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, a key point is to describe the null spaces of the ρ-operatorial kernel of these truncated shifts. We establish two fundamental results in this direction and some applications are also given.

Introduction and preliminaries

Shift operators are one of the most important models in operator theory. On the one hand it is an interesting class of operators in providing examples and counterexamples to illustrate many properties in operator theory. On the other hand, these operators becomes a fundamental building block in the structure theory of Hilbert space operators. For instance, they play a fundamental role in dilation theory (see [START_REF] Sz | Sur les contractions de l'espace de Hilbert[END_REF]) and also in the Jordan canonical form of matrix in the finite dimensional case. They also appear in the constants involved in constrained von Neumann inequalities (see [START_REF] Badea | Constrained von Neumann inequalities[END_REF]). Also it is used as a mathematical tool in several areas (quantum mechanics, control theory,. . . ). For a good survey of properties of the shift, we can see [START_REF] Nikol'skii | Treatise on the Shift Operator: Spectral Function Theory[END_REF][START_REF] Shields | Weighted shift operators and analytic function theory[END_REF] and the references therein.

The purpose of this paper is to establish a new role of shift operators in the class of the ρ-contractions. More precisely, we study the Harnack parts of the following so called w ρ -normalized truncated shift S of size n + 1 defined in the canonical basis by S = S n+1 (a) (1.1) where

S n+1 (b) =      0 b 0 0 . . . . . . b 0 0     
. and a = w ρ (S n+1 ) -1 = w ρ (S n+1 (1)) -1 (w ρ (.) is the ρ-numerical radius defined bellow). For ρ = 2 this sequence is completely described by U. Haagerup and P. De la Harpe in [START_REF] Haagerup | The Numerical Radius of a Nilpotent Operator on a Hilbert Space[END_REF] and given by ((cos π n + 1

) -1 ) n≥2 .

Also the same authors gave more attention of the importance of this remarkable sequence by saying that: " Its recent popularity is due the work of V. Jones on index of subfactors and all that [START_REF] Jones | Index for subfactors[END_REF], but it appears in many domains, such as elementary geometry of regular polygons [START_REF] Coxeter | Introduction to geometry[END_REF]Formula 2.84], graph theory or Fuchsian groups [START_REF] Goodman | Coxeter graphs and towers of algebras[END_REF], to mention but a few", see [17, p. 379]. Unfortunately, we don't have an explicit formula for a k (ρ) when ρ = 2, but this ubiquitous sequence is fundamental in order to analysis the class of ρ-contractions, in particular this work shows the crucial role of this sequence in the description of the Harnack part of w ρ -normalized truncated shift S.

Before to give our mains results, we recall some facts about the class of ρcontractions as well as the Harnack relation in the general Hilbert spaces setting. Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H. For ρ > 0, an operator T ∈ B(H) is called a ρ-contraction if T admits a unitary ρ dilation (see for instance [START_REF] Nagy | On certain classes of power-bounded operators in Hilbert space[END_REF] and [START_REF] Sz | Harmonic analysis of operators on Hilbert space[END_REF]). It means that there is a Hilbert space H containing H as a closed subspace and a unitary operator U ∈ B(H) such that

T n = ρP H U n |H, n ∈ N * , (1.2) 
where P H is the orthogonal projection onto the subspace H in H. Denote by C ρ (H) the set of all ρ-contractions. In connection with this, J. A. R. Holbrook [START_REF] Holbrook | On the power-bounded operators of Sz.-Nagy and Foiaş[END_REF] and J. P. Williams [START_REF] Williams | Schwarz norms for operators[END_REF], independently, introduced the ρ-numerical radius (or the operator radii ) of an operator T ∈ B(H) by setting

w ρ (T ) := inf{γ > 0 : 1 γ T ∈ C ρ (H)}. (1.3) 
Also, T ∈ C ρ (H) if and only if w ρ (T ) ≤ 1. In particular, when ρ = 1 and ρ = 2, this definition reduces to contractions and operators whose numerical ranges are contained in the closed unit disc (see [START_REF] Berger | A strange dilation theorem[END_REF]), respectively. Let T 0 , T 1 in C ρ (H), recall that T 1 is Harnack dominated by T 0 (see [START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF]) if there exists a constant c ≥ 1 such that

ℜp(T 1 ) ≤ c 2 ℜp(T 0 ) + (c 2 -1)(ρ -1)ℜp(0 H )
for any polynomial p with ℜp ≥ 0 on D, where ℜz is the real part of a complex number z.

The following operatorial ρ-kernel (see [START_REF] Cassier | Ensembles K-spectraux et algébres duales d'opérateurs[END_REF][START_REF] Cassier | Un noyau pour divers calculs fonctionnels[END_REF][START_REF] Cassier | Contractions in von Neumann algebras[END_REF])

K ρ z (T ) = (I -zT ) -1 + (I -zT * ) -1 + (2 -ρ)I, (z ∈ D), (1.4) 
associated with any bounded operator T having its spectrum in the closed unit disc D, plays a central role in Harnack analysis of operators (see for instance [START_REF] Cassier | Mapping formula for functional calculus, Julia's lemma for operator and applications[END_REF][START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF][START_REF] Cassier | Harnack parts of operators with numerical radius one[END_REF]).

It is essentially due to the fact that it allows us to use directly harmonic analysis methods in this setting. The ρ-kernels are related to ρ-contraction by the next result. An operator T is in the class C ρ (H) if and only if, σ(T ) ⊆ D and K ρ z (T ) ≥ 0 for any z ∈ D (see [START_REF] Cassier | Contractions in von Neumann algebras[END_REF]). For T 1 , T 0 ∈ C ρ (H); it is proved in [START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF] that T 1 is Harnack dominated by T 0 , denoted by T 1 H ≺ T 0 , if and only if T 1 and T 0 satisfy

K ρ z (T 1 ) ≤ c 2 K ρ z (T 0 ) for all z ∈ D (1.5)
for some constant c ≥ 1. A detailed description of these Harnack domination and other equivalent definitions are given in [START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF]Theorem 3.1].

The relation

H

≺ is a preorder relation (reflexive and transitive) in C ρ (H) and induces an equivalent relation, called Harnack equivalence. The associated equivalence classes are called the Harnack parts of C ρ (H). So, we say that T 1 and T 0 are Harnack equivalent and we write T 1 H ∼ T 0 , if they belong to the same Harnack parts. Classifying the equivalence classes induced by this preorder relation is a complicated question and is an important topic discussed by many authors. In [START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF]Theorem 4.4]; it is shown that the Harnack parts of C ρ (H) containing the null operators O H is exactly the class of all strict ρ-contractions; that is a ρ-contraction such that w ρ (T ) < 1. This result extends the earlier work of Foiaş , [START_REF] Foiaş | On Harnack parts of contractions[END_REF], from contraction class to ρ-contractions. An interesting question is now to describe the Harnack parts of ρ-contractions T with ρ-numerical radius one. A few answers in the literature of the previous question are given, essentially in the class of contractions with norm one. In [START_REF] Ando | Characterization of some Harnack parts of contractions[END_REF], the authors have proved that if T is either isometry or coisometry contraction then the Harnack part of T is trivial (i.e. equal to {T }), and if T is compact or r(T ) < 1, or normal and nonunitary, then its Harnack part is not trivial in general. It was proved in [START_REF] Khatskevich | man, Preorder and equivalences in the operator sphere[END_REF] that the Harnack part of a contraction T is trivial if and only if T is an isometry or a coisometry (the adjoint of an isometry), this a response of the question posed by Ando et al. in the class of contractions. The authors of [START_REF] Badea | Classes of contractions and Harnack domination[END_REF] proved that maximal elements for the Harnack domination in C 1 (H) are precisely the singular unitary operators and the minimal elements are isometries and coisometries.

Recently in [START_REF] Cassier | Harnack parts of operators with numerical radius one[END_REF], it is proved that if T 0 is a compact operator (i.e. T 0 ∈ K(H)) with w ρ (T 0 ) = 1 and with no spectral values in the torus T, then a ρ-contraction T 1 ∈ K(H) with σ(T 1 ) ∩ T = ∅, is Harnack equivalent to T 0 if and only if K ρ z (T 0 ) and K ρ z (T 1 ) have the same null space for all z ∈ T (null spaces condition) and satisfy a conorms condition (see [START_REF] Cassier | Harnack parts of operators with numerical radius one[END_REF]Theorem 1.17]). Moreover, when the dimension of the null space of K ρ z (T 0 ) is constant over T, the null spaces condition is necessary and sufficient. As a corollary, if T 0 is a compact contraction with T 0 = 1 and r(T 0 ) < 1, then a contraction T 1 ∈ K(H) is Harnack equivalent to T 0 if and only if I -T * 0 T 0 and I -T * 1 T 1 have the same kernel and T 0 and T 1 restricted to the kernel of I -T * 0 T 0 coincide. A nice application is the description of the Harnack part of the (nilpotent) Jordan block of size n + 1 (which is the w 1 -normalized truncated shift of size n) as a contraction. More generally, it seems that w ρ -normalized truncated shift of size m play a crucial role in Harnack analysis of class C ρ (H).

Further, the Harnack part of the w 2 -normalized truncated shift is also given in two dimensional and three dimensional case. Surprising, in the first case the Harnack part is trivial, while in the second case the Harnack part is an orbit associated with the action of a group of unitary diagonal matrices. We notice that the structure of the Harnack part of the normalized truncated shift are of different nature when ρ = 1 and ρ = 2 and, in the later case, depend on the parity of dimension. According to this fact, it is naturally to ask about the structure of the Harnack part of the w 2 -normalized truncated shift in the case of the dimension is more than three, or more generally of the w ρ -normalized truncated shift.

Our purpose in this article is to investigate the Harnack part of the w ρ -normalized truncated shift S (section 3). This will be done by describing the null space of the ρoperatorial kernel of any elements in the Harnack part of S (section 2). We conclude the paper with some open problems related to our results.

Null space of operatorial kernels of truncated shifts

Let S the w ρ -normalized truncated shift in C ρ (C n+1 ) defined by (1.1). Clearly, w ρ (S) = 1 (which justifies the term "w ρ -normalized"). Let T ∈ C ρ (C n+1 ) in the Harnack part of S, as said before K ρ z (S) and K ρ z (T ) have the same null space for all z ∈ T, see [START_REF] Cassier | Harnack parts of operators with numerical radius one[END_REF]Theorem 1.17]. The next result describes more precisely the null space of the operatorial kernels of all elements of the Harnach part of S.

Theorem 2.1. Let ρ > 1 and T ∈ C ρ (C n+1 ) is Harnack equivalent to S. Then N (K ρ z (T )) = C(v 0 , zv 1 , . . . , z n v n ), for all z ∈ T, with v 0 = 0, and v k = -v n-k .
To prove this theorem the following result is needed,

Theorem 2.2. [12, Theorem 1.2] Let T 0 , T 1 ∈ C ρ (H), (ρ ≥ 1), if T 1 H ≺T 0 then σ(T 1 ) ∩ T ⊆ σ(T 0 ) ∩ T.
Proof. Since T H ∼ S, then by (1.5), there exist c ≥ 1 such that

1 c 2 K ρ z (S) ≤ K ρ z (T ) ≤ c 2 K ρ z (S), for all z ∈ D. (2.1)
Since σ(S) ∩ T is empty, by Theorem 2.2 the operator S does not admit eigenvalues in T. Hence, K ρ z (T ) and K ρ z (S) are uniformly bounded in D and may be extended to a positive operators on D and by (2.1)

N (K ρ z (T )) = N (K ρ z (S)) for all z ∈ T. Since K ρ z (S) = (I -zS * ) -1 [ρI + 2(1 -ρ)Re(zS) + (ρ -2) |z| 2 S * S](I -zS) -1 , we have dim(N (K ρ z (T ))) = dim(N (L ρ z (S)) for all z ∈ T where L ρ z (S) = ρI + 2(1 - ρ)Re(zS) + (ρ -2) |z| 2 S * S. Thus, L ρ z (S) =           ρ (1 -ρ)za 0 • • • • • • 0 (1 -ρ)az ρ + (ρ -2)a 2 (1 -ρ)za . . . . . . 0 (1 -ρ)az . . . . . . . . . . . . . . . . . . . . . . . . (1 -ρ)za 0 . . . . . . . . . ρ + (ρ -2)a 2 (1 -ρ)az 0 0 . . . 0 (1 -ρ)az ρ + (ρ -2)a 2           If (x 0 , . . . , x n ) ∈ N (L ρ z (S), then S 1                ρx 0 + (1 -ρ)zax 1 = 0 (1 -ρ)zax 0 + (ρ + (ρ -2)a 2 )x 1 + (1 -ρ)zax 2 = 0 . . . (1 -ρ)zax n-2 + (ρ + (ρ -2)a 2 )x n-1 + (1 -ρ)zax n = 0 (1 -ρ)zax n-1 + (ρ + (ρ -2)a 2 )x n = 0.
Since ρ > 1, we can see that a solution of (S 1 ) is completely determined by knowledge of x 0 , so the dimension of

N (L ρ z (S)) is at most one for all z ∈ T and ρ > 1. Let V (z) = v 0 (z)e 0 + • • • + v n (z)e n = 0 in N (K ρ z (S)) for all z ∈ T. Then S(z)            ρv 0 (z) + azv 1 (z) + • • • + a n-1 z n-1 v n-1 (z) + a n z n v n (z) = 0 azv 0 (z) + ρv 1 (z) + • • • + a n-2 z n-2 v n-1 (z) + a n-1 z n-1 v n (z) = 0 . . . a n z n v 0 (z) + ρv 1 (z) + • • • + azv n-1 (z) + ρv n (z) = 0 (z ∈ T).
Multiplying the (k + 1)-th equation by z k and putting

w k (z) = z k v k (z) for k = 0 . . . n, we get a k w 0 (z) + a k-1 w 1 (z) + • • • + aw k-1 (z) + ρw k (z) + aw k+1 (z) + • • • + a n-k w n (z) = 0,
for k = 0 . . . n and for every z ∈ T. Thus W (z) = (w 0 (z), w 1 (z), . . . , w n (z)) is a solution of S(1). On the other hand, since w ρ (S) = 1, there exists a z 0 ∈ T such that N (K ρ z (S)) = {0}. Hence the dimension of N (K ρ z (S)) at least one. We derive that dim(N (K ρ z (S))) = 1. Furthermore, there exists α(z) such that W (z) = α(z)W (1), with α(z) = 0 for all z ∈ T. We put v k = v k (1) and V = V (1) = W (1), then we have

w k = α(z)v k and v k (z) = α(z)z k v k . This implies that N (K ρ z (T )) = N (K ρ z (S)) = C(v 0 , zv 1 , . . . , z n v n ) with v 0 = 0.
If we assume that v 0 = 0, by using the fact that V is a solution of S(1), step by step we get v 1 = • • • = v n = 0, this yields to a contradiction. Now, let We k = e n-k , we have

W(v 0 , v 1 , . . . , v n ) = (v n , v n-1 , . . . , v 0 ) = α(v 0 , v 1 , . . . , v n ),
because W(V ) remains a solution of S(1). Since W 2 = I, we deduce that V is an eigenvector of W and α = ±1. We conclude that v k = εv n-k , with ε = ±1. Now, to complete the proof of theorem we prove that ǫ = -1. According to the parity of the dimension, we distinguish two cases.

If

n = 2p -1, assume that v n-k = v k for k = 0, . . . , p -1. Then S(1)            ρv 0 + av 1 + • • • + a p-1 v p-1 + a p v p-1 • • • + a 2p-1 v 2p-1 = 0 av 0 + ρv 1 + • • • + a p-2 v p-1 + a p-1 v p-1 • • • + a 2p-2 v 2p-1 = 0 . . . a 2p-1 v 0 + a 2p-2 v 1 + • • • + a p-1 v p-1 + a p v p-1 • • • + ρv 2p-1 = 0 , or equivalently M Ṽ = 0, with M =     ρ + a 2p-1 a + a 2p-2 . . . a p-1 + a p a + a 2p-2 ρ + a 2p-3 . . . a p-2 + a p-1 . . . . . . . . . . . . a p-1 + a p a p-2 + a p-1 . . . ρ + a     and Ṽ =     v 0 v 1 . . . v p-1     on C p . But M = K ρ 1 ( S) + N, with S =        0 a 0 • • • 0 0 0 a • • • 0 . . . . . . . . . . . . . . . 0 0 0 . . . a 0 0 0 • • • 0        and N =     a 2p-1 a 2p-2 . . . a p a 2p-2 a 2p-3 . . . a p-1 . . . . . . . . . . . . a p a p-1 . . . a     .
The matrix N is a hermitian with rank one and σ p (N) = {0, T r(N)} (T r(N) > 0), so N is positive. Further, w ρ ( S) = w ρ (aS p ) = wρ(Sp) wρ(S 2p ) < 1, then K ρ 1 ( S) is positive and invertible. This implies that M is also invertible. So,

v 0 = v 1 = • • • = v p-1 = 0 and hence v 2p-1 = v 2p-2 = • • • = v p = 0.
We conclude that V = 0, a contradiction. We deduce that if n + 1 is an even number then we have necessarily ε = -1.

Now, assume that n = 2p, we have v 2p-k = εv k for k = 0, . . . , p. In this case, the system (S(1)) is equivalent to

0 = p k=0 v k K ρ 1 ( S)e k + ε(U ⊗ Ũ) Ṽ , with Ṽ =       v 0 v 1 . . . v p-1 v p       , U =       a p a p-1 . . . a 1       and Ũ =       a p a p-1 . . . a 0      
on C p+1 , here ⊗ is the tensor product (or the Kronecker product). Equivalently

I + ε(K ρ 1 ( S) -1 U ⊗ Ũ ) Ṽ = 0. Since Ṽ = 0, this implies that det I + ε(K ρ 1 ( S) -1 U ⊗ Ũ ) = 0. But the spectrum of I + ε(K ρ 1 ( S) -1 U ⊗ Ũ ) is {1, 1 + ε K ρ 1 ( S) -1 U | Ũ }, then we obviously have K ρ 1 ( S) -1 U | Ũ = -ε ∈ {-1, 1}. On the other hand, K ρ 1 ( S) -1 U | Ũ viewed as a function of ρ is continuous, so it must be constant. Let r such that 0 < r < 1 ρ , then 1 r S 2p 2p+1 = 1 r > ρ, so 1 r S 2p 2p+1 / ∈ C ρ (C 2p+1
). By definition of the ρ-numerical radius it implies that w ρ (S 2p 2p+1 ) > r.

From Corollary 5.10 of [START_REF] Cassier | Mapping theorems and Harnack ordering for ρ-contractions[END_REF] we infer that w ρ (S 2p+1 ) 2p ≥ w ρ (S 2p 2p+1 ) > r. By letting r goes to 1 ρ , we get

a(ρ) = 1 w ρ (S 2p+1 ) ≤ ρ 1 2p .
Thus, for all k = 1, . . . , p, we have,

0 ≤ a(ρ) k ρ ≤ 1 ρ 1-k 2p -→ ρ→+∞ 0.
Consequently,

ρ a 2p K ρ 1 ( S) -1 U | Ũ -→ ρ→+∞ 1.
As ρK ρ 1 ( S) -1 -→ I, 1 a p U -→ e 0 and 1 a p Ũ -→ e 0 , by letting again ρ to +∞. By what we assert that K ρ 1 ( S) -1 U | Ũ is strictly positive and constant for ρ sufficiently large, so equal 1. We conclude that ε = -1.

A crucial point is now to study the nullity of the coefficients v k . The following result shows that the situation differs according to the parity of the dimension.

Theorem 2.3. Let T is Harnack equivalent to S in C ρ (C n+1 ), ρ > 1, we have (1)
If the dimension is an even number, i.e. n + 1 = 2p, then

N (K ρ z (T )) = C(v 0 , zv 1 , . . . , z p-1 v p-1 , -z p v p-1 , . . . , -z 2p-1 v 0 ), for all z ∈ T,
with v k = 0, for all k = 0, 1, . . . , p -1. (2) If the dimension is an odd number, i.e. n + 1 = 2p + 1, then

N (K ρ z (T )) = C(v 0 , zv 1 , . . . , z p-1 v p-1 , 0, -z p v p-1 , . . . , -z 2p v 0 ), for all z ∈ T,
with v k = 0, for all k = 0, 1, . . . , p -1.

Proof. By Theorem 2.1, we have v k = -v n-k , for all k = 0, 1, . . . , p -1 and v 0 = 0. Let us remark that if n = 2p, then v p = -v n-p , and in this case v p = 0. Now, to prove the theorem, it suffices to show that v k = 0 for all k = 1, . . . p -1. Assume that there exists m ∈ {1, . . . , p -1} such that v m = 0. Claim 1. We have det K ρ 1 ( S)e 0 , . . . , K ρ 1 ( S)e m-1 , U, K ρ 1 ( S)e m+1 , . . . , K ρ 1 ( S)e p-1 = 0, where U = (a p-1 , . . . , a, 1) t . Suppose that n = 2p -1, then we have

0 = n k=0 v k K ρ 1 (S)e k = p-1 k=0 v k K ρ 1 (S)e k - 2p-1 k=p v 2p-1-k K ρ 1 (S)e k .
Let P be the orthogonal projection on the subspace spanned by e 0 , • • • , e p-1 . Thus, we have

0 = p-1 k=0 v k P K ρ 1 (S)P e k - p-1 k=0 v k P K ρ 1 (S)e 2p-1-k = p-1 k=0 v k K ρ 1 ( S)e k - p-1 k=0 v k P K ρ 1 (S)W e k .
Taking into account that 

K ρ 1 (S)e i | e j = δ i,j ρ + (1 -δ i,j )a |i-j| and W K ρ 1 (S)W = K ρ 1 (S), we obtain 0 = p-1 k=0 v k K ρ 1 ( S)e k -a Ṽ | U U. ( 2 
Dm (a) = ρ a • • • a m-1 a m a ρ . . . . . . . . . . . . . . . . . . a a 2 a m-1 a m-2 • • • ρ a a m a m-1 • • • a 1
.

Then we have

Dm (a) = α Dm-1 (a) -β Dm-2 (a)
, 2 , D0 (a) = 1 and D1 (a) = ρa 2 , and the associated discriminant ∆ is given by ∆ = a 2 -1 ((a + 1)ρ -2a)((a -1)ρ -2a).

where α = ρ + (ρ -2)a 2 , β = a 2 (1 -ρ)
From Claim 1., we derive that

D p (a) = ρ a • • • a m-1 a p-1 a m+1 • • • a p-1 a ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . a a p-m+1 a 3 • • • . . . a m-1 a m-2 • • • ρ a p-m a 2 • • • a p-l a m a m-1 • • • a a p-m-1 a . . . . . . a m+1 a m • • • a 2 a p-m-2 ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . a a p-1 a p-2 • • • a p-m 1 a p-m-2 • • • ρ = 0.
Denote by C k the k-th column, with k ∈ {m + 1, . . . , p -1}. By replacing the k-th column by a p-1-k C k -C m for k = m + 1, . . . , p -1, we get

D p (a) = (ρ-1) p-1-m a (p-2-m)(p-1-m) 2 a (m-p-1) Dm (a) = (ρ-1) p-1-m a (p-m)(p-m-1) 2 
Dm (a).

Since, ρ = 1, then D p (a) = 0 if and only if Dm (a) = 0. Now, Multiplying the second column of the determinant Dm (a) by a and subtracting it from the first one gives

Dm (a) = ρ -a 2 a • • • a m-1 a m a(1 -ρ) ρ . . . . . . . . . . . . . . . . . . a a 2 0 a m-2 • • • ρ a 0 a m-1 • • • a 1
.

By a similar operation with the rows, we find

Dm (a) = ρ -a 2 -a 2 (1 -ρ) a(1 -ρ) 0 • • • 0 0 a(1 -ρ) ρ a • • • a m-2 a m-1 0 a ρ . . . . . . . . . . . . . . . . . . . . . a a 2 0 a m-2 • • • a ρ a 0 a m-1 • • • a 2 a 1
.

Which implies that for m ≥ 2, we have Dm (a) = α Dm-1 (a)β Dm-2 (a),

with α = ρ + (ρ -2)a 2 , β = a 2 (1 -ρ) 2 , D0 (a) = 1 and D1 (a) = ρ -a 2 .
This recurrence relation form the equation

r 2 -αr + β = 0, (2.3) 
with discriminant ∆ = a 2 -1 ((a + 1)ρ -2a)((a -1)ρ -2a). (2.4) This ends proof of Claim 2.. Observe that 1 < a = w ρ (S n+1 ) -1 ≤ ρ because the leading principal minor of order 2 of the matrix associated with K ρ 1 (S) is nonnegative. Thus we have (a+1)ρ-2a > 0 and we can see that ∆ is the same sign as (a-1)ρ-2a. Let ϕ(ρ) = ρ-2-2(a(ρ)-1) -1 where a

(ρ) = w ρ (S n+1 ) -1 . Clearly, a(ρ) -→ 1 + if ρ -→ 1 + and a(ρ) -→ +∞ if ρ -→ +∞. This implies that ϕ(ρ) -→ -∞ if ρ -→ 1 + and ϕ(ρ) -→ +∞ if ρ -→ +∞.
Further, the function ρ -→ a(ρ) is strictly decreasing on [1, +∞). We conclude that ρ -→ ϕ(ρ) is strictly increasing on [1, +∞). Consequently, there exists a unique ρ 0 = 2 + 2(a(ρ 0 ) -1) -1 > 2 such that ϕ(ρ 0 ) = 0. Therefore, there are three possibilities for the sign of ∆. Now, using Claim 2., we distinguish three cases to end the proof of Theorem 2.3.

Case 1. ∆ = 0 if and only if ρ = 2a 0 a 0 -1 . Equivalently, ρ 0 = 2 + 2 a 0 -1 .
For this value of ρ, the discriminant ∆ admits a root

λ = α 2 = a 0 (1 + a 0 ) a 0 -1 with a 0 = a(ρ 0 ) = ρ 0 ρ 0 -2 . So that Dm (a) = (A + Bm)λ m ,
where the constants A, B can be determined from the "initial conditions" D0 (a) = 1 = A and D1 (a) = ρa 2 = (1 + B)λ.

This yields that

A = 1, B = 1 -a 0 , which gives, Dm (a 0 ) = (1 + (1 -a 0 )m)λ m .
On the other hand, for ρ > 1 and n ≥ 2, set

D n (a) = ρ a • • • a n-1 a n a ρ . . . . . . . . . . . . . . . . . . a a 2 a n-1 a n-2 • • • ρ a a n a n-1 • • • a ρ
.

We now perform the same operation as before and get

D n (a) = αD n-1 (a) -βD n-2 (a),
with the "initial conditions" D 0 (a) = ρ and D 1 (a) = ρ 2a 2 . So we can see that this is the same recurrence relation for Dm . Hence for same values of a 0 , ρ 0 and λ, respectively, we have D n (a) = (t + sn)λ n , where the constants t, s can be determined from the "initial conditions" D 0 (a) = ρ 0 = t and D 1 (a 0 ) = ρ 2 0a 2 0 = (t + s)λ. This yields that t = ρ 0 and s = -a 0 , which gives,

D n (a 0 ) = (ρ 0 -a 0 n)λ n .
If n = 2p -1, we have D 2p-1 (a 0 ) = 0, implies that ρ 0 = 2p + 1. But Dl (a) = 0, for some l ∈ {1, . . . , p -1}, is equivalent to

l = 1 a 0 -1 = ρ 0 -2 2 = p - 1 2
which is a contradiction. Similarly, if n = 2p, we have D 2p (a 0 ) = 0, implies that ρ 0 = 2pa 0 and a 0 = 1 + 1 p . But in this case, Dl (a 0 ) = 0, for some l ∈ {1, . . . , p -1}, is equivalent to

l = 1 a 0 -1 = p,
which is again a contradiction because l ≤ p -1. We conclude that v k = 0, for all k = 1, . . . , p -1. Case 2. ∆ > 0; in this case ρ > ρ 0 > 2 (ϕ is strictly increasing). So (2.3) admits two real roots 0 < λ 1 < λ 2 . First, we claim that 0 < λ 1 < 1 < λ 2 . Indeed, we have

λ 2 > ρ 2 > 1.
If we put ψ(r) = r 2αr + β, we can see that ψ(0) = β > 0 and ψ(1) = -(1 + a 2 ) < 0, so 0 < λ 1 < 1, since ψ(λ) = 0. Now, by a similar operation on Dm (a) as before, but this time with the last rows and the last line, we find

Dm (a) = [a 2 (ρ -2) + 1]D m-1 (a) -a 2 (ρ -1) 2 D m-2 (a). (2.5) 
Thus, if Dl (a) = 0, for l ∈ {1, . . . , p -1}, then

D l (a) = (ρ -1)D l-1 (a).
On the other hand, we have

D m (a) = tλ m 1 + sλ m 2 ,
where the constants t, s are determined by

D 0 (a) = ρ = t + s and D n (a) = tλ n 1 + sλ n 2 = 0. This yields that t = ρ λ n 2 λ n 2 -λ n 1 , and s = -ρ λ n 1 λ n 2 -λ n 1 , which gives, D m (a) = ρ λ n 2 -λ n 1 (λ n 2 λ m 1 -λ n 1 λ m 2 ). (2.6) 
This implies that

D m+1 (a) -D m (a) = ρ λ n 2 -λ n 1 [λ n 2 λ m 1 (λ 1 -1) + λ n 1 λ m 2 (1 -λ 2 )]. Since λ 1 < 1 < λ 2 , then D m+1 (a) < D m (a)
, for all m = 0, . . . , p -1. But we have D l (a) = (ρ -1)D l-1 (a) > D l-1 (a) which leads to a contradiction. We also conclude that v k = 0, for all k = 1, . . . , p -1. Case 3. ∆ < 0; in this case 1 < ρ < ρ 0 . So (2.3) admits two complex roots, λ and its conjugate λ. Let λ = |λ|e iω the root which lies in the upper half-plane (0 < ω < π). Clearly |λ| = β = a(ρ -1), so λ = a(ρ -1)e iω . Since Dm (a) = Aλ m + A λ m ,

with 1 = A + A and ρ -a 2 = Aλ + A λ. It follows that Dm (a) = λ -(ρ -a 2 ) λ -λ λ m - λ -(ρ -a 2 ) λ -λ λ m .
Similarly; for D n (a), we have

D n (a) = tλ n + t λ n , such that D 0 (a) = ρ = t + t, D 1 (a) = ρ 2 -a 2 = tλ 1 + t λ. which gives, D n (a) = ρλ -(ρ 2 -a 2 ) λ -λ λ n - ρλ -(ρ 2 -a 2 ) λ -λ λ n .
Since D n (a) = 0, we obtain that

λ λ n = ρλ -(ρ 2 -a 2 ) ρλ -(ρ 2 -a 2 )
.

Also

e i2nω = ρλ -(ρ 2 -a 2 ) ρλ -(ρ 2 -a 2 ) .
It follows that

e i2nω = (ρλ -(ρ 2 -a 2 )) 2 |ρλ -(ρ 2 -a 2 )| 2 .
Also, notice that (2.6) remains valid in this case, thus we have

D k (a) = ρa k (ρ -1) k sin(n -k)ω sin nω . Since ω ∈]0, π[ and D k (a) > 0 for k ∈ {0, • • • , n -1}, we have necessarily ω ∈]0, π n [. (2.7) 
Taking in account that

cos ω = α 2|λ| = ρ + (ρ -2)a 2 2a(ρ -1) , (2.8) 
by a straightforward calculation, we obtain that |ρλ -(ρ 2a 2 )| 2 = a 2 (ρ -1)(a 2 -1). Then using (2.7) we can deduce that sin nω = ρ a sin ω.

(2.9)

Now, if Dl (a) = 0, for l ∈ {1, . . . , p -1},

λ λ l = λ -(ρ -a 2 ) λ -(ρ -a 2 )
.

Also

e i2lω = λ -(ρ -a 2 ) λ -(ρ -a 2 ) .
It follows that

e i2lω = (λ -(ρ -a 2 )) 2 |λ -(ρ -a 2 )| 2 .
Similarly as above, by a straightforward calculation and (2.7), we obtain that

sin lω = √ ρ -1 √ a 2 -1 sin ω and cos lω = ρ √ a 2 -1 2a √ ρ -1 .
This two relations gives, sin 2lω = ρ a sin ω. For convenience, we set q = nl and using (2.8) and (2.11) we sucessively get 2 sin(q + 1)ω sin(qω) (ρ -1) cos ω = ρ + (ρ -2) sin 2 (q + 1)ω sin 2 qω ⇔ 2(ρ -1) sin(q + 1)ω (sin(qω) cos ω) = ρ sin 2 qω + (ρ -2) sin 2 (q + 1)ω ⇔ (ρ -1) sin 2 (q + 1)ω + (ρ -1) sin(q -1)ω sin(q + 1)ω = ρ sin 2 qω + (ρ -2) sin 2 (q + 1)ω ⇔ sin 2 (q + 1)ω + (ρ -1) sin(q + 1)ω sin(q -1)ω = ρ sin 2 qω ⇔ cos(2qω)cos(2(q + 1)ω) = (ρ -1) [1 -2 cos(2ω)] .

It gives

sin((2q + 1)ω) = (ρ -1) sin ω.

(2.14)

Now, combining (2.9), (2.11) and (2.14) we sucessively obtain sin nω sin(q + 1)ω = sin qω [sin ω + sin(2q + 1)ω] ⇔ sin nω sin(q + 1)ω = sin(qω) [2 sin(q + 1)ω cos(qω)]

⇔ sin nω sin(q + 1)ω = sin 2qω sin(q + 1)ω.

Having in view (2.7) we see that sin(q + 1)ω = 0, and hence sin(nω) = sin(2qω). Finally, we get

     nω = 2qω + 2kπ where k ∈ Z or nω = π -2qω + 2k ′ π where k ′ ∈ Z.
From the first equation and (2.7), we deduce that -2kπ = (n -2l)ω ∈]0, π[ which is impossible. According to the second equation and (2.7) we have (2k ′ + 1)π = (3n -2l)ω ∈]0, 3π[ which forces k ′ to be 0, thus we have

ω = π 3n -2l . (2.15)
The equalities (2.13) and (2.15) give l = n/2 which is absurd because l ∈ {1, • • • , p -1} and n = 2p -1 or n = 2p. This achieved the proof of Theorem 2.3.

Some consequences

On the basis of the study made in section 2, we give some results which are of own interest. The first one is related to the critical value of ρ 0 > 1 which annulates the crucial discriminant given in (2.4). Proposition 3.1. Let n ≥ 1. According to the notations used in the proof of the Theorem 2.3, we have ρ 0 = n + 2 and w n+2 (S n+1 ) = n n+2 . In particular, we have

w m+1 (T ) ≤ m -1 m + 1 T
for any operator T acting on a Hilbert space and such that T m = 0 (m ≥ 2).

Proof. Given the calculations made to determine D k (a) in the first case (∆ = 0) of the proof of Theorem 2.3, we have D k (a 0 ) = (ρ 0a 0 k)λ k . Since D n (a 0 ) = 0, we get n = ρ 0 /a 0 which leads to

ρ 0 = n + 2 and a 0 = 1 w ρ 0 (S n+1 ) = n + 2 n ,
which proves the first statements. Then, the inequality given for nilpotent operators follows from Theorem 3.1 (or Corollary 4.1) in [START_REF] Badea | Constrained von Neumann inequalities[END_REF].

It is not quite so easy to calculate or estimate w ρ (S n+1 ) (see for instance [START_REF] Carrot | Computation of the -numerical radius for truncated shifts[END_REF]). The next result shows that it can be done in a simpler way if 1 < ρ < n + 2.

Proposition 3.2. Let ρ ∈]1, n+ 2[, then x := w ρ (S n+1 ) = 1/a is the unique solution in ]1/ρ, 1[ of the following system of two equations        sin(nω) sin(ω) = ρx cos(ω) = ρx 2 + (ρ -2) 2x(ρ -1) (3.1)
where ω ∈]0, π n [ is an intermediate variable uniquely determined. Moreover, the function ρ -→ ω(ρ) is continuous and strictly decreasing on ]1, n + 2[ and we have ω(]1, n + 2[) = 0, π n+1 . Proof. The fact that w ρ (S n+1 ) is a solution of the system (3.1) follows directly from the study made in the third case (∆ < 0) of the proof of Theorem 2.3. Conversely, suppose that x ∈]1/ρ, 1[ is a solution, we easily see that we necessarily have (ρx 2 + (ρ -2))/(2x(ρ -1)) ∈]0, 1[, and then ω ∈]0, π[ is uniquely determined by the second equation in (3.1), and in turn x = w ρ (S n+1 ) by the first equation and (2.9). Set f (t) = sin(nt)/ sin(t) for t ∈]0, π/n[, then we have f ′ (t) = u(t)/(sin 2 (t)) where u(t) = n cos(nt) sin(t)sin(nt) cos(t). For any t ∈]0, π/n[, we see that u ′ (t) = -(n 2 -1) sin(nt) sin(t) < 0, thus the function u is decreasing on ]0, π/n[ and hence negative. Finally, we see that the function f is strictly decreasing and continuous on ]0, π/n[ and we have f (]0, π/n[) = ]0, n[. Now, we define the function g on [1, +∞[ by setting g(ρ) = ρw ρ (S n+1 ). Suppose that there exist ρ 1 , ρ 2 in ]1, +∞[ with ρ 1 < ρ 2 and such that g(ρ 1 ) = g(ρ 2 ), then using the facts that s → h(s) = g(1 + e s ) is a convex function on the real line (see Theorem 4 of [START_REF] Ando | Convexity properties of operator radii associated with unitary ρdilations[END_REF]), and that lim s→-∞ h(s) = S n+1 = 1, we derive that h is increasing on R. Taking into account that g(ρ 1 ) = g(ρ 2 ), we see that h must be constant on ]-∞, ln(ρ 2 -1)]. Thus we should have 1 = g(ρ 1 ) = g(ρ 2 ) which is impossible since 1 < ρw ρ (S n+1 ) for any ρ > 1 (ρ 2a 2 = D 1 (a) > 0). Consequently, g is a strictly increasing continuous function on [1, +∞[ with g(]1, n + 2[) = ]1, n[ (g(n + 2) = n by Proposition 3.2 ). In conclusion, ω = f (-1) • g as a function of ρ is strictly decreasing and continuous with ω(]1, n + 2[) = 0, π n+1 (f (-1) (1) = π/(n + 1)). This completes the proof. Remark )) -1 .

Assume that T is Harnack equivalent to the w 2 -normalized truncated shift S of size n + 1. Then the form of the matrix of T depends on the parity of the dimension, more precisely we have :

(1) If the dimension is an even number, i.e. n + 1 = 2p, then T = S.

(2) If the dimension is an odd number, i.e. n + 1 = 2p + 1, then

(2. 10 )

 10 Let us remark that the relation(2.5), is also true in this case, by what it follows that D l (a) = (ρ -1)D l-1 (a). Therefore, we have a sin(nl)ω = sin(nl + 1)ω (2.11) Combines (2.9) and (2.10), we derive that sin nω = sin(2lω), (2.12) for some l = 1, . . . , p -2l)ω = 2kπ where k ∈ Z or (n + 2l)ω = (2k ′ + 1)π where k ′ ∈ Z. By (2.7) we see that the first equation gives 2kπ ∈]0, π[ which is impossible. Again, by (2.7) we observe that (2k ′ + 1)π ∈]0, 2π[, and obviously we have k ′ = 0, then

3 . 3 .+ 1 . 3 . 4 .Theorem 3 . 8 .

 3313438 When ρ = 2, Proposition 3.2 allows us to retrieve quickly the well known value of w 2 (S m ) (m ≥ 2). Set n = m -1, the second equation of (3.1) gives x = cos(ω) and the first equation leads to sin(nω) = sin(2ω). Since ω ∈]0, π/n[ the only possible answer is ω = π/(n + 2) and hencew 2 (S m ) = π mProposition Let ρ > 0 (ρ = 1) and U is a unitary matrix. Then,U * SU is Harnack equivalent to S in C ρ (C n+1 ) if and only if Ue k = αe k , α ∈ T, for all k such that v k = 0. Proof. By [12, Corollary 2.24] we know that, U * SU is Harnack equivalent to S in C ρ (C n+1 ), ρ > 0 (ρ = 1), if and only if U(N (K ρ z (S))) ⊆ N (K ρ z (S)), for all z ∈ T, and the fact thatN (K ρ z (S)) = CV (z) = C(v 0 , zv 1 , . . . , z n v n ), for all z ∈ T, thus is equivalent to UV (z) = α(z)V (z), for all z ∈ T. (3.2)On the other hand,V (1) = V (z) = UV (z) = |α(z)| V (z) = |α(z)| V (z) . So |α(z)| = 1.Using (3.2), we getα(z) V (1) = UV (z), V (z) , , for all z ∈ T,thus the function α(.) is continuous from T to the spectrum of U, so α(.) is a constant and becomes UV (z) = αV (z), with |α| = 1 and z ∈ T.(3.3)We deduce that the space spanned by the vector V (z) , z ∈ T, is a subspace of Ker(U -αI), but this space is equal those spanned by e k , such that v k = 0, sincev k e k = 2π 0 e -ikθ V (e iθ )dm. Proposition 3.5. Let ρ > 1. If T ∈ C ρ (C n+1) is Harnack equivalent to S, then T e 0 = 0, T * e n = 0 and T e n | e 0 = 0. Proof. By Theorem 2.1 and the inequality (2.1), we obtain K ρ z (T )V (z) = 0, for all z ∈ T, Let T be in C 2 (C n+1 ) such that T = S = a = (cos( π n + 2
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with V (z) = (v 0 , zv 1 , . . . , z n v n ). Hence, v 0 K ρ e iθ (T )e 0 + e iθ v 1 K ρ e iθ (T )e 1 + • • • + e niθ v n K ρ e iθ (T )e n = 0, (3.4) for all θ ∈ R. Multiplying (3.4) by 1 and e iθ , and integrating with respect the Haar measure m on the torus, we get

By this two last equalities, we obtain (ρ -1)v 0 T e 0 = 0.

Since ρ = 1 and v 0 = 0, we have necessarily T e 0 = 0. Now if we proceed as above we can prove that T * e n = 0. On the other hand, if we multiply equation (3.4) by e -i(n-1)θ and we integrate with respect to m on the torus we obtain

Then, taking the scalar product with the vector e 0 and using the fact that T e 0 = 0, it comes T e n | e 0 = 0. Moreover, any element in the Harnack part of S is irreducible, when n + 1 is an even number. More precisely, we have

Proof. Assume that T is not irreducible. Then there exists an non trivial invariant subspace E,

). But dim(F ) = 2 and dim(Ker(K ρ z (T ))) = 1, which is a contradiction. Hence Ω 1 ∩ Ω 2 = ∅. Since V (z) = 0 for all z ∈ T, we obtain Ω 1 ∪ Ω 2 = T. Now, the fact that T is connected, one of the open sets Ω 1 and Ω 2 must be empty. This is a contraction with E is not trivial.

In the following result we give a complete description of an element of C 

where θ is an arbitrary real number.

Proof. Let T be an operator satisfying the assumptions of Theorem 3.8. Applying Corollary 2.16 of [START_REF] Cassier | Harnack parts of operators with numerical radius one[END_REF] we get that the numerical range of T is the closed unit disc D. Then using Theorem 1 of [START_REF] Wu | A numerical range characterization of Jordan blocks[END_REF] or Theorem 5.9 of [START_REF] Gau | Numerical range and Poncelet property[END_REF], we see that there exists a unitary operator U ∈ B(C n+1 ) such that T = U * SU. Now, thanks to Theorem 2.3 and Proposition 3.4 we derive the desired result.

We end this paper by proposing the following open questions.

Question 1 Can we remove the assumption T = S in Theorem 3.8?

Notice that the answer is positive when the dimension is two or three (see [12, Theorems 3.1 and 3.3]).

And more generally, one can ask Question 2 Let T be Harnack equivalent in C ρ (C n+1 ), ρ > 1, to the w ρnormalized truncated shift S of size n + 1. Is T of the form given in Theorem 3.8 with respect to the parity of the dimension?

The second author wishes to note that the original idea of this paper is due to the first author.