
HAL Id: hal-02397732
https://hal.science/hal-02397732

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harnack parts for some truncated shifts
Gilles Cassier, Mohammed Benharrat

To cite this version:
Gilles Cassier, Mohammed Benharrat. Harnack parts for some truncated shifts. Linear and
Multilinear Algebra, In press, ISSN: 0308-1087 (Print) 1563-5139 (Online) Journal homepage:
https://www.tandfonline.com/loi/glma20, �10.1080/03081087.2020.1750549�. �hal-02397732�

https://hal.science/hal-02397732
https://hal.archives-ouvertes.fr


HARNACK PARTS FOR SOME TRUNCATED SHIFTS

GILLES CASSIER1∗, MOHAMMED BENHARRAT2

Abstract. The purpose of this paper is to analysis the Harnack part of some
truncated shifts whose ρ-numerical radius equal one in the finite dimensional case.
As pointed out in Theorem 1.17 [12], a key point is to describe the null spaces of
the ρ-operatorial kernel of these truncated shifts. We establish two fundamental
results in this direction and some applications are also given.

1. Introduction and preliminaries

Shift operators are one of the most important models in operator theory. On the
one hand it is an interesting class of operators in providing examples and counter-
examples to illustrate many properties in operator theory. On the other hand, these
operators becomes a fundamental building block in the structure theory of Hilbert
space operators. For instance, they play a fundamental role in dilation theory (see
[21]) and also in the Jordan canonical form of matrix in the finite dimensional case.
They also appear in the constants involved in constrained von Neumann inequalities
(see [3]). Also it is used as a mathematical tool in several areas (quantum mechanics,
control theory,. . . ). For a good survey of properties of the shift, we can see [24, 25]
and the references therein.

The purpose of this paper is to establish a new role of shift operators in the class
of the ρ-contractions. More precisely, we study the Harnack parts of the following
so called wρ-normalized truncated shift S of size n+1 defined in the canonical basis
by

S = Sn+1(a) (1.1)

where

Sn+1(b) =











0 b 0

0
. . .
. . . b

0 0











.

and a = wρ(Sn+1)
−1 = wρ(Sn+1(1))

−1 (wρ(.) is the ρ-numerical radius defined bel-
low). For ρ = 2 this sequence is completely described by U. Haagerup and P. De la
Harpe in [17] and given by

((cos
π

n + 1
)−1)n≥2.
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Also the same authors gave more attention of the importance of this remarkable
sequence by saying that: ” Its recent popularity is due the work of V. Jones on index
of subfactors and all that [19], but it appears in many domains, such as elementary
geometry of regular polygons [13, Formula 2.84], graph theory or Fuchsian groups
[16], to mention but a few”, see [17, p. 379]. Unfortunately, we don’t have an explicit
formula for ak(ρ) when ρ 6= 2, but this ubiquitous sequence is fundamental in order
to analysis the class of ρ-contractions, in particular this work shows the crucial role
of this sequence in the description of the Harnack part of wρ-normalized truncated
shift S.

Before to give our mains results, we recall some facts about the class of ρ-
contractions as well as the Harnack relation in the general Hilbert spaces setting.
Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded
linear operators on H . For ρ > 0, an operator T ∈ B(H) is called a ρ-contraction
if T admits a unitary ρ dilation (see for instance [22] and [23]). It means that there
is a Hilbert space H containing H as a closed subspace and a unitary operator
U ∈ B(H) such that

T n = ρPHU
n|H, n ∈ N

∗, (1.2)

where PH is the orthogonal projection onto the subspace H in H. Denote by Cρ(H)
the set of all ρ-contractions. In connection with this, J. A. R. Holbrook [18] and
J. P. Williams [26], independently, introduced the ρ-numerical radius (or the oper-
ator radii ) of an operator T ∈ B(H) by setting

wρ(T ) := inf{γ > 0 :
1

γ
T ∈ Cρ(H)}. (1.3)

Also, T ∈ Cρ(H) if and only if wρ(T ) ≤ 1. In particular, when ρ = 1 and ρ = 2,
this definition reduces to contractions and operators whose numerical ranges are
contained in the closed unit disc (see [5]), respectively.

Let T0, T1 in Cρ(H), recall that T1 is Harnack dominated by T0 (see [11]) if there
exists a constant c ≥ 1 such that

ℜp(T1) ≤ c2ℜp(T0) + (c2 − 1)(ρ− 1)ℜp(0H)
for any polynomial p with ℜp ≥ 0 on D, where ℜz is the real part of a complex
number z.

The following operatorial ρ-kernel (see [7, 9, 10])

Kρ
z (T ) = (I − zT )−1 + (I − zT ∗)−1 + (2− ρ)I, (z ∈ D), (1.4)

associated with any bounded operator T having its spectrum in the closed unit disc
D, plays a central role in Harnack analysis of operators (see for instance [8, 11, 12]).
It is essentially due to the fact that it allows us to use directly harmonic analysis
methods in this setting.

The ρ-kernels are related to ρ-contraction by the next result. An operator T is in
the class Cρ(H) if and only if, σ(T ) ⊆ D and Kρ

z (T ) ≥ 0 for any z ∈ D (see [10]).
For T1, T0 ∈ Cρ(H); it is proved in [11] that T1 is Harnack dominated by T0, denoted

by T1
H≺ T0, if and only if T1 and T0 satisfy

Kρ
z (T1) ≤ c2Kρ

z (T0) for all z ∈ D (1.5)
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for some constant c ≥ 1. A detailed description of these Harnack domination and
other equivalent definitions are given in [11, Theorem 3.1].

The relation
H≺ is a preorder relation (reflexive and transitive) in Cρ(H) and in-

duces an equivalent relation, called Harnack equivalence. The associated equivalence
classes are called the Harnack parts of Cρ(H). So, we say that T1 and T0 are Harnack

equivalent and we write T1
H∼ T0, if they belong to the same Harnack parts. Clas-

sifying the equivalence classes induced by this preorder relation is a complicated
question and is an important topic discussed by many authors. In [11, Theorem
4.4]; it is shown that the Harnack parts of Cρ(H) containing the null operators OH

is exactly the class of all strict ρ−contractions; that is a ρ−contraction such that
wρ(T ) < 1. This result extends the earlier work of Foiaş ,[14], from contraction class
to ρ-contractions. An interesting question is now to describe the Harnack parts of
ρ-contractions T with ρ-numerical radius one. A few answers in the literature of the
previous question are given, essentially in the class of contractions with norm one.
In [2], the authors have proved that if T is either isometry or coisometry contraction
then the Harnack part of T is trivial (i.e. equal to {T}), and if T is compact or
r(T ) < 1, or normal and nonunitary, then its Harnack part is not trivial in general.
It was proved in [20] that the Harnack part of a contraction T is trivial if and only
if T is an isometry or a coisometry (the adjoint of an isometry), this a response
of the question posed by Ando et al. in the class of contractions. The authors of
[4] proved that maximal elements for the Harnack domination in C1(H) are pre-
cisely the singular unitary operators and the minimal elements are isometries and
coisometries.

Recently in [12], it is proved that if T0 is a compact operator (i.e. T0 ∈ K(H))
with wρ(T0) = 1 and with no spectral values in the torus T, then a ρ-contraction
T1 ∈ K(H) with σ(T1)∩T = ∅, is Harnack equivalent to T0 if and only if Kρ

z (T0) and
Kρ

z (T1) have the same null space for all z ∈ T (null spaces condition) and satisfy
a conorms condition (see [12, Theorem 1.17]). Moreover, when the dimension of
the null space of Kρ

z (T0) is constant over T, the null spaces condition is necessary
and sufficient. As a corollary, if T0 is a compact contraction with ‖T0‖ = 1 and
r(T0) < 1, then a contraction T1 ∈ K(H) is Harnack equivalent to T0 if and only if
I−T ∗

0 T0 and I−T ∗
1 T1 have the same kernel and T0 and T1 restricted to the kernel of

I − T ∗
0 T0 coincide. A nice application is the description of the Harnack part of the

(nilpotent) Jordan block of size n + 1 (which is the w1-normalized truncated shift
of size n) as a contraction. More generally, it seems that wρ-normalized truncated
shift of size m play a crucial role in Harnack analysis of class Cρ(H).

Further, the Harnack part of the w2-normalized truncated shift is also given in two
dimensional and three dimensional case. Surprising, in the first case the Harnack
part is trivial, while in the second case the Harnack part is an orbit associated with
the action of a group of unitary diagonal matrices. We notice that the structure
of the Harnack part of the normalized truncated shift are of different nature when
ρ = 1 and ρ = 2 and, in the later case, depend on the parity of dimension. According
to this fact, it is naturally to ask about the structure of the Harnack part of the
w2-normalized truncated shift in the case of the dimension is more than three, or
more generally of the wρ-normalized truncated shift.
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Our purpose in this article is to investigate the Harnack part of the wρ-normalized
truncated shift S (section 3). This will be done by describing the null space of the ρ-
operatorial kernel of any elements in the Harnack part of S (section 2). We conclude
the paper with some open problems related to our results.

2. Null space of operatorial kernels of truncated shifts

Let S the wρ-normalized truncated shift in Cρ(C
n+1) defined by (1.1). Clearly,

wρ(S) = 1 (which justifies the term ”wρ-normalized”). Let T ∈ Cρ(C
n+1) in the

Harnack part of S, as said before Kρ
z (S) and Kρ

z (T ) have the same null space for
all z ∈ T, see [12, Theorem 1.17]. The next result describes more precisely the null
space of the operatorial kernels of all elements of the Harnach part of S.

Theorem 2.1. Let ρ > 1 and T ∈ Cρ(C
n+1) is Harnack equivalent to S. Then

N (Kρ
z (T )) = C(v0, zv1, . . . , z

nvn), for all z ∈ T,

with v0 6= 0, and vk = −vn−k.

To prove this theorem the following result is needed,

Theorem 2.2. [12, Theorem 1.2] Let T0, T1 ∈ Cρ(H), (ρ ≥ 1), if T1
H≺T0 then

σ(T1) ∩ T ⊆ σ(T0) ∩ T.

Proof. Since T
H∼ S, then by (1.5), there exist c ≥ 1 such that

1

c2
Kρ

z (S) ≤ Kρ
z (T ) ≤ c2Kρ

z (S), for all z ∈ D. (2.1)

Since σ(S)∩T is empty, by Theorem 2.2 the operator S does not admit eigenvalues
in T. Hence, Kρ

z (T ) and K
ρ
z (S) are uniformly bounded in D and may be extended

to a positive operators on D and by (2.1)

N (Kρ
z (T )) = N (Kρ

z (S)) for all z ∈ T.

Since

Kρ
z (S) = (I − zS∗)−1[ρI + 2(1− ρ)Re(zS) + (ρ− 2) |z|2 S∗S](I − zS)−1,

we have dim(N (Kρ
z (T ))) = dim(N (Lρ

z(S)) for all z ∈ T where Lρ
z(S) = ρI + 2(1 −

ρ)Re(zS) + (ρ− 2) |z|2 S∗S. Thus,

Lρ
z(S) =





















ρ (1− ρ)za 0 · · · · · · 0

(1− ρ)az ρ+ (ρ− 2)a2 (1− ρ)za
. . .

...

0 (1− ρ)az
. . .

. . .
. . .

...
...

...
. . .

. . . (1− ρ)za 0
...

...
. . . ρ+ (ρ− 2)a2 (1− ρ)az

0 0 . . . 0 (1− ρ)az ρ+ (ρ− 2)a2




















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If (x0, . . . , xn) ∈ N (Lρ
z(S), then

S1































ρx0 + (1− ρ)zax1 = 0

(1− ρ)zax0 + (ρ+ (ρ− 2)a2)x1 + (1− ρ)zax2 = 0
...

(1− ρ)zaxn−2 + (ρ+ (ρ− 2)a2)xn−1 + (1− ρ)zaxn = 0

(1− ρ)zaxn−1 + (ρ+ (ρ− 2)a2)xn = 0.

Since ρ > 1, we can see that a solution of (S1) is completely determined by knowledge
of x0, so the dimension of N (Lρ

z(S)) is at most one for all z ∈ T and ρ > 1.
Let V (z) = v0(z)e0 + · · ·+ vn(z)en 6= 0 in N (Kρ

z (S)) for all z ∈ T. Then

S(z)























ρv0(z) + azv1(z) + · · ·+ an−1zn−1vn−1(z) + anznvn(z) = 0

azv0(z) + ρv1(z) + · · ·+ an−2zn−2vn−1(z) + an−1zn−1vn(z) = 0
...

anznv0(z) + ρv1(z) + · · ·+ azvn−1(z) + ρvn(z) = 0

(z ∈ T).

Multiplying the (k + 1)-th equation by zk and putting wk(z) = zkvk(z) for k =
0 . . . n, we get

akw0(z) + ak−1w1(z) + · · ·+ awk−1(z) + ρwk(z) + awk+1(z) + · · ·+ an−kwn(z) = 0,

for k = 0 . . . n and for every z ∈ T. Thus W (z) = (w0(z), w1(z), . . . , wn(z)) is a
solution of S(1). On the other hand, since wρ(S) = 1, there exists a z0 ∈ T such that
N (Kρ

z (S)) 6= {0}. Hence the dimension of N (Kρ
z (S)) at least one. We derive that

dim(N (Kρ
z (S))) = 1. Furthermore, there exists α(z) such that W (z) = α(z)W (1),

with α(z) 6= 0 for all z ∈ T. We put vk = vk(1) and V = V (1) = W (1), then we have
wk = α(z)vk and vk(z) = α(z)zkvk. This implies that N (Kρ

z (T )) = N (Kρ
z (S)) =

C(v0, zv1, . . . , z
nvn) with v0 6= 0. If we assume that v0 = 0, by using the fact that

V is a solution of S(1), step by step we get v1 = · · · = vn = 0, this yields to a
contradiction. Now, let Wek = en−k, we have

W(v0, v1, . . . , vn) = (vn, vn−1, . . . , v0) = α(v0, v1, . . . , vn),

because W(V ) remains a solution of S(1). Since W2 = I, we deduce that V is an
eigenvector of W and α = ±1. We conclude that vk = εvn−k, with ε = ±1.

Now, to complete the proof of theorem we prove that ǫ = −1. According to the
parity of the dimension, we distinguish two cases.

If n = 2p− 1, assume that vn−k = vk for k = 0, . . . , p− 1. Then

S(1)























ρv0 + av1 + · · ·+ ap−1vp−1 + apvp−1 · · ·+ a2p−1v2p−1 = 0

av0 + ρv1 + · · ·+ ap−2vp−1 + ap−1vp−1 · · ·+ a2p−2v2p−1 = 0
...

a2p−1v0 + a2p−2v1 + · · ·+ ap−1vp−1 + apvp−1 · · ·+ ρv2p−1 = 0

,
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or equivalently MṼ = 0, with

M =









ρ+ a2p−1 a+ a2p−2 . . . ap−1 + ap

a+ a2p−2 ρ+ a2p−3 . . . ap−2 + ap−1

...
... . . .

...
ap−1 + ap ap−2 + ap−1 . . . ρ+ a









and Ṽ =









v0
v1
...

vp−1









on Cp. But M = Kρ
1 (S̃) +N , with

S̃ =















0 a 0 · · · 0
0 0 a · · · 0
...

...
. . .

. . .
...

0 0 0
. . . a

0 0 0 · · · 0















and N =









a2p−1 a2p−2 . . . ap

a2p−2 a2p−3 . . . ap−1

...
... . . .

...
ap ap−1 . . . a









.

The matrix N is a hermitian with rank one and σp(N) = {0, T r(N)} (Tr(N) > 0),

so N is positive. Further, wρ(S̃) = wρ(aSp) =
wρ(Sp)
wρ(S2p)

< 1, then Kρ
1 (S̃) is positive

and invertible. This implies that M is also invertible. So, v0 = v1 = · · · = vp−1 = 0
and hence v2p−1 = v2p−2 = · · · = vp = 0. We conclude that V = 0, a contradiction.
We deduce that if n+ 1 is an even number then we have necessarily ε = −1.

Now, assume that n = 2p, we have v2p−k = εvk for k = 0, . . . , p. In this case, the
system (S(1)) is equivalent to

0 =

p
∑

k=0

vkK
ρ
1 (S̃)ek + ε(U ⊗ Ũ)Ṽ ,

with

Ṽ =













v0
v1
...

vp−1

vp













, U =













ap

ap−1

...
a
1













and Ũ =













ap

ap−1

...
a
0













on Cp+1, here ⊗ is the tensor product (or the Kronecker product). Equivalently

(

I + ε(Kρ
1 (S̃)

−1U ⊗ Ũ)
)

Ṽ = 0.

Since Ṽ 6= 0, this implies that det
(

I + ε(Kρ
1 (S̃)

−1U ⊗ Ũ)
)

= 0. But the spectrum

of
(

I + ε(Kρ
1 (S̃)

−1U ⊗ Ũ)
)

is {1, 1 + ε〈Kρ
1 (S̃)

−1U | Ũ〉}, then we obviously have

〈Kρ
1 (S̃)

−1U | Ũ〉 = −ε ∈ {−1, 1}.
On the other hand, 〈Kρ

1 (S̃)
−1U | Ũ〉 viewed as a function of ρ is continuous, so it

must be constant. Let r such that 0 < r <
1

ρ
, then ‖1

r
S2p
2p+1‖ =

1

r
> ρ, so

1

r
S2p
2p+1 /∈

Cρ(C
2p+1). By definition of the ρ-numerical radius it implies that wρ(S

2p
2p+1) > r.
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From Corollary 5.10 of [11] we infer that wρ(S2p+1)
2p ≥ wρ(S

2p
2p+1) > r. By letting r

goes to
1

ρ
, we get

a(ρ) =
1

wρ(S2p+1)
≤ ρ

1
2p .

Thus, for all k = 1, . . . , p, we have,

0 ≤ a(ρ)k

ρ
≤ 1

ρ1−
k
2p

−→
ρ→+∞

0.

Consequently,
ρ

a2p
〈Kρ

1 (S̃)
−1U | Ũ〉 −→

ρ→+∞
1.

As ρKρ
1 (S̃)

−1 −→ I,
1

ap
U −→ e0 and

1

ap
Ũ −→ e0, by letting again ρ to +∞. By

what we assert that 〈Kρ
1 (S̃)

−1U | Ũ〉 is strictly positive and constant for ρ sufficiently
large, so equal 1. We conclude that ε = −1. �

A crucial point is now to study the nullity of the coefficients vk. The following
result shows that the situation differs according to the parity of the dimension.

Theorem 2.3. Let T is Harnack equivalent to S in Cρ(C
n+1), ρ > 1, we have

(1) If the dimension is an even number, i.e. n+ 1 = 2p, then

N (Kρ
z (T )) = C(v0, zv1, . . . , z

p−1vp−1,−zpvp−1, . . . ,−z2p−1v0), for all z ∈ T,

with vk 6= 0, for all k = 0, 1, . . . , p− 1.
(2) If the dimension is an odd number, i.e. n+ 1 = 2p+ 1, then

N (Kρ
z (T )) = C(v0, zv1, . . . , z

p−1vp−1, 0,−zpvp−1, . . . ,−z2pv0), for all z ∈ T,

with vk 6= 0, for all k = 0, 1, . . . , p− 1.

Proof. By Theorem 2.1, we have vk = −vn−k, for all k = 0, 1, . . . , p− 1 and v0 6= 0.
Let us remark that if n = 2p, then vp = −vn−p, and in this case vp = 0. Now, to
prove the theorem, it suffices to show that vk 6= 0 for all k = 1, . . . p − 1. Assume
that there exists m ∈ {1, . . . , p− 1} such that vm = 0.

Claim 1. We have

det
(

Kρ
1 (S̃)e0, . . . , K

ρ
1 (S̃)em−1, U,K

ρ
1 (S̃)em+1, . . . , K

ρ
1 (S̃)ep−1

)

= 0,

where U = (ap−1, . . . , a, 1)t.
Suppose that n = 2p− 1, then we have

0 =

n
∑

k=0

vkK
ρ
1 (S)ek =

p−1
∑

k=0

vkK
ρ
1 (S)ek −

2p−1
∑

k=p

v2p−1−kK
ρ
1 (S)ek.

Let P be the orthogonal projection on the subspace spanned by e0, · · · , ep−1. Thus,
we have

0 =

p−1
∑

k=0

vkPK
ρ
1 (S)Pek−

p−1
∑

k=0

vkPK
ρ
1 (S)e2p−1−k =

p−1
∑

k=0

vkK
ρ
1 (S̃)ek−

p−1
∑

k=0

vkPK
ρ
1(S)Wek.
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Taking into account that

〈Kρ
1 (S)ei | ej〉 = δi,jρ+ (1− δi,j)a

|i−j| and WKρ
1 (S)W = Kρ

1 (S),

we obtain

0 =

p−1
∑

k=0

vkK
ρ
1 (S̃)ek − a〈Ṽ | U〉U. (2.2)

In a similar way, we can see that (2.2) remains valid when n = 2p. Then the family

{Kρ
1 (S̃)ek, k ∈ {1, . . . , p− 1} \ {m}} ∪ {U} is linearly dependent, and hence Claim

1. follows.
Claim 2. For m ≥ 2, set

D̃m(a) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ a · · · am−1 am

a ρ
. . .

...
...

...
...

. . . a a2

am−1 am−2 · · · ρ a
am am−1 · · · a 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then we have

D̃m(a) = αD̃m−1(a)− βD̃m−2(a),

where α = ρ + (ρ − 2)a2, β = a2(1 − ρ)2, D̃0(a) = 1 and D̃1(a) = ρ − a2, and the
associated discriminant ∆ is given by

∆ =
(

a2 − 1
)

((a+ 1)ρ− 2a)((a− 1)ρ− 2a).

From Claim 1., we derive that

Dp(a) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ a · · · am−1 ap−1 am+1 · · · ap−1

a ρ
. . .

...
...

...
...

...
...

...
. . . a ap−m+1 a3 · · · ...

am−1 am−2 · · · ρ ap−m a2 · · · ap−l

am am−1 · · · a ap−m−1 a
. . .

...

am+1 am · · · a2 ap−m−2 ρ
. . .

...
...

...
...

...
. . .

...
. . . a

ap−1 ap−2 · · · ap−m 1 ap−m−2 · · · ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Denote by Ck the k-th column, with k ∈ {m+ 1, . . . , p− 1}. By replacing the k-th
column by ap−1−kCk − Cm for k = m+ 1, . . . , p− 1, we get

Dp(a) = (ρ−1)p−1−ma
(p−2−m)(p−1−m)

2 a(m−p−1)D̃m(a) = (ρ−1)p−1−ma
(p−m)(p−m−1)

2 D̃m(a).
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Since, ρ 6= 1, then Dp(a) = 0 if and only if D̃m(a) = 0. Now, Multiplying the second

column of the determinant D̃m(a) by a and subtracting it from the first one gives

D̃m(a) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ− a2 a · · · am−1 am

a(1 − ρ) ρ
. . .

...
...

...
...

. . . a a2

0 am−2 · · · ρ a
0 am−1 · · · a 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By a similar operation with the rows, we find

D̃m(a) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ− a2 − a2(1− ρ) a(1− ρ) 0 · · · 0 0
a(1 − ρ) ρ a · · · am−2 am−1

0 a ρ
. . .

...
...

...
...

. . .
. . . a a2

0 am−2 · · · a ρ a
0 am−1 · · · a2 a 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Which implies that for m ≥ 2, we have

D̃m(a) = αD̃m−1(a)− βD̃m−2(a),

with α = ρ + (ρ − 2)a2, β = a2(1 − ρ)2, D̃0(a) = 1 and D̃1(a) = ρ − a2. This
recurrence relation form the equation

r2 − αr + β = 0, (2.3)

with discriminant

∆ =
(

a2 − 1
)

((a+ 1)ρ− 2a)((a− 1)ρ− 2a). (2.4)

This ends proof of Claim 2..
Observe that 1 < a = wρ(Sn+1)

−1 ≤ ρ because the leading principal minor of order
2 of the matrix associated with Kρ

1 (S) is nonnegative. Thus we have (a+1)ρ−2a > 0
and we can see that ∆ is the same sign as (a−1)ρ−2a. Let ϕ(ρ) = ρ−2−2(a(ρ)−1)−1

where a(ρ) = wρ(Sn+1)
−1. Clearly, a(ρ) −→ 1+ if ρ −→ 1+ and a(ρ) −→ +∞ if

ρ −→ +∞. This implies that ϕ(ρ) −→ −∞ if ρ −→ 1+ and ϕ(ρ) −→ +∞ if
ρ −→ +∞. Further, the function ρ −→ a(ρ) is strictly decreasing on [1,+∞). We
conclude that ρ −→ ϕ(ρ) is strictly increasing on [1,+∞). Consequently, there
exists a unique ρ0 = 2 + 2(a(ρ0) − 1)−1 > 2 such that ϕ(ρ0) = 0. Therefore, there
are three possibilities for the sign of ∆.

Now, using Claim 2., we distinguish three cases to end the proof of Theorem 2.3.

Case 1. ∆ = 0 if and only if ρ =
2a0
a0 − 1

. Equivalently, ρ0 = 2 +
2

a0 − 1
.

For this value of ρ, the discriminant ∆ admits a root

λ =
α

2
=
a0(1 + a0)

a0 − 1

with a0 = a(ρ0) =
ρ0

ρ0 − 2
. So that

D̃m(a) = (A +Bm)λm,
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where the constants A, B can be determined from the “initial conditions“

D̃0(a) = 1 = A

and

D̃1(a) = ρ− a2 = (1 +B)λ.

This yields that

A = 1, B = 1− a0,

which gives,

D̃m(a0) = (1 + (1− a0)m)λm.

On the other hand, for ρ > 1 and n ≥ 2, set

Dn(a) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ a · · · an−1 an

a ρ
. . .

...
...

...
...

. . . a a2

an−1 an−2 · · · ρ a
an an−1 · · · a ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We now perform the same operation as before and get

Dn(a) = αDn−1(a)− βDn−2(a),

with the “initial conditions“ D0(a) = ρ and D1(a) = ρ2 − a2. So we can see that

this is the same recurrence relation for D̃m. Hence for same values of a0, ρ0 and λ,
respectively, we have

Dn(a) = (t+ sn)λn,

where the constants t, s can be determined from the “initial conditions“ D0(a) =
ρ0 = t and D1(a0) = ρ20 − a20 = (t+ s)λ. This yields that t = ρ0 and s = −a0, which
gives,

Dn(a0) = (ρ0 − a0n)λ
n.

If n = 2p− 1, we have D2p−1(a0) = 0, implies that ρ0 = 2p+ 1. But D̃l(a) = 0, for
some l ∈ {1, . . . , p− 1}, is equivalent to

l =
1

a0 − 1
=
ρ0 − 2

2
= p− 1

2

which is a contradiction. Similarly, if n = 2p, we have D2p(a0) = 0, implies that

ρ0 = 2pa0 and a0 = 1+
1

p
. But in this case, D̃l(a0) = 0, for some l ∈ {1, . . . , p− 1},

is equivalent to

l =
1

a0 − 1
= p,

which is again a contradiction because l ≤ p − 1. We conclude that vk 6= 0, for all
k = 1, . . . , p− 1.

Case 2. ∆ > 0; in this case ρ > ρ0 > 2 (ϕ is strictly increasing). So (2.3) admits
two real roots 0 < λ1 < λ2. First, we claim that 0 < λ1 < 1 < λ2. Indeed, we have

λ2 >
ρ

2
> 1. If we put ψ(r) = r2 − αr + β, we can see that ψ(0) = β > 0 and
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ψ(1) = −(1 + a2) < 0, so 0 < λ1 < 1, since ψ(λ) = 0. Now, by a similar operation
on D̃m(a) as before, but this time with the last rows and the last line, we find

D̃m(a) = [a2(ρ− 2) + 1]Dm−1(a)− a2(ρ− 1)2Dm−2(a). (2.5)

Thus, if D̃l(a) = 0, for l ∈ {1, . . . , p− 1}, then
Dl(a) = (ρ− 1)Dl−1(a).

On the other hand, we have

Dm(a) = tλm1 + sλm2 ,

where the constants t, s are determined by

D0(a) = ρ = t+ s and Dn(a) = tλn1 + sλn2 = 0.

This yields that

t = ρ
λn2

λn2 − λn1
, and s = −ρ λn1

λn2 − λn1
,

which gives,

Dm(a) =
ρ

λn2 − λn1
(λn2λ

m
1 − λn1λ

m
2 ). (2.6)

This implies that

Dm+1(a)−Dm(a) =
ρ

λn2 − λn1
[λn2λ

m
1 (λ1 − 1) + λn1λ

m
2 (1− λ2)].

Since λ1 < 1 < λ2, then Dm+1(a) < Dm(a), for all m = 0, . . . , p − 1. But we have
Dl(a) = (ρ− 1)Dl−1(a) > Dl−1(a) which leads to a contradiction. We also conclude
that vk 6= 0, for all k = 1, . . . , p− 1.

Case 3. ∆ < 0; in this case 1 < ρ < ρ0. So (2.3) admits two complex roots, λ
and its conjugate λ. Let λ = |λ|eiω the root which lies in the upper half-plane (0 <

ω < π). Clearly |λ| = β = a(ρ−1), so λ = a(ρ−1)eiω . Since D̃m(a) = Aλm+A λ
m
,

with 1 = A+ A and ρ− a2 = Aλ+ A λ. It follows that

D̃m(a) =
λ− (ρ− a2)

λ− λ
λm − λ− (ρ− a2)

λ− λ
λ
m
.

Similarly; for Dn(a), we have

Dn(a) = tλn + t λ
n
,

such that

D0(a) = ρ = t+ t, D1(a) = ρ2 − a2 = tλ1 + t λ.

which gives,

Dn(a) =
ρλ− (ρ2 − a2)

λ− λ
λn − ρλ− (ρ2 − a2)

λ− λ
λ
n
.

Since Dn(a) = 0, we obtain that
(

λ

λ

)n

=
ρλ− (ρ2 − a2)

ρλ− (ρ2 − a2)
.
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Also

ei2nω =
ρλ− (ρ2 − a2)

ρλ− (ρ2 − a2)
.

It follows that

ei2nω =
(ρλ− (ρ2 − a2))2

|ρλ− (ρ2 − a2)|2
.

Also, notice that (2.6) remains valid in this case, thus we have

Dk(a) = ρak(ρ− 1)k
sin(n− k)ω

sinnω
.

Since ω ∈]0, π[ and Dk(a) > 0 for k ∈ {0, · · · , n− 1}, we have necessarily

ω ∈]0, π
n
[. (2.7)

Taking in account that

cosω =
α

2|λ| =
ρ+ (ρ− 2)a2

2a(ρ− 1)
, (2.8)

by a straightforward calculation, we obtain that |ρλ−(ρ2−a2)|2 = a2(ρ−1)(a2−1).
Then using (2.7) we can deduce that

sinnω =
ρ

a
sinω. (2.9)

Now, if D̃l(a) = 0, for l ∈ {1, . . . , p− 1},
(

λ

λ

)l

=
λ− (ρ− a2)

λ− (ρ− a2)
.

Also

ei2lω =
λ− (ρ− a2)

λ− (ρ− a2)
.

It follows that

ei2lω =
(λ− (ρ− a2))2

|λ− (ρ− a2)|2
.

Similarly as above, by a straightforward calculation and (2.7), we obtain that

sin lω =

√
ρ− 1√
a2 − 1

sinω

and

cos lω =
ρ
√
a2 − 1

2a
√
ρ− 1

.

This two relations gives,

sin 2lω =
ρ

a
sinω. (2.10)

Let us remark that the relation (2.5), is also true in this case, by what it follows
that

Dl(a) = (ρ− 1)Dl−1(a).

Therefore, we have
a sin(n− l)ω = sin(n− l + 1)ω (2.11)
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Combines (2.9) and (2.10), we derive that

sin nω = sin(2lω), (2.12)

for some l = 1, . . . , p− 1. Thus










(n− 2l)ω = 2kπ where k ∈ Z

or

(n+ 2l)ω = (2k′ + 1)π where k′ ∈ Z.

By (2.7) we see that the first equation gives 2kπ ∈]0, π[ which is impossible. Again,
by (2.7) we observe that (2k′ + 1)π ∈]0, 2π[, and obviously we have k′ = 0, then

ω =
π

n+ 2l
. (2.13)

For convenience, we set q = n− l and using (2.8) and (2.11) we sucessively get

2
sin(q + 1)ω

sin(qω)
(ρ− 1) cosω = ρ+ (ρ− 2)

sin2(q + 1)ω

sin2 qω

⇔ 2(ρ− 1) sin(q + 1)ω (sin(qω) cosω) = ρ sin2 qω + (ρ− 2) sin2(q + 1)ω

⇔ (ρ− 1) sin2(q + 1)ω + (ρ− 1) sin(q − 1)ω sin(q + 1)ω

= ρ sin2 qω + (ρ− 2) sin2(q + 1)ω

⇔ sin2(q + 1)ω + (ρ− 1) sin(q + 1)ω sin(q − 1)ω = ρ sin2 qω

⇔ cos(2qω)− cos(2(q + 1)ω) = (ρ− 1) [1− 2 cos(2ω)] .

It gives

sin((2q + 1)ω) = (ρ− 1) sinω. (2.14)

Now, combining (2.9), (2.11) and (2.14) we sucessively obtain

sinnω sin(q + 1)ω = sin qω [sinω + sin(2q + 1)ω]

⇔ sin nω sin(q + 1)ω = sin(qω) [2 sin(q + 1)ω cos(qω)]

⇔ sin nω sin(q + 1)ω = sin 2qω sin(q + 1)ω.

Having in view (2.7) we see that sin(q + 1)ω 6= 0, and hence sin(nω) = sin(2qω).
Finally, we get











nω = 2qω + 2kπ where k ∈ Z

or

nω = π − 2qω + 2k′π where k′ ∈ Z.

From the first equation and (2.7), we deduce that −2kπ = (n − 2l)ω ∈]0, π[ which
is impossible. According to the second equation and (2.7) we have (2k′ + 1)π =
(3n− 2l)ω ∈]0, 3π[ which forces k′ to be 0, thus we have

ω =
π

3n− 2l
. (2.15)

The equalities (2.13) and (2.15) give l = n/2 which is absurd because l ∈ {1, · · · , p− 1}
and n = 2p− 1 or n = 2p. This achieved the proof of Theorem 2.3. �
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3. Some consequences

On the basis of the study made in section 2, we give some results which are of
own interest. The first one is related to the critical value of ρ0 > 1 which annulates
the crucial discriminant given in (2.4).

Proposition 3.1. Let n ≥ 1. According to the notations used in the proof of the
Theorem 2.3, we have ρ0 = n+ 2 and wn+2(Sn+1) =

n
n+2

. In particular, we have

wm+1(T ) ≤
m− 1

m+ 1
‖ T ‖

for any operator T acting on a Hilbert space and such that Tm = 0 (m ≥ 2).

Proof. Given the calculations made to determine Dk(a) in the first case (∆ = 0) of
the proof of Theorem 2.3, we have Dk(a0) = (ρ0−a0k)λ

k. Since Dn(a0) = 0, we get
n = ρ0/a0 which leads to

ρ0 = n+ 2 and a0 =
1

wρ0(Sn+1)
=
n+ 2

n
,

which proves the first statements. Then, the inequality given for nilpotent operators
follows from Theorem 3.1 (or Corollary 4.1) in [3]. �

It is not quite so easy to calculate or estimate wρ(Sn+1) (see for instance [6]). The
next result shows that it can be done in a simpler way if 1 < ρ < n+ 2.

Proposition 3.2. Let ρ ∈]1, n+2[, then x := wρ(Sn+1) = 1/a is the unique solution
in ]1/ρ, 1[ of the following system of two equations















sin(nω)

sin(ω)
= ρx

cos(ω) =
ρx2 + (ρ− 2)

2x(ρ− 1)

(3.1)

where ω ∈]0, π
n
[ is an intermediate variable uniquely determined. Moreover, the

function ρ 7−→ ω(ρ) is continuous and strictly decreasing on ]1, n+ 2[ and we have
ω(]1, n+ 2[) =

]

0, π
n+1

[

.

Proof. The fact that wρ(Sn+1) is a solution of the system (3.1) follows directly from
the study made in the third case (∆ < 0) of the proof of Theorem 2.3. Conversely,
suppose that x ∈]1/ρ, 1[ is a solution, we easily see that we necessarily have (ρx2 +
(ρ−2))/(2x(ρ−1)) ∈]0, 1[, and then ω ∈]0, π[ is uniquely determined by the second
equation in (3.1), and in turn x = wρ(Sn+1) by the first equation and (2.9). Set
f(t) = sin(nt)/ sin(t) for t ∈]0, π/n[, then we have f ′(t) = u(t)/(sin2(t)) where
u(t) = n cos(nt) sin(t) − sin(nt) cos(t). For any t ∈]0, π/n[, we see that u′(t) =
−(n2 − 1) sin(nt) sin(t) < 0, thus the function u is decreasing on ]0, π/n[ and hence
negative. Finally, we see that the function f is strictly decreasing and continuous
on ]0, π/n[ and we have f(]0, π/n[) = ]0, n[. Now, we define the function g on
[1,+∞[ by setting g(ρ) = ρwρ(Sn+1). Suppose that there exist ρ1, ρ2 in ]1,+∞[
with ρ1 < ρ2 and such that g(ρ1) = g(ρ2), then using the facts that s 7→ h(s) =
g(1 + es) is a convex function on the real line (see Theorem 4 of [1]), and that



HARNACK PARTS 15

lims→−∞ h(s) = ‖Sn+1‖ = 1, we derive that h is increasing on R. Taking into
account that g(ρ1) = g(ρ2), we see that h must be constant on ]−∞, ln(ρ2 − 1)].
Thus we should have 1 = g(ρ1) = g(ρ2) which is impossible since 1 < ρwρ(Sn+1) for
any ρ > 1 (ρ2−a2 = D1(a) > 0). Consequently, g is a strictly increasing continuous
function on [1,+∞[ with g(]1, n+ 2[) = ]1, n[ (g(n + 2) = n by Proposition 3.2 ).
In conclusion, ω = f (−1) ◦ g as a function of ρ is strictly decreasing and continuous
with ω(]1, n+ 2[) =

]

0, π
n+1

[

(f (−1)(1) = π/(n+ 1)). This completes the proof. �

Remark 3.3. When ρ = 2, Proposition 3.2 allows us to retrieve quickly the well
known value of w2(Sm) (m ≥ 2). Set n = m− 1, the second equation of (3.1) gives
x = cos(ω) and the first equation leads to sin(nω) = sin(2ω). Since ω ∈]0, π/n[ the
only possible answer is ω = π/(n+ 2) and hence

w2(Sm) =
π

m+ 1
.

Proposition 3.4. Let ρ > 0 (ρ 6= 1) and U is a unitary matrix. Then, U∗SU is
Harnack equivalent to S in Cρ(C

n+1) if and only if Uek = αek, α ∈ T, for all k such
that vk 6= 0.

Proof. By [12, Corollary 2.24] we know that, U∗SU is Harnack equivalent to S in
Cρ(C

n+1), ρ > 0 (ρ 6= 1), if and only if U(N (Kρ
z (S))) ⊆ N (Kρ

z (S)), for all z ∈ T,
and the fact that

N (Kρ
z (S)) = CV (z) = C(v0, zv1, . . . , z

nvn), for all z ∈ T,

thus is equivalent to

UV (z) = α(z)V (z), for all z ∈ T. (3.2)

On the other hand,

‖V (1)‖ = ‖V (z)‖ = ‖UV (z)‖ = |α(z)|‖V (z)‖ = |α(z)|‖V (z)‖.
So

|α(z)| = 1.

Using (3.2), we get

α(z)‖V (1)‖ = 〈UV (z), V (z)〉, , for all z ∈ T,

thus the function α(.) is continuous from T to the spectrum of U , so α(.) is a constant
and becomes

UV (z) = αV (z), with |α| = 1 and z ∈ T. (3.3)

We deduce that the space spanned by the vector V (z) , z ∈ T, is a subspace of
Ker(U − αI), but this space is equal those spanned by ek, such that vk 6= 0, since

vkek =
∫ 2π

0
e−ikθV (eiθ)dm. �

Proposition 3.5. Let ρ > 1. If T ∈ Cρ(C
n+1) is Harnack equivalent to S, then

Te0 = 0, T ∗en = 0 and 〈Ten | e0〉 = 0.

Proof. By Theorem 2.1 and the inequality (2.1), we obtain

Kρ
z (T )V (z) = 0, for all z ∈ T,
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with V (z) = (v0, zv1, . . . , z
nvn). Hence,

v0K
ρ

eiθ
(T )e0 + eiθv1K

ρ

eiθ
(T )e1 + · · ·+ eniθvnK

ρ

eiθ
(T )en = 0, (3.4)

for all θ ∈ R. Multiplying (3.4) by 1 and eiθ, and integrating with respect the Haar
measure m on the torus, we get

ρv0e0 + v1Te1 + · · ·+ vnT
nen = 0,

and

v0Te0 + v1T
2e1 + · · ·+ vnT

n+1en = 0,

By this two last equalities, we obtain

(ρ− 1)v0Te0 = 0.

Since ρ 6= 1 and v0 6= 0, we have necessarily Te0 = 0.
Now if we proceed as above we can prove that T ∗en = 0. On the other hand, if

we multiply equation (3.4) by e−i(n−1)θ and we integrate with respect to m on the
torus we obtain

v0T
∗(n−1)e0 +

. . . + vn−2T
∗en−2 + ρvn−1en−1 + vnTen = 0.

Then, taking the scalar product with the vector e0 and using the fact that Te0 = 0,
it comes 〈Ten | e0〉 = 0. �

By Proposition 3.4 and Theorem 2.3, we have

Corollary 3.6. Let S ∈ Cρ(C
n+1), ρ > 1, with n + 1 is an even number. The

unitary orbit of S in the Harnack part of S is trivial.

Moreover, any element in the Harnack part of S is irreducible, when n + 1 is an
even number. More precisely, we have

Proposition 3.7. Let S ∈ Cρ(C
n+1), ρ > 1, where n + 1 is an even number, i.e

n = 2p−1, p ≥ 1. If T ∈ Cρ(C
n+1) is Harnack equivalent to S, then T is irreducible.

Proof. Assume that T is not irreducible. Then there exists an non trivial invariant
subspace E, (E 6= ∅ and E 6= Cn+1) of T such that T = T1 ⊕ T2 according to the
decomposition C

n+1 = E⊕E⊥. Also, Kρ
z (T ) = Kρ

z (T1)⊕Kρ
z (T2). Let V (z) such that

V (z) = V1(z)⊕ V2(z). Put Ω1 = {z ∈ T : V1(z) 6= 0} and Ω2 = {z ∈ T : V2(z) 6= 0}.
Since z 7−→ V1(z) and z 7−→ V1(z) are continuous, we deduce that Ω1 and Ω2 are
open sets. Let z0 ∈ Ω1 ∩ Ω2, we have F = CV1(z0) + CV2(z0) ⊂ Ker(Kρ

z (T )).
But dim(F ) = 2 and dim(Ker(Kρ

z (T ))) = 1, which is a contradiction. Hence
Ω1 ∩ Ω2 = ∅. Since V (z) 6= 0 for all z ∈ T, we obtain Ω1 ∪ Ω2 = T. Now, the
fact that T is connected, one of the open sets Ω1 and Ω2 must be empty. This is a
contraction with E is not trivial. �

In the following result we give a complete description of an element of C2(C
n+1)

Harnack equivalent to the w2-normalized truncated shift S with norm equal to those
of S.
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Theorem 3.8. Let T be in C2(C
n+1) such that ‖T‖ = ‖S‖ = a = (cos(

π

n+ 2
))−1.

Assume that T is Harnack equivalent to the w2-normalized truncated shift S of size
n + 1. Then the form of the matrix of T depends on the parity of the dimension,
more precisely we have :

(1) If the dimension is an even number, i.e. n+ 1 = 2p, then T = S.
(2) If the dimension is an odd number, i.e. n+ 1 = 2p+ 1, then

T =

Te0 · · · · · · Tep−1 Tep Tep+1 Tep+2 · · · Te2p








































































0 a 0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
...

...
. . . a

. . .
...

...
. . . aeiθ 0

...
... 0 ae−iθ . . .

...
...

. . . a
. . .

...
...

. . .
. . . 0

...
. . . a

0 · · · · · · · · · · · · · · · · · · · · · 0

where θ is an arbitrary real number.

Proof. Let T be an operator satisfying the assumptions of Theorem 3.8. Applying
Corollary 2.16 of [12] we get that the numerical range of T is the closed unit disc
D. Then using Theorem 1 of [27] or Theorem 5.9 of [15], we see that there exists a
unitary operator U ∈ B(Cn+1) such that T = U∗SU . Now, thanks to Theorem 2.3
and Proposition 3.4 we derive the desired result. �

We end this paper by proposing the following open questions.
Question 1 Can we remove the assumption ‖T‖ = ‖S‖ in Theorem 3.8?
Notice that the answer is positive when the dimension is two or three (see [12,

Theorems 3.1 and 3.3]).
And more generally, one can ask
Question 2 Let T be Harnack equivalent in Cρ(C

n+1), ρ > 1, to the wρ-
normalized truncated shift S of size n + 1. Is T of the form given in Theorem
3.8 with respect to the parity of the dimension?

The second author wishes to note that the original idea of this paper is due to
the first author.
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