe that
on the other hand, negotiations are finite state, whereas the
other formalisms we have mentioned have non-determinism,
recursion, and possibly, thread creation.

2. Negotiations

A negotiation diagram N is a tuple
〈Proc, N, dom, R, δ〉, where Proc is a finite set of
processes (or agents) and N is a finite set of nodes where
the processes can synchronize to choose an outcome.
The function dom : N → P(Proc) associates to every
node n ∈ N the (non-empty) set dom(n) of processes
participating in it. Nodes are denoted as m or n, and
processes as p or q; possibly with indices. The set of
possible outcomes of nodes is denoted R4, and we use
a, b, . . . to range over its elements. Every node n ∈ N has
its set of possible outcomes out(n) ⊆ R.

The control flow in a negotiation diagram is determined
by a partial transition function δ : N × R × P ·−→ P(N),
telling that after the outcome a of node n, process p ∈
dom(n) is ready to participate in any of the nodes in the
set δ(n, a, p). So for every n′ ∈ δ(n, a, p) we have p ∈
dom(n′) ∩ dom(n), and for every n, a ∈ out(n) and p ∈
dom(n) the result δ(n, a, p) is defined. Observe that nodes
may have one single participant process, and/or have one
single outcome. A location is a pair (n, a) such that a ∈
out(n), and we define its domain as dom(n).
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D1

D2

n1

n2

n3

n4

n5 n6

n7

reg

reg send

eval

tout
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npr

pr

npr

pr done
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Figure 1. A negotiation diagram with two processes.

Example: Figure 1 shows a negotiation diagram for (a
slight modification of) the insurance claim example of [28]
(see also Fig. 2 of [8] for a workflow Petri net model).
The diagram describes a workflow for handling insurance
claims by an insurance company with two departments D1

4. R stands for result; we prefer to avoid the confusing symbol O.

and D2. The processes of the negotiation are D1 and D2.
The nodes n0, n4, n7 have domain {D1, D2}; n1 and n3
have domain D1, and n2, n5, n6 have domain D2. After the
claim is registered, outcome reg involves both processes,
D1 sends a questionnaire to the client, and concurrently
D2 makes a first evaluation of the claim. After the client’s
answer is received or a time-out occurs (outcome tout), both
departments decide together at node n4 whether to process
the claim or not. In both cases D1 has nothing further to do,
and moves to the final node n7. If the decision is to process
the claim, then D2 moves to n5, and the claim is processed,
possibly several times, until a satisfactory result is achieved
(outcome OK), after which D2 also moves to n7. �

A configuration of a negotiation diagram is a function
C : Proc → P(N) mapping each process p to the set of
nodes in which p is ready to engage. A node n is enabled in
a configuration C if n ∈ C(p) for every p ∈ dom(n), that
is, if all processes that participate in n are ready to proceed
with it. A configuration is a deadlock if it has no enabled
node. If node n is enabled in C, and a is an outcome of
n, then we say that location (n, a) can be executed, and
its execution produces a new configuration C ′ given by
C ′(p) = δ(n, a, p) for p ∈ dom(n) and C ′(p) = C(p) for

p 6∈ dom(n). We denote this by C
(n,a)−−−→ C ′. For example,

in Figure 1 we have C
(n0,reg)−−−−−→ C ′ for C(D1) = {n0} =

C(D2) and C ′(D1) = {n1}, C ′(D2) = {n2}.
A run of a negotiation diagram N from a config-

uration C1 is a finite or infinite sequence of locations
w = (n1, a1)(n2, a2) . . . such that there are configurations
C2, C3, . . . with

C1
(n1,a1)−−−−→ C2

(n2,a2)−−−−→ C3 . . .

We denote this by C1
w−→, or C1

w−→ Ck if the sequence is
finite and finishes with Ck. In the latter case we say that Ck

is reachable from C1 on w. We simply call it reachable if
w is irrelevant, and write C1

∗−→ Ck.
Negotiation diagrams come equipped with two distin-

guished initial and final nodes ninit and nfin , in which all
processes in Proc participate. The initial and final config-
urations Cinit , Cfin are given by Cinit(p) = {ninit} and
Cfin(p) = {nfin} for all p ∈ Proc. A run is successful
if it starts in Cinit and ends in Cfin . We assume that every
node (except for nfin ) has at least one outcome. In Figure 1,
ninit = n0 and nfin = n7.

A negotiation diagram N is sound if every partial run
starting at Cinit can be completed to a successful run. If a
negotiation diagram has no infinite runs, then it is sound iff
it has no reachable deadlock configuration. The negotiation
diagram of Figure 1 is sound.

Process p is deterministic in a negotiation diagram N if
for every n ∈ N , and a ∈ R, the set δ(n, a, p) of possible
successor nodes is either a singleton or the empty set. A
negotiation diagram is deterministic if every process p ∈
Proc is deterministic. The negotiation diagram of Figure 1
is deterministic.



The graph of a negotiation diagram has N as set of
vertices, and there is an edge n

p,a−−→ n′ iff n′ ∈ δ(n, a, p).
Observe that p ∈ dom(n) ∩ dom(n′).

A negotiation diagram is acyclic if its graph is acyclic.
Acyclic negotiation diagrams cannot have infinite runs, so
as mentioned above, soundness is equivalent to deadlock-
freedom.

2.1. Static analysis frameworks

Let (D,t,u,v,⊥,>) be a complete lattice. A function
f : D → D is monotonic if d v d′ implies f(d) v f(d′),
and distributive if f(

d
D′) =

d
{f(d) | d ∈ D′}.

An analysis framework5 of a negotiation diagram is a
lattice together with a mapping [[ ]] that assigns to each
outcome ` a monotonic and distributive function [[`]] in the
lattice. Abusing language, we use [[ ]] to denote a framework.

A negotiation diagram has two kinds of nondetermin-
ism, one that picks a node among the ones enabled at a
configuration, and a second kind which picks an outcome.
We distinguish the two by letting a scheduler to decide the
first kind. This is an important design choice, motivated
by modeling issues: In distributed systems, one often has
information about how the outcomes are picked, but not
about the way nondeterminism due to concurrency is re-
solved. In particular, one may have probabilistic information
about the former, but not about the latter. This point has
been discussed in detail by Katoen et al. [20], [5], who also
advocate the separation of the two kinds of nondeterminism.

A scheduler of N is a partial function S that assigns
to every run Cinit

w−→ C a node S(w) enabled at C, if it
exists. A finite initial run w = `1 · · · `k, where `i = (ni, ai),
is compatible with S if S(`1 · · · `i) = ni+1 for every 1 ≤
i ≤ k − 1.

For example, a scheduler for the negotiation diagram in
Figure 1 can give preference to n1 and n3 over n2. The
successful runs compatible with this scheduler are given by
the regular expression (omitting the nodes of the locations)
reg send (tout |rec) eval (npr |pr(done nOK )∗doneOK ).

The abstract semantics of a finite run w = `1 · · · `k is
the function [[w]] := [[`k]] ◦ [[`k−1]] ◦ · · · ◦ [[`1]]. The abstract
semantics of N with respect to a scheduler S is the function
[[N , S]] defined by

[[N , S]] =
⊔ {

[[w]] | w is a successful run

of N compatible with S
}

where the extension of t to functions is defined pointwise.
The abstract semantics [[N ]] of N is defined as eitherd{
[[N , S]] | S is a scheduler of N

}
, or as

⊔{
[[N , S]] |

S is a scheduler of N
}

, depending on the application.
In classical static analysis, analysis frameworks are over

flow-graphs, instead of negotiation diagrams [22]. Flow-
graphs describe sequential programs. Loosely speaking, a
flow-graph is a graph whose nodes are labeled with program

5. In [22] this is called a monotone and distributive framework.

points, and whose edges are labeled with program instruc-
tions (assignments or guards). The mapping [[ ]] assigns to
an edge the relation describing the effect of the assignment
or guard on the program variables. We can see a flow-graph
as a degenerate negotiation diagram in which all nodes have
one single process. In this case every reachable configuration
enables at most one node, and so there is a unique scheduler.
So, in this case, the abstract semantics of a flow-graph is
the standard “Merge Over all Paths” (MOP), defined by
[[N ]] =

⊔{
[[w]] | w is a successful run }.6

Several interesting analyses are instances of our frame-
work.

2.1.1. Input/output semantics. Let V be a set of variables
and Z the set of values. A valuation is a function V → Z,
and Val denotes the set of all valuations. An element of D
is a set T ⊆ Val . The join and meet lattice operations are
set union and intersection. For each location ` = (n, a), the
function [[`]] describes for each input valuation v ∈ Val the
set of output valuations [[`]]({v}) that are possible if n ends
with result a. For any set T of valuations the function is
defined by [[`]](T ) =

⋃
v∈T [[`]]({v}). The semantics [[N ]] is

the relation that assigns to every initial valuation the possible
final valuations after a successful run.

2.1.2. Detection of anti-patterns. Actions in business pro-
cesses generate, use, modify, and delete resources (for ex-
ample, a document can be created by a first department,
read and used by a second, and classified as confidential by
a third). Anti-patterns are used to describe runs that do not
correctly access resources; for example, a resource is used
before it is created, or a resource is created and then never
used. Examples of anti-patterns can be found in [27]. They
can be easily formalized as analyses frameworks. Consider
for example two locations `1 and `2 that generate a resource,
and a set K of locations that delete it. We wish to know
if a given deterministic sound negotiation diagram has a
successful run that belongs to

L = L∗`1(K)∗`2L∗

where K denotes the set of locations not in K. In other
words, is there a scenario where a resource is generated
twice without deleting it in between.

To encode this problem in our static analysis framework,
we take D = {0, 1, 2} with the natural order together with
min,max as u and t, respectively. Intuitively, 0 says that
the sequence does not have a suffix of the form `1(K)∗, 1
says that it has such a suffix, and 2 that it has a subword
`1(K)∗`2. The semantics of a location is a monotone and
distributive function from D to D reflecting this intuition:

[[`1]](x) =

{
2 if x = 2

1 otherwise
[[`2]](x) =

{
0 if x = 0

2 otherwise

6. Some classical literature uses
d

instead of
⊔

and speaks of the “Meet
Over all Paths”, but other standard texts, e.g. [22], use

⊔
.



[[`]](x) =


x if ` ∈ K
2 if ` ∈ K and x = 2

0 if ` ∈ K and x = 0, 1

2.1.3. Minimal/maximal expected cost. We let D =
{(p, c) | p ∈ R+

0 , c ∈ R}, where we interpret p as a
probability and c as a cost. We take (p1, c1) t (p2, c2) =
(p1 + p2, c1p1 + c2p2) and (p1, c1) v (p2, c2) if p1 ≤ p2
and c1 ≤ c2.

We define a function Prob : N × R → [0, 1] such that
Prob(n, a) = 0 if a /∈ out(n), and

∑
a∈R Prob(n, a) = 1

for every n ∈ N . Intuitively, Prob(n, a) is the probability
that node n yields the outcome a. We also define a cost
function Cost : N × R → R that assigns to each result a
cost.

Let [[`]]((p, c)) =
(
p · Prob(`), c + Cost(`)

)
. Then

[[N , S]](1, 0) gives the expected cost of N under the sched-
uler S (which may be infinite) and [[N ]](1, 0) is the mini-
mal/maximal expected cost.

2.1.4. Best/worst-case execution time. Let R+
0 denote the

nonnegative reals. A time valuation is a function v : Proc →
R+

0 ∪ {∞} that assigns to each process p a time v(p),
intuitively corresponding to the time that the process has
needed so far. The elements of D are time valuations, with
(v t v′)(p) = max{v(p), v′(p)} for every process p, and
v v v′ if v(p) ≤ v′(p) for every process p,

We assign to each outcome ` = (n, a) and to each
process p ∈ dom(n) the time t`,p that p needs to execute a.
The semantic function [[`]] is given by [[`]](v) = v′, where

v′(p) =

{
v(p) if p /∈ dom(n)

max
p′∈dom(n)

v(p′) + t`,p if p ∈ dom(n)

This definition reflects that all processes in dom(n) must
wait until all of them are ready, and then we add to them
the time they need to execute `. Since the initial and final
atoms involve all processes, the abstract semantics [[w]] of
a successful run has the form [[w]](v) = (maxp∈Proc v(p) +
tw(p))p∈Proc , where tw(p) is the time process p needs
to execute w. In particular, we have [[w]](0) = tw. Then
[[N , S]](0) gives the best-case execution time for a scheduler
S, and [[N ]](0) the infimum/ supremum over the times for
each scheduler.

2.2. Maximal fixed point of an analysis framework

It is well-known that for sequential flow-graphs the MOP
of an analysis framework coincides with the Maximal Fixed
Point of the framework, or MFP. The MOP is the least fixed
point of a set of linear equations over the lattice, having one
equation for each node of the flow-graph7. The least fixed
point can be approximated by means of Kleene’s theorem,
and computed exactly in a number of cases, including the
case of lattices satisfying the ascending chain condition,
but also others. For example, the lattice for the expected

7. Again, the name “maximal” has historical reasons.

cost of a flow-graph does not satisfy the ascending chain
condition, but yields a set of linear fixed point equations over
the rational numbers, which can be solved using standard
techniques.

In the concurrent case, the correspondence between
MOP and MFP is more delicate. Given a scheduler S,
we can construct the reachability graph of the negotiation
diagram, corresponding to the runs compatible with S. If
the graph is finite (for instance, this is always the case if
the scheduler is memoryless, i.e., the node selected by the
scheduler to extend a run depends only on the configuration
reached by the run), then [[N , S]] can be computed as the
MFP of this graph, seen as a sequential flow-graph. The
corresponding set of linear fixed point equations has one
equation for each configuration of the graph. However, this
approach has two problems:

(a) The number of schedulers is infinite, and non-
memoryless schedulers may generate an infinite
reachability graph; so we do not obtain an algorithm
for computing [[N ]].

(b) Even for memoryless schedulers, the size of the
reachability graph may grow exponentially in the
size of the negotiation diagram. So the algorithm
for computing [[N , S]] needs exponential time, also
for lattices with only two elements.

In the remaining of this section we introduce a
Mazurkiewicz-invariant analysis framework, and show that
for this framework and for the class of sound deterministic
negotiation diagrams we can overcome these two obsta-
cles. In Section 2.3 we solve problem (a): We show that
[[N ]] = [[N , S]] for every scheduler S (Theorem 1 below),
and so that it suffices to compute [[N , S]] for a scheduler S of
our choice. In the rest of the paper we solve problem (b): We
give a procedure that computes [[N ]] without ever construct-
ing the reachability graph of the negotiation diagram. The
procedure reduces the problem of computing the MOP to
computing the MFP of a polynomial number of (sequential)
flow-graphs, each of them of size at most linear in the size
of the negotiation diagram. This shows that the MOP can
be computed in polynomial time for a sound deterministic
negotiation diagram iff it can be computed in polynomial
time for a sequential flow-graph.

If we remove any of the three conditions of our setting
(Mazurkiewicz-invariance, soundness, determinism), then
there exist frameworks with the following property: deciding
if the MOP has a given value is polynomial in the sequential
case (i.e., for flow graphs of sequential programs), but at
least NP-hard for negotiations.

We sketch the NP-hardness proof for determinis-
tic, sound negotiations where the framework is not
Mazurkiewicz-invariant. Consider the NP-hard problem 1-
in-3-SAT, where it is asked if for a CNF formula with k
variables and m clauses there is an assignment that sets
exactly one literal true in each clause. We have k pro-
cesses p1, . . . , pk, one for each variable xi. We describe
the (acyclic) deterministic, sound negotiation N . The initial
node of N has a single outcome, that leads process pi to



a node with domain {pi}. From there pi branches for the
two possible values for xi. The “true” branch is a line with
outcomes corresponding to clauses that become “true” when
xi is true, and analogously for the “false” branch - in both
cases respecting the order of clauses. Let us denote by Cj

an outcome corresponding to the j-th clause. The lattice D
has elements ⊥ < 1, . . . , (m+ 1) < >; so there are m+ 1
pairwise incomparable elements together with ⊥ and >. For
every node n and clause Cj we set [[(n,Cj)]](j) = j + 1,
[[(n,Cj)]](>) = > and [[(n,Cj)]](d) = ⊥ otherwise. More-
over [[`]] is the identity function for all other locations `.
This framework is monotonic and distributive. For a run w
of N we have [[w]](1) = m+1 if the subsequence of clauses
appearing in w is exactly C1 . . . Cm; otherwise [[w]](1) = ⊥.
Since [[N ]] is the

⊔
over all runs, we get that the 1-in-3-SAT

instance is positive iff [[N ]](1) = m + 1. In the sequential
case, the analysis can be done in polynomial time, since the
lattice D → D has the height O(m).

The proofs of the other two cases (where determinism
or soundness are removed) follow easily from a simple
construction shown in Theorem 1 of [6]: Given a determin-
istic linearly bounded automaton A and a word w, one can
construct in polynomial time a negotiation NA having one
single run that simulates the execution of A on the input w.
This gives PSPACE-hardness for essentially all non-trivial
frameworks, Mazurkiewicz invariant or not.

2.3. Mazurkiewicz-invariant analysis frameworks

We introduce the notion of Mazurkiewicz equivalence
between runs (also called trace equivalence in the litera-
ture [4]). Two equivalent runs started in the same config-
uration will end up in the same configuration. We call an
analysis framework Mazurkiewicz-invariant if the values of
equivalent runs are the same. We then show that the MOP
of a Mazurkiewicz-invariant analysis is independent of the
scheduler.

Definition 1. Two nodes n, m of a negotiation diagram
are independent if dom(n) ∩ dom(m) = ∅. Two locations
are independent if their nodes are independent. Given two
finite sequences of locations w1, w2, we write w1 ∼ w2

if w1 = w`1`2w
′ and w2 = w`2`1w

′ for independent
locations `1, `2. Mazurkiewicz equivalence, denoted by ≡,
is the reflexive-transitive closure of ∼.

The next lemma says that Mazurkiewicz equivalent runs
have the same behaviors.

Lemma 1. If C1
w−→ C2 and v ≡ w, then C1

v−→ C2. In
particular, if w is a (successful) run, then v is.

Interestingly Mazurkiewicz equivalence behaves very
well with respect to schedulers.

Lemma 2. Let N be a deterministic negotiation diagram
and let S be a scheduler of N . For every successful run w
there is exactly one successful run v ≡ w that is compatible
with S.

We observe that Lemma 2 may not hold for runs that
are not successful nor for non-deterministic negotiation di-
agrams.

We can now define Mazurkiewicz-invariant analysis
frameworks, and prove that they are independent of sched-
ulers.

Definition 2. An analysis framework is Mazurkiewicz-
invariant if [[`1]]◦[[`2]] = [[`2]]◦[[`1]] for every two independent
outcomes `1, `2.

Theorem 1. Let N be a negotiation diagram, and let [[ ]]
be an analysis framework for N . If N is deterministic and
[[ ]] is Mazurkiewicz-invariant, then [[N , S]] = [[N , S′]] for
every two schedulers S, S′, and so [[N ]] = [[N , S]] for every
scheduler S.

It turns out that many interesting analysis frameworks
are Mazurkiewicz-invariant, or Mazurkiewicz-invariant un-
der natural conditions. Let us look at the examples from
Section 2.1.

The input/output framework is Mazurkiewicz-invariant if
[[`1]]([[`2]]({v})) = [[`2]]([[`1]]({v})) holds whenever `1 and
`2 are independent. This is not always the case, but holds
e.g. when all variables of V are local variables. Formally,
the set V of variables is partitioned into sets Vp of local
variables for each process p. Further, [[`]] involves only the
local variables of the processes involved in `: Letting (v`, v)
denote a valuation of V , split into a valuation v` of the
variables of the processes of ` and a valuation v of the rest,
we have [[`]](v`, v) = (v′`, v), and [[`]](v`, v) = [[`]](v`, v

′) for
every v`, v, v′.

The anti-pattern framework is not Mazurkiewicz-
invariant. For example if we take some ` ∈ K independent
of `1 then [[`1``2]] 6= [[``1`2]]. However, in Section 5 we will
show that there is a Mazurkiewicz-invariant framework for
anti-patterns.

The minimal/maximal expected cost framework is
Mazurkiewicz-invariant. Indeed, it satisfies [[`1]] ◦ [[`2]] =
[[`2]] ◦ [[`1]] for all outcomes `1, `2, independent or not.
Further, by Theorem 1 the expected cost is the same for
every scheduler, and so the result of the analysis is the
expected cost of the negotiation diagram.

The best/worse case execution framework is
Mazurkiewicz-invariant. Intuitively, the scheduler introduces
an artificial linearization of the nodes, which are however
being executed in parallel. As in the previous case, the
result of the analysis is the best-case/worst-case execution
time of the negotiation diagram (if the negotiation diagram
is cyclic and the cycle non-zero time, then the worst-case
execution time is infinite).

Our next goal is a generic algorithm for computing
the MOP of Mazurkiewicz-invariant frameworks for sound
deterministic negotiation diagrams. This will be done in Sec-
tion 4, but before we will need some results on decomposing
negotiation diagrams.



3. Decomposing Sound Negotiation Diagrams

We associate with every node n and every location `
of a sound deterministic negotiation diagram N a “subne-
gotiation” N|n and N|`, and prove that it is also sound. In
Section 4 we use these subnegotiations to define an analysis
algorithm for sound deterministic negotiation diagrams. We
illustrate the results of this section on the example of Figure
2.
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Figure 2. A negotiation diagram with three processes.

Intuitively, N|n contains the nodes n′ such that
dom(n′) ⊆ dom(n), with transitions inherited from N ,
and n as initial node. The non-trivial part is to define the
final node and show that N|n is sound. Given a location
` = (n, a), the negotiation N|` contains the part of N|n
reachable by executions that start with ` and afterwards only
use nodes with domains strictly included in dom(n). Figure
3 shows some of the subnegotiations we will obtain for some
nodes and locations of Figure 2.
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Figure 3. Subnegotiations N|n3 (top left), N|(n3,a) (bottom left),
and N|(n2,a) (right) of the negotiation diagram of Figure 2. Nodes
unreachable from the initial node are not shown.

The rest of the section first presents a theorem showing
the existence and uniqueness of some special configurations
(Section 3.1), and then uses it to define N|n and N|`, and
prove their soundness (Section 3.2).

3.1. Unique maximal configurations

Given a node n of a sound and deterministic negotiation,
we prove the existence of a unique reachable configuration

I(n) enabling n and only n. Then we show the follow-
ing: if we start from I(n) as initial configuration, “freeze”
the processes of Proc \ dom(n), and let the processes of
dom(n) execute maximally (i.e., until they cannot execute
any node without the help of processes of Proc \ dom(n)),
then we always reach the same “final” configuration F (n).
Additionally, given a location ` = (n, a) we show: If from
I(n) we execute ` and let the processes of dom(n) proceed
until no enabled node m satisfies dom(m) ⊂ dom(n), then
again we always reach the same “final” configuration F (`).

Let X ⊆ Proc be a set of processes. A sequence of
locations `1, . . . , `k is an X-sequence if the domains of all `i
are included in X; it is a strict X-sequence if moreover the
domains of all `i, but possibly `1, are strictly included in X .
We write (strict) n-sequence for (strict) dom(n)-sequence.

We write n′ � n if dom(n′) ⊆ dom(n), and n′ ≺ n if
dom(n′) ( dom(n) (and similarly for `′ � `, `′ ≺ `, ` � n
etc). Our goal is to prove:

Theorem 2. Let m be a reachable node of a sound deter-
ministic negotiation diagram N .

(i) There is a unique reachable configuration I(m) of
N that enables m, and no other node.

(ii) There is a unique configuration F (m) such that

– F (m) is reachable from I(m) by means of
an m-sequence, and

– for every node n enabled at F (m), dom(n)
is not included in dom(m).

(iii) For every location ` of m there is a unique config-
uration F (`) such that

– F (`) is reachable from I(m) by means of a
strict m-sequence starting with `, and

– for every node n enabled at F (`), dom(n) is
not strictly included in dom(m).

E.g., in Figure 2 we have I(n1) = (n1, n8, n8) (an abbrevia-
tion for I(n1)(p1) = {n1}, I(n1)(p2) = {n8}, I(n1)(p3) =
{n8}); I(n2) = (n8, n2, n2); and I(n3) = (n8, n3, n7).
Moreover, F (n1) = F (n2) = (n8, n8, n8); and F (n3) =
(n8, n7, n7). Further, we get F (n7, a) = (n8, n7, n7) and
F (n7, b) = (n8, n2, n2).

The proof of Theorem 2 is quite involved. The theo-
rem is a consequence of the Unique Configuration lemma
(Lemma 4 below), which relies on the Domination lemma
(Lemma 3 below), which in turn is based on results of [7],
[10].

A local path of a negotiation diagram N is a path
n0

p0,a0−−−→ n1
p1,a1−−−→ . . .

pk−1,ak−1−−−−−−−→ nk in the graph of N . A
local path is a local circuit if k > 0 and n0 = nk. A local
path is reachable if some node in the path is reachable. The
domination lemma says that every local circuit has some
node containing all processes of the circuit.

Lemma 3. (Domination Lemma) Let N be a deterministic
sound negotiation diagram. Every reachable local circuit of
N contains a dominant node, i.e. a node n such that m � n,
for every node m of the circuit.



The unique configuration lemma says that if two enabled
configurations agree on a set of processes X and every
enabled action in one of the two configurations needs a
process from X , then the two configurations are actually
the same.

Lemma 4. (Unique Configuration Lemma) Let X ⊆ Proc
be a set of processes. Let C1, C2 be reachable configurations
such that (1) C1(p) = C2(p) for every p ∈ X , and (2) every
node n enabled at C1 or C2 satisfies dom(n)∩X 6= ∅. Then
C1 = C2.

The above lemma gives Theorem 2 rather directly. For
(i), take X = dom(m). Suppose that there are two config-
urations I1 and I2 as in (i). The hypotheses of Lemma 4
are satisfied, and so I1 = I2. The case (ii) is equally easy,
while (iii) is only a bit more involved.

3.2. Subnegotiations for nodes and locations

We use Theorem 2 to define the subnegotiationsN|n and
N|` for each node n and location ` of a sound deterministic
negotiation diagram N , and prove that they are sound.

Definition 3. Let N be a sound deterministic negotiation
diagram and let n be a reachable node of N . The nego-
tiation diagram N|n contains all the nodes and locations
that appear in the n-sequences u such that I(n) u−→ F (n),
plus a new final node n|fin

n with dom(n|fin
n ) = dom(n). The

initial node is n, and the transition function δ|n is defined
as follows. For given m, a, p, we set:

δ|n(m, a, p) =

{
δ(m, a, p) if δ(m, a, p) 6= F (n)(p)

n|fin
n if δ(m, a, p) = F (n)(p)

An example of N|n is given on the left of Figure 3.

Lemma 5. If N is a sound deterministic negotiation dia-
gram then so is N|n.

The subnegotiation N|` induced by a location ` = (n, a)
is defined analogously to N|n, with two differences. First,
in N|` the node n has a as the unique outcome. Second,
the domain of every node of N|`, except the node n itself,
is strictly included in dom(n).

Definition 4. Let N be a deterministic sound negotiation
diagram, let n be a reachable node of N , and let ` = (n, a)
for some outcome a of n. The negotiation diagram N|`
contains all the nodes and locations that appear in the strict
n-sequences u such that I(n) ` u−−→ F (`), plus a new final
node n|fin

` . The initial node is n, it has the unique outcome
a, and the transition function δ|` is defined as follows. For
given m, b, p we set:

δ|`(m, b, p) =

{
δ(m, b, p) if δ(m, b, p) 6= F (`)(p)

n|fin
` otherwise

Figure 3 shows (on the right) N|` for the location ` =
(n2, a) of the negotiation diagram of Figure 2.

Lemma 6. If N is a sound deterministic negotiation dia-
gram, then so is N|`.

4. Computing the MOP

We use the decomposition of Section 3 to define an
algorithm computing the MOP for Mazurkiewicz-invariant
frameworks and arbitrary sound deterministic negotiation
diagram. The idea is to repeatedly reduce parts of the nego-
tiation diagram without changing the meaning of the whole
negotiation. When reduction will be no longer possible,
the negotiation diagram will have only one location, whose
value will be the value of the negotiation. The goal of this
section is to present Algorithm 1 and Theorem 3 that is our
main result.

As we have seen in the previous section, for every
node n, the negotiation diagram N|n is sound and the final
configuration F (n) is unique. Thus we can safely replace
all the transitions from n by one transition going directly
to F (n) and assign to this transition the value of N|n. This
requires to be able to compute F (n) as well as the value
of N|n. For this we proceed by induction on the domain
of n starting from nodes with the smallest domain. As we
will see, this will require us to compute MOP only for
negotiations of two (very) special forms

One-trace negotiations. These are acyclic negotiation di-
agrams in which every node has one single outcome. In
this degenerate case, all the executions of the negotiation
diagram are Mazurkiewicz equivalent; moreover, by acyclic-
ity, the trace contains every location at most once. Since
the analysis framework is Mazurkiewicz-invariant, we have
[[N ]] = [[w]] for any successful run w. A successful run
can be computed by just executing the negotiation diagram
with some arbitrary scheduler. Once a successful run w is
computed, we extract from it a flow-graph with |w| nodes,
that is actually a sequence, and compute MFP.

Replications. Intuitively, a replication is a negotiation di-
agram in which all processes are involved in every node,
and all processes move uniformly, that is, after they agree
on an outcome they all move to the same node. Formally,
a negotiation diagram is a replication if for every reachable
node n and every outcome (n, a) there is a node m such
that δ(n, a, p) = m for every process p. Observe that, in
particular, all nodes of a replication have the same domain.
It follows that (the reachable part of) a replication is a flow-
graph “in disguise”. More precisely, we can assign to it a
flow-graph having one node for every reachable node, and an
edge for every location (n, a), leading from n to δ(n, a, p),
where p can be chosen arbitrarily out of dom(n). It follows
immediately that the MOP for the negotiation diagram is
equal to the MFP of this flow-graph.

Definition 5. A node n is reduced if it has one single
outcome, and for this single outcome a we have δ(n, a, p) =
F (n)(p) for every p ∈ dom(n).

A location ` = (n, a) is reduced if δ(n, a, p) = F (`)(p)
for every p ∈ dom(n).

Now we will define an operation of reducing nodes and
locations in a negotiation diagram; this is the core operation



Algorithm 1 Algorithm computing MOP for a sound determin-
istic negotiation diagram N .

1: while N has non-reduced nodes do
2: m := ≺-minimal, non-reduced node
3: X = dom(m)
4: for every ` = (n, a) with dom(n) = X do
5: ## N|` is a one-trace negotiation ##
6: [[n, a`]] := MOP(N|`)
7: N := Red `(N )
8: end for
9: for every node n such that dom(n) = X do

10: ## N|n is a replication ##
11: [[n, an]] = MOP(N|n)
12: end for
13: for every node n such that dom(n) = X do
14: N := Redn(N )
15: end for
16: end while
17: return [[`]], where ` is the unique outcome of the initial

node of N

of Algorithm 1. For a location ` = (n, a), the operation
Red `(N ) removes the transition of n on ` and adds a
new transition on (n, a`). Similarly Redn(N ), but this time
it removes all transitions from n and adds a single new
transition on (n, an).

Definition 6. Let N = 〈Proc, N, dom, R, δ〉 be a sound
deterministic negotiation diagram and let ` = (n, a) be
a non-reduced outcome of N . The negotiation diagram
Red `(N ) has the same components as N but for out and
δ that are subject to the following changes:

• out(n) := (out(n) \ {a}) ∪ {a`};
• δ(n, a`, p) := F (`)(p) for every process p ∈

dom(n).

The negotiation diagram Redn(N ) is defined similarly but
now:

• out(n) := {an};
• δ(n, an, p) := F (n)(p) for every process p ∈

dom(n).

The next lemma states that these reduction operations
preserve the meaning of a negotiation diagram.

Lemma 7. Let N and ` = (n, a) be as in Definition
6. Assign to the new location `′ = (n, a`) the mapping
[[`′]] := [[N|`]]. Then [[N ]] = [[Red `(N )]]. Analogously,
[[N ]] = [[Redn(N )]] when we assign [[(n, an)]] = [[N|n]].

At this point we can examine Algorithm 1. The algo-
rithm repeatedly applies reduction operations to a given
negotiation diagram. Thanks to Lemma 7 these reductions
preserve the meaning of the negotiation diagram. At every
reduction, the number of reachable locations in the negoti-
ation diagram decreases. So the algorithm stops, and when
it stops the negotiation diagram has only one reachable
location. The abstract semantics of this location is equal to
the abstract semantics of the original negotiation diagram.

This argument works if indeed we can compute
MOP (N|`) and MOP (N|n) in lines 6 and 11 of the
algorithm, respectively. For this it is enough to show that
the invariants immediately preceding these lines hold, as
this would mean that we deal with special cases we have
discussed at the beginning of this section. The following
lemma implies that the invariants indeed hold.

Lemma 8. Let N be a sound deterministic negotiation
diagram, and n a node such that all nodes m ≺ n are
reduced in N .

(1) if a is an outcome of n, then for ` = (n, a) the
negotiation diagram N|` is a one-trace negotiation.

(2) if all locations `′ 4 n are reduced, then N|n is a
replication.

Example: Consider the negotiation diagram of Figure 2.
Assume that all locations have cost 1, and that the probabil-
ity of a location ` = (n, a) is 1/|out(n)| (so, for example,
the locations (n3, a) and (n3, b) have probability 1/2, while
(n0, a) has probability 1). We compute the expected cost of
the diagram using Algorithm 1.

The minimal non-reduced nodes w.r.t. � are
n3, n4, n5, n6. All their locations satisfy [[N|`]] = [[`]].
The algorithm computes MOP(N|ni

) for i = 3, 4, 5, 6. The
subnegotiations N|n3

and N|n5
are shown in Figure 3; the

other two are similar. MOP(N|n3
) is the expected cost of

reaching nfin from n3 in N|n3
. Since N|n3

is a replication
(in fact, it is even a flow-graph), we can compute it as the
least solution of the following fixed point equation, where
we abbreviate Prob(`) to P (`) and Cost(`) to C(`):

(p, c) =

(
p · P (n3, b) · P (n5, a) + P (n3, a),

P (n3, b) · P (n5, a) · (C(n3, b) + C(n5, a) + c)+

P (n3, a) · C(n3, a)
)

which gives

(p, c) =

(
1

2
p+

1

2
,
1

2
(2 + c) +

1

2

)
with least fixed point (1, 3), which of course can be com-
puted by just solving the linear equation. So MOP(N|n3

) =
(1, 3). We obtain [[n3, an3

]] = [[n4, an4
]] = 3, [[n5, an5

]] =
[[n6, an6

]] = 4, and the reduced negotiation diagram at the
top of Figure 4. Observe that nodes n5 and n6 are no longer
reachable.

The minimal non-reduced nodes are now n2 and n7.
The locations of n7 satisfy [[N|`]] = [[`]]. For the location
(n2, a) we obtain MOP(N|(n2,a)) = (1, 1+3+3) = (1, 7);
this we can easily do because N|(n2,a) is a one-trace
negotiation; we just pick any successful run, for example
(n2, a)(n3, an3

)(n4, an4
), and add the costs. After reducing

N|(n2,a) we obtain the negotiation diagram in the middle of
Figure 4; the non-reachable nodes n3, . . . , n6 are no longer
displayed, and all locations have cost 1 but (n2, a(n2,a)),
which has cost 7. Further, all locations ` of n2 and n7



satisfy [[N|`]] = [[`]]. We compute N|n2
and N|n7

by a fixed
point calculation analogous to the one above (observe that
both of them are replications), and after reduction obtain
the negotiation diagram at the bottom of the figure, with
[[n7, an7

]] = (1, 9) and [[n2, an2
]] = (1, 7 + 9) = (1, 16).

Now, the minimal non-reduced node is n0.We compute
MOP(N|(n0,a)) (N|(n0,a) is a one-trace negotiation), and
obtain [[n0, a]] = (1, 1+1+16) = (1, 18), which is the final
result. �
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Figure 4. Three reduced negotiation diagrams constructed by Algo-
rithm 1 started on the negotiation diagram of Figure 2.

Finally, to estimate the complexity of the algorithm,
we should also examine how to calculate Red `(N ) and
Redn(N ) in lines 7 and 14 of the algorithm. In order to
calculate Red `(N ) we need to know F (`). The invariant
says that N|` at that point has one trace. So it is enough
to execute this trace in N|` to reach F (`). Similarly, for
Redn(N ) we need to know F (n). The invariant says that
Nn is a replication, so it is just a flow graph with one final
node nfin . We can execute in N any path leading to the exit
to calculate F (n). To sum up, the calculations of Red `(N )
and Redn(N ) in lines 7 and 14 can be done in linear time
with respect to the size of N .

We summarize the results of this section:

Theorem 3. Let N be a sound deterministic negotiation
diagram, and [[ ]] a Mazurkiewicz invariant analysis frame-
work. Algorithm 1 stops and outputs [[N ]]. The complexity
of the algorithm is O(|N |(C + |N |)) where |N | is the size
of N , and C is the cost of [[ ]] analysis for flow-graphs of
size |N |.

5. Anti-Patterns and Gen/Kill Analyses

We saw in Section 2.1 that the problem of detecting
an anti-pattern can be naturally captured as an analysis
framework, which however is not Mazurkiewicz-invariant.
We now show that, while the natural framework is not
Mazurkiewicz invariant, an equivalent framework that re-
turns the same result is. Then we sketch how this result
generalizes to arbitrary Gen/Kill analysis frameworks, a
much studied class [19].

We need some basic notions of Mazurkiewicz trace
theory [4]. Given a sequence w = w1 · · ·wn ∈ L?, define
i v′ j for two positions i, j of w if i ≤ j and wi is not
independent from wj (see Definition 1). Further, define v
is the transitive closure of the relation v′. It is well-known
that if w ≡ v, i.e., if w, v are Mazurkiewicz equivalent,
then vw and vv are isomorphic as labeled partial orders
(the labels being the locations). We write btw(i, j) for the
set of positions between i and j, i.e., {k : i v k v j}.

Recall that anti-pattern analysis asked if there is an
execution with the property “w ∈ L” for the language
L = L∗`1(K)∗`2L∗. Instead of this property consider the
following property of w:

(*) there are two positions i, j such that wi = `1,
wj = `2, btw(i, j) ∩K = ∅, and not j v i.

The special case of this condition is when btw(i, j) = ∅;
then, since not j v i, we actually know that the two posi-
tions i, j are concurrent, so w is Mazurkiewicz equivalent
to u`1`2v, for some u, v.

Lemma 9. A negotiation diagram N has a successful run
w ∈ L iff it has a successful run v with property (*).

It remains to set a static analysis framework for tracking
property (*). Since this is a property of Mazurkiewicz traces,
the framework is Mazurkiewicz-invariant.

We need one more piece of notation. For a word w and
a process p we write btw(`1, p) for the set btw(i, j) where
i is the last occurrence of `1, and j is the last occurrence
of a location using process p.

We define now an auxiliary function α from sequences
to P(Proc)2 ∪ {>}. We set α(w) = > if w has property
(*), otherwise α(w) = (PA, PB) where

• p ∈ PA if btw(`1, p) 6= ∅ and btw(`1, p) ∩K = ∅,
• p ∈ PB if btw(`1, p) 6= ∅ and btw(`1, p) ∩K 6= ∅.
We describe a PTIME computable function F such that

for every sequence w and location `:

α(w `) = F (α(w), `)

For defining F we first describe the update of btw(`1, p)
when extending w by `. Let us detail the more interesting



case where ` 6= `1. Observe that the set of positions
btw(`1, p) does not change if p /∈ dom(`). If p ∈ dom(`)
then the update of btw(`1, p) is the union of btw(`1, q) over
all q ∈ dom(`), plus `. According to these observations, we
define the update of F in the case ` 6= `1 as follows. If
p /∈ dom(`) then process p remains in its set, PA or PB .
If p ∈ dom(`), then: p goes into the set P ′B if either there
was some q ∈ dom(`) in PB , or ` ∈ K and there is some
q ∈ dom(`) in PA; p goes into the set P ′A if ` /∈ K, no
q ∈ dom(`) is in PB and there is at least one q ∈ dom(`)
in PA.

The function F can be extended to a monotonic and
distributive function F̂ on P(Proc)3∪{>} ordered compo-
nentwise, by turning α(w) into a partition of Proc (adding
a component PC = Proc \ (PA ∪ PB)) and embedding it
into a suitable function over P(Proc)3 ∪ {>}.

With the help of the function F̂ we define now the value
of each location:

[[`]](PA, PB , PC) = F̂ ((PA, PB , PC), `)

Observe that this gives us [[w]] = α(w) for every sequence
w. The above discussion yields two lemmas showing that
[[ ]] is a Mazurkiewicz invariant analysis framework that can
be computed in PTIME, since F̂ can be computed in PTIME.

Lemma 10. [[·]] is Mazurkiewicz-invariant.

Lemma 11. Consider a negotiation diagram N over set of
locations L. For every sequence w ∈ L∗: [[w]](∅, ∅,Proc) =
> iff w ∈ L. Moreover, [[N ]](∅, ∅,Proc) = > iff N has a
successful execution in L.

5.1. Generalization to Gen/Kill analyses

We consider general Gen/Kill analyses8. We are given a
set of locations G ⊆ L that generate something, and a set of
locations K ⊆ L (not necessarily disjoint with G) that kill
this something. The lattice D has just two elements {0, 1},
with ∧ and ∨ as lattice operations, and the transformer of
a program instruction ` is of the form [[`]](v) = (v ∧ (` 6∈
K)) ∨ (` ∈ G). Classical examples from the static analysis
of programs are the computation of reaching definitions,
available expressions, live variables, very busy expressions,
where the “something” are values assigned to a variable
or an expression [22]. The four main classes of Gen/Kill
analyses differ only on whether control-flow is interpreted
forward or backwards, and on whether we do “merge over
all paths” or “meet over all paths”.

• may/forward. For some configuration C there is an
execution Cinit

w−→ C with w ∈ L∗G(K)∗`.
• must/forward. For every configuration C and every

execution Cinit
w−→ C, if w ends with ` then w ∈

L∗G(K)∗`.
• may/backward. For some reachable configuration

C there is an execution C
w−→ Cfin with w ∈

`(K)∗GL∗.

8. Although not in bitvector form, which we leave for future work (see
the conclusions).

• must/backward. For every reachable configuration
C and every execution C

w−→ Cfin , if w starts with
` then w ∈ `(K)∗GL∗.

Observe that in backward properties we require that a
configuration C is reachable from the initial configuration.
For forward properties we do not need to assume that a
configuration is co-reachable from the final configuration,
as this will be immediately implied by soundness.

The two existential properties above can be expressed
in terms of the existence of successful executions of a
particular form: executions Cinit

w−→ Cfin with w belonging
to some language. The same is true for the negation of
the universal properties. Consider the languages given by
regular expressions:

1) E1 = L∗G(K)∗`L∗,
2) E2 = (K ∩G)∗`L∗ ∪ L∗(K ∩G)(K ∩G)∗`L∗,
3) E3 = L∗ `(K)∗GL∗,
4) E4 = L∗ `(K ∩G)∗ ∪ L∗ `(K ∩G)∗(K ∩G)L∗.

Lemma 12. For a sound negotiation diagram we have the
following:

• may/forward is equivalent to ∃Cinit
w−→ Cfin with

w ∈ E1.
• negation of must/forward is equivalent to ∃Cinit

w−→
Cfin with w ∈ E2.

• may/backward is equivalent to ∃Cinit
w−→ Cfin with

w ∈ E3.
• negation of must/backward is equivalent to
∃Cinit

w−→ Cfin with w ∈ E4.

The resource analysis at the beginning of this section
corresponds to E3. For each one of E1, E2, E4 it is easy
to produce an analogue of Lemma 9 reformulating the
property in trace terms. This allows us to check all properties
in polynomial time using our algorithm for Mazurkiewicz
invariant analysis frameworks.

6. Conclusions

Previous work had identified deterministic negotiations
– a model of concurrency essentially isomorphic to free-
choice workflow Petri nets – as a class that has both practical
relevance for business process modeling, and admits PTIME
analysis for several important properties once negotiations
are assumed to be sound. Moreover soundness is a natural
prerequisite that can be checked in PTIME.

We have proposed a general notion of Mazurkiewicz-
invariant analysis frameworks. We have shown that com-
puting the MOP in such frameworks for sound deterministic
negotiations is as easy as computing it for sequential flow
graphs (while computing the MOP of general frameworks
takes exponentially longer, unless PTIME=NP). This result
not only subsumes all previous PTIME results on analysis
of sound deterministic negotiations, but also yields PTIME
algorithms for new problems, like the computation of the
best-case/worst-case execution time, the detection of anti-
patterns, and general gen/kill analysis problems. The re-
sult is particularly interesting for gen/kill problems: While



their natural formulation is not in terms of Mazurkiewicz-
invariant frameworks, we have shown that they can be
reformulated as such.

In future work we plan to improve the degree of the
polynomial bounding the runtime of our algorithm. Since
our decomposition does not partition a negotiation into
disjoint parts, when computing MOPs of subnegotiations
we are redoing computations. Bounding the size of overlaps
looks like a promising way of bringing the complexity on a
par with the sequential case. Section 5 on gen/kill analyses
raises a further question. In the sequential case, a gen/kill
analysis can be simultaneously computed for all program
points and all program variables (for example, one can
compute for each program point the set of live variables at
that point). This is not yet the case in our algorithm. In fact,
it is not clear what is a program point in a negotiation: If
one takes a configuration as a program point, then, since the
number of reachable configurations can grow exponentially
in the size of the negotiation diagram, any algorithm that ex-
plicitly computes the MOP for each reachable configuration
has exponential worst-case complexity.
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