
HAL Id: hal-02397728
https://hal.science/hal-02397728

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-checking linear-time properties of parametrized
asynchronous shared-memory pushdown systems

Marie Fortin, Anca Muscholl, Igor Walukiewicz

To cite this version:
Marie Fortin, Anca Muscholl, Igor Walukiewicz. Model-checking linear-time properties of parametrized
asynchronous shared-memory pushdown systems. CAV, 2017, Heidelberg, Germany. pp.155-175,
�10.1007/978-3-319-63390-9_9�. �hal-02397728�

https://hal.science/hal-02397728
https://hal.archives-ouvertes.fr

Model-checking linear-time properties of
parametrized asynchronous shared-memory

pushdown systems

Marie Fortin1, Anca Muscholl2, and Igor Walukiewicz3

1 LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay
2 LaBRI, University of Bordeaux

3 CNRS, LaBRI, University of Bordeaux

Abstract. A parametrized verification problem asks if a parallel compo-
sition of a leader process with some number of copies of a contributor
process can exhibit a behavior satisfying a given property. We focus on
the case of pushdown processes communicating via shared memory. In a
series of recent papers it has been shown that reachability in this model
is Pspace-complete [Hague’11], [Esparza, Ganty, Majumdar’13], and that
liveness is decidable in Nexptime [Durand-Gasselin, Esparza, Ganty,
Majumdar’15]. We show that verification of general regular properties of
traces of executions, satisfying some stuttering condition, is Nexptime-
complete for this model. We also study two interesting subcases of this
problem: we show that liveness is actually Pspace-complete, and that
safety is already Nexptime-complete.

1 Introduction

A parametrized verification problem asks if a given property holds for the par-
allel composition of a leader system with some arbitrary number of copies of a
contributor system (see Figure 1). This formulation appears already in a seminal
paper of German and Sistla [19], see also the survey [3] for a recent overview of
the literature. In this work, following [21,20,15,27,12], we consider parametric
pushdown systems, where both the leader and contributors are pushdown au-
tomata, and communication is via shared variables without any locking primitives.
Our primary motivation is the analysis of concurrent programs with procedure
calls. While previous work on parametric pushdown systems focused mainly on
reachability, or repeated reachability for the leader process, we show here that a
large class of omega-regular properties is decidable for these systems.

In his pioneering work [21] Kahlon proposed parametrization as an abstraction
step that avoids the undecidability barrier. A system composed of two copies
of a pushdown automaton communicating via one register can simulate Turing
machines [35], so no effective analysis of such systems is possible. Yet, if instead
of two copies we ask if a system composed of an arbitrary number of copies of the
pushdown automaton can write a specified value to a register, then the problem
becomes decidable. Later Hague [20] showed that reachability is also decidable

Register

Leader

Contributor Contributor Contributor

Fig. 1. A system consisting of one leader pushdown automaton and a number of copies
of a contributor pushdown automaton.

for a more general architecture proposed by German and Sistla. Namely he
considered systems with a leader pushdown automaton and an arbitrary number
of copies of a contributor pushdown automaton; cf. Figure 1. Consecutively,
Esparza, Ganty and Majumdar [15] have proved that the problem is Pspace-
complete, thus surprisingly easy for such type of problem. La Torre, Muscholl,
and Walukiewicz [27] showed that the reachability problem remains decidable if
instead of pushdown automata one considers higher-order pushdown automata, or
any other automata model with some weak decidability properties. Reachability
was also shown to be decidable for parametric pushdown systems with dynamic
thread creation [32].

Our motivating question is “what kind of linear-time properties are decidable
for parametric pushdown systems?” Suppose that we want to check a universal
reachability property: whether for every number of components, every run finally
writes a specified value to the register. This problem translates into a safety
query: does there exist some number of contributors, and some maximal run
that does not write the specified value to the register? Maximality means here
either an infinite run, or a finite run that cannot be prolonged. The maximality
condition is clearly essential, as otherwise we could always take the empty run as
a witness.

We show as our main result that verification of parametric pushdown systems
is decidable for all regular properties subject to some stuttering condition linked
to the fact that the number of contributors is not determined. We give precise
complexities of the parametric verification problem for both the case when the
property is given as a Büchi automaton, as well as when it is given by an
LTL formula (Nexptime-complete). On the way we revisit the liveness problem
studied in [12] and give a Pspace algorithm for it. This answers the question
left open by [12], that provided a Pspace lower bound and a Nexptime upper
bound for the liveness problem. It is somewhat surprising that for this kind of
parametrized systems, checking liveness is not more difficult computationally

than checking reachability, unlike for many other families of parametrized or,
more generally, infinite-state systems (see e.g. Chapter 5 in [3] for a discussion
and more references).

Another intermediate result of independent interest concerns universal reacha-
bility, which turns out to be coNexptime-complete. The lower bound shows that
it is actually possible to force a fair amount of synchronization in the parametric
model; we can ensure that the first 2n values written into the shared register
are read in the correct order and none of them is skipped. So the coNexptime-
hardness result can be interpreted positively, as showing what can be implemented
in this model.

Related work. Parametrized verification of shared-memory, multi-threaded
programs has been studied for finite-state threads e.g. in [2,23] and for pushdown
threads in [1,5,25,26]. The decidability results in [1,5,25,26] fall in the category
of reachability analysis up to a bounded number of execution contexts, and in
[1,5], dynamic thread creation is allowed. The main difference with our setting
is that synchronization primitives are allowed in those models, so decidability
depends on restricting the set of executions. Our model does not restrict the
executions, but has a weaker form of synchronization. In consequence our model
rather over-approximates the set of executions while the approaches cited above
under-approximate it.

In our model we have shared registers but no locks. Another option is to have
locks and no registers. Analysis of pushdown systems with unrestricted locks is
undecidable [22]. Interestingly, it becomes decidable for some locking disciplines
like nested [22] or contextual locking [8]. This model remains decidable even when
extended to dynamic pushdown networks [6]. Even reachability of regular sets of
configurations is decidable in this model, provided it has a finitely many global
locks together with nested locking [28,30] or contextual locking [29]. Regular sets
of configurations can compensate to some extent the lack of communication in
the model, for example they can describe globally inconsistent configurations.

Besides the cited papers, there are numerous results on the German and Sistla
model beyond the reachability property, but restricted to finite state processes.
German and Sistla have already considered LTL properties of the leader or of the
contributors. They have also studied the setting without a leader and observed
that it is much easier to handle. Emerson and Kahlon have considered stuttering-
invariant properties [13] of the whole system of finite state processes. Recently,
Bouyer et. al. [7] considered a probabilistic version without leader and only
finite-state contributors. They consider the problem of almost-sure reachability,
which asks if a given state is reached by some process with probability 1 under
a stochastic scheduler. They exhibit the existence of positive or negative cut-
offs, and show that the problem can be decided in Expspace, and is at least
Pspace-hard.

Finally, we should mention that there is a rich literature concerning the veri-
fication of asynchronously-communicating parametrized programs, that is mostly
related to the verification of distributed protocols and varies for approaches and
models (see e.g. [19,9,14,24] for some early work, and [11,33,3,31] and references

therein). Most of these papers are concerned with finite-state programs only,
which are not the main focus of our results.

Outline of the paper. Section 2 starts by introducing the problems considered
in this paper, and states our main results. In Section 3, we present the formal
definitions of parametrized pushdown systems. In Section 4 we study the liveness
problem, and in Section 5 the safety problem. Finally, we show in Section 6 how
these results may be used to verify more general ω-regular properties. Throughout
the paper we try to outline our arguments and give some intuitions for the proofs.
The detailed proofs can be found in the in the full version of the paper [17].

2 Problem statement and overview of results

The parametrized pushdown systems studied by [21,20,15] are described by two
transition systems D and C, traditionally called leader and contributor, which
are both pushdown systems (cf. Figure 1). Parametrization amounts to say
that arbitrarily many contributor instances interact with one leader, and that
contributors are anonymous. All participants communicate over lock-free, shared
variables with finite domains. We distinguish read/write actions of the leader
from those of contributors, for this we have two alphabets ΣD and ΣC . Since
contributors do not have identities we do not distinguish between actions of
different contributors.

The question we ask in this paper is which kind of linear-time properties
of (ΣD ∪ΣC)-labeled traces of parametrized pushdown systems can be model-
checked. Unsurprisingly, it turns out that we cannot hope for model-checking
arbitrary regular properties. In general, model-checking is undecidable because
the ability to refer to actions of both leader and contributors allows to single out
exactly one contributor instance. Since two communicating pushdown systems [35]
can simulate a Turing machine, undecidability follows then immediately.

The solution to the above problem is to consider properties that are adapted to
the parametrized setting. Technically we consider linear-time properties P where
actions of contributors can be replicated: if u0a0u1a1u2 · · · ∈ P with ai ∈ ΣC ,

ui ∈ Σ∗D, and f : N → N+, then u0a
f(0)
0 u1a

f(1)
1 u2 · · · ∈ P, too. We call such

properties c-expanding.
A related, classical notion is stuttering. A property P is stutter-invariant if for

every finite or infinite sequence a0a1 · · · and every function f : N→ N+, we have

a0a1 · · · ∈ P iff a
f(0)
0 a

f(1)
1 · · · ∈ P. Observe that every stutter-invariant property

is c-expanding. Stutter-invariance is a natural requirement in the verification
of general concurrent systems, and moreover well studied, e.g. for LTL they
correspond to the fragment LTL \X [34,16]. Stutter-invariance is also common
in parametrized verification [3], and for some synchronization primitives it allows
to recover decidability in the finite-state case [13].

We will consider regular properties on both finite and infinite traces of
parametrized systems, described either by LTL formulas or by Büchi automata
with action labels from ΣC ∪ΣD.

Our main result is that model-checking c-expanding, ω-regular properties4 of
parametrized pushdown systems is decidable, and Nexptime-complete.

Theorem 1. The following question is Nexptime-complete: given a parametrized
pushdown system S and a c-expanding ω-regular property P over S (described by
a Büchi automaton or by an LTL formula), determine if S has some maximal
trace in P.

We list some particular instances of regular c-expanding ω-properties, that
are both interesting on their own, and essential for our decision procedure:

1. The reachability problem asks if the parametrized pushdown system has some
trace containing a given leader action >.

2. The liveness (repeated reachability) problem asks if the parametrized push-
down system has some trace with infinitely many occurrences of a given
leader action >.

3. The universal reachability problem asks if every maximal trace of the para-
metrized pushdown system contains a given leader action >.

4. The complement of the previous question is the max-safety problem. It asks
if the parametrized pushdown system has some maximal trace that does not
contain a given leader action >.

Example 1. Let us imagine the system from Figure 1 that works as follows: first
some contributors propose values, then the leader chooses some proposed value
and announces this choice to contributors so that afterwards all the contributors
should use only this value. For such a system one may be interested to verify if
for every number of contributors every run satisfies:

1. The leader eventually decides on the value.
2. If the leader decides on the value then the contributors use only this value.
3. On runs where only one value is used infinitely often, some correctness

property holds.

Following other works on the subject we will rather prefer existentially quantified
questions, where we ask whether there is some number of contributors and some
run satisfying a property. Solutions to the reachability problem from the literature
can be used to verify the second property, as its negation is “there is some run
where the leader decides on a value and then a contributor uses a different value”.
The negation of the first property corresponds to max-safety: “there is some
maximal run without the leader deciding on a value”. The third property is a
more complicated liveness property that is neither reachability nor safety. �

Since max-safety and liveness problems are important steps towards our main
result we also establish their exact complexities.

4 By abuse of language we call them ω-regular although they may contain finite and
infinite sequences.

Theorem 2. The max-safety problem for parametrized pushdown systems is
Nexptime-complete. It is NP-complete when contributors are finite-state sys-
tems.

Theorem 3. The liveness problem for parametrized pushdown systems is Pspace-
complete.

The proof of Theorem 1 uses Theorems 2 and 3, and one more result, that is
interesting on its own. Note that both the max-safety and liveness problems talk
about one distinguished action of the leader, while c-expanding properties refer
to actions of both leader and contributors. Perhaps a bit surprisingly, we show
below that it suffices to consider only properties that refer to leader actions.

Theorem 4. For every parametrized pushdown system S, there exists a parame-
trized pushdown system S̃ such that for every c-expanding property P over traces
of S there exists a property P̃ over sequences of leader actions of S̃ such that:

1. S has a finite (resp. infinite) maximal trace in P iff S̃ has a finite (resp. in-
finite) maximal trace whose projection on leader actions is in P̃;

2. every infinite run of S̃ has infinitely many writes of the leader;
3. S̃ has an infinite run iff S has one.

System S̃ has size linear in the size of S, and can be constructed in polynomial
time. If P is a regular, respectively LTL property, then so is P̃. An automaton or
LTL formula of linear size for P̃ is effectively computable from the one for P.

3 Parametrized pushdown systems

In this section we recall the model of parametrized pushdown systems of [20] and
its semantics. We start with some basic notations.

A multiset over a set E is a function M : E → N. We let |M | =
∑
x∈EM(x).

The support of M is the set {x ∈ E : M(x) > 0}. For n ∈ N, we write
nM , M + M ′ and M −M ′ for the multisets defined by (nM)(x) = n ·M(x),
(M +M ′)(x) = M(x) +M ′(x) and (M −M ′)(x) = max(0,M(x)−M ′(x)). We
denote by [x] the multiset containing a single copy of x, and [x1, . . . , xn] the
multiset [x1] + . . .+ [xn]. We write M ≤M ′ when M(x) ≤M ′(x) for all x.

A transition system with actions over a finite alphabet Σ is a tuple 〈S, δ, sinit〉
where S is a (finite or infinite) set of states, δ ⊆ S ×Σ × S is a set of transitions,

and sinit ∈ S the initial state. We write s
u−→ s′ (for u ∈ Σ∗) when there exists a

path from s to s′ labeled by u. A trace is a sequence of actions labeling a path
starting in sinit ; so u is a trace if sinit

u−→ s′ for some s′.
A pushdown system is a tuple 〈Q,Σ, Γ,∆, qinit , Ainit〉 consisting of a finite

set of states Q, a finite input alphabet Σ, a finite stack alphabet Γ , a set of
transitions ∆ ⊆ (Q × Γ) × (Σ ∪ {ε}) × (Q × Γ ∗), an initial state qinit ∈ Q,
and an initial stack symbol Ainit ∈ Γ . The associated transition system has
Q× Γ ∗ as states, qinitAinit as the initial state, and transitions qAα

a−→ q′α′α for
(q, A, a, q′, α′) ∈ ∆.

We proceed to the formal definition of parametrized pushdown systems. Given
a leader process D and a contributor process C, a system consists of one copy
of D and arbitrarily many copies of C communicating via shared registers. For
simplicity we assume that there is a single, finite-valued shared register (in the
full version of the paper [17] we show how to reduce the case of several registers
to that with one register). We write G for the finite set of register values, and
use g, h to range over elements of G. The initial value of the register is ginit .
Since only processes of type C are parametrized we distinguish the read/write
actions of C and D, by using disjoint action sets: ΣC = {r(g), w(g) : g ∈ G}
and ΣD = {r(g), w(g) : g ∈ G}. Both processes C and D are (possibly infinite)
transition systems with read/write actions:

C = 〈S, δ ⊆ S ×ΣC × S, sinit〉 D = 〈T,∆ ⊆ T ×ΣD × T, tinit〉 (1)

In this paper we will consider the special case where C and D are pushdown
transition systems:

AC = 〈P,ΣC , ΓC , δ, pinit , A
C
init〉 AD = 〈Q,ΣD, ΓD, ∆, qinit , A

D
init〉 (2)

In this case the transition system C from (1) is the transition system associated
with AC : its set of states is S = P × (ΓC)∗ and the transition relation δ is defined
by the push and pop operations. Similarly, the transition system D is determined
by AD. When stating general results on parametrized pushdown systems we will
use the notations from Eq. (1); when we need to refer to precise states, or use
some particular property of pushdown transition systems, we will employ the
notations from Eq. (2).

So a parametrized pushdown system S consists of an arbitrary number of
copies of C, one copy of D, and a shared register. A configuration (M ∈ NS , t ∈
T, g ∈ G) of S consists of a multiset M counting the number of instances of C in
a given state, the state t of D and the current register value g.

To define the transitions of the parametrized pushdown system we need to
extend the transition relation δ of C to multisets: let M

a−→ M ′ if s
a−→ s′ in

δ, M(s) > 0, and M ′ = M − [s] + [s′], for some s, s′ ∈ S. Observe also that
multiset transitions do not modify the size of the multiset. The transitions of the
parametrized pushdown system are either transitions of D (the first two cases
below) or transitions of C (the last two cases):

(M, t, g)
w(h)−−−→(M, t′, h) if t

w(h)−−−→ t′ in ∆ ,

(M, t, g)
r(h)−−−→(M, t′, h) if t

r(h)−−−→ t′ in ∆ and h = g ,

(M, t, g)
w(h)−−−→(M ′, t, h) if M

w(h)−−−→M ′ in δ ,

(M, t, g)
r(h)−−−→(M ′, t, h) if M

r(h)−−−→M ′ in δ and h = g .

A run of S from a configuration (M, t, g) is a finite or an infinite sequence of
transitions starting in (M, t, g). A run can start with any number n of contributors,
but then the number of contributors is constant during the run. A run is initial

if it starts in a configuration of the form (n[sinit], tinit , ginit), for some n ∈ N. It
is maximal if it is initial and cannot be extended to a longer run. In particular,
every infinite initial run is maximal. A (maximal) trace of the parametrized
pushdown system is a finite or an infinite sequence over ΣC ∪ ΣD labeling a
(maximal) initial run.

4 Liveness

We show in this section that liveness for parametrized pushdown systems has
the same complexity as reachability, namely Pspace-complete (Theorem 3). The
lower bound comes from reachability [15], and our contribution is to improve the
upper bound from Nexptime [12] to Pspace. We call a run of the parametrized
pushdown system a Büchi run if it has infinitely many occurrences of the leader
action >. So the problem is to decide if a given parametrized pushdown system
has a Büchi run.

Our proof has three steps. The first one relies on a result from [12], showing
that it suffices to bound the stacks of contributors polynomially. This allows to
search for ultimately periodic (lasso-shaped) runs of the parametrized pushdown
system (Corollary 1), as in the case of a single pushdown system. The next step
extends the technique introduced in [27] for the reachability problem, to Büchi
runs: we reduce the search for Büchi runs to the existence of some run of the leader
pushdown system, that is feasible in the global parametrized system (Lemma 2).
The last step is the observation that we can replace the leader process by a
finite-state system using downward closure (Lemma 3). Overall our procedure
yields a Pspace algorithm for the liveness problem (Theorem 3).

Finite-state contributors. As observed in [12], parametrization allows to re-
place pushdown contributors by finite-state contributors, preserving all behaviors
of the leader. The reason is that any behavior of some contributor instance can
be replicated arbitrarily (but finitely many times). To state the result of [12]
we need the notion of effective stack-height for a pushdown system. Consider a
possibly infinite run ρ = q1α1

a1−→ q2α2
a2−→ . . . of a pushdown system. We write

αi = α′iα
′′
i , where α′′i is the longest suffix of αi that is also a proper suffix of αj

for all j > i. The effective stack-height of a configuration qiαi in ρ is the length of
α′i. (Notice that even though it is never popped, the first element of the longest
common suffix of the (αi)j≥i may be read, hence the use of proper suffixes.)

Remark 1. It is folklore that every infinite run of a single pushdown system
contains infinitely many configurations with effective stack-height one.

By CN we denote the restriction of the contributor pushdown AC to runs in
which all configurations have effective stack-height at most N . More precisely,
CN is the finite-state system with set of states {pα ∈ PΓ ∗C : |α| ≤ N}, and

transitions pα
a−→ qα′ if pα

a−→ qα′α′′ in ∆ for some α′′. Note that CN is effectively
computable in Pspace from AC and N given in unary. One key idea in [12] is
that when looking for Büchi runs of pushdown parametrized pushdown systems,
C can be replaced by CN for N polynomially bounded:

Theorem 5 (Thm. 4 in [12]). Let N > 2|P |2|ΓC |. The parametrized pushdown
system S has some Büchi run iff the parametrized pushdown system SN obtained
from S by replacing C by CN , has some Büchi run.

The proof of the above theorem yields a similar result for finite runs. We state
this in the next lemma, as we need to refer later to the form of configurations
that are reachable in SN . The proof of the lemma relies on “distributing” the run
of one contributor on the runs of two contributors, thereby decreasing the height
of the stack. Recall that configurations of S are of the form ([s1, . . . , sn], t, g),
where the n contributor instances have states s1, . . . , sn, the leader has state t,
and the shared register has value g.

Lemma 1. Let N > 2|P |2|ΓC | + 1. A configuration ([p1α1, . . . , pnαn], t, g) of
SN is reachable iff there exists a reachable configuration of S of the form
([p1α1β1, . . . , pnαnβn], t, g), for some βi ∈ Γ ∗C .

Notation. For the sake of clarity we write throughout the paper Cfin instead
of CN with N = 2|P |2|ΓC |+ 2, and Sfin for the parametrized pushdown system
with contributor process Cfin and leader process D. We will use the notation

〈Pfin , ΣC , δ, p
fin
init〉 for the finite-state system Cfin , and continue to write AD =

〈Q,ΣD, ΓD, ∆, qinit , A
D
init〉 for the pushdown system D.

Theorem 5 and Remark 1 show that the existence of Büchi runs boils down
to the existence of “ultimately periodic runs”:

Corollary 1. The parametrized pushdown system S has a Büchi run iff there is
a run of Sfin of the form

(n[pfin
init], tinit , ginit)

u−→ (M, t1, g)
v−→ (M, t2, g)

v−→ . . .

for some n ∈ N, g ∈ G, M ∈ (Pfin)n, u, v ∈ (ΣC ∪ΣD)∗ , where:

– v ends by an action from ΣD and contains >, and
– all configurations ti ∈ QΓ ∗D of D have effective stack-height one, the same

control state, and the same top stack symbol.

Capacities and supported loops. Our next goal is a Pspace algorithm for
the existence of ultimately periodic runs of Sfin . Since the reachability problem
is decidable in Pspace, we will focus on loops in Sfin (i.e., runs of the form

(M, t, g)
+−→ (M, t′, g) as in Corollary 1) and adapt the proof for the reachability

problem proposed in [27].
In a nutshell, the idea of [27] is to split a parametrized pushdown system into

a part that concerns the leader, and a part that concerns the contributors. What
actually matters are the values that the contributors can write into the register
because once these values are written they can be repeatedly written on demand,
since we are in a parametrized setting. This information will be summarized by
the notion of capacity. The leader, resp. any individual contributor, can work with
an additional capacity that abstracts the details of runs of other contributors, by

recording only the effect on the shared register. Of course, the capacity needs
to be validated at some point, leading to the notion of “supported run”. The
additional challenge is that this run should give a loop in the original system.

Following [27], Sfin splits into a finite-state system Cκfin representing the
“capacity-aware” contributor, and a pushdown system Dκ, representing the
“capacity-aware” leader.

Formally, there is a new set of actions Σν = {ν(g) : g ∈ G} denoting first
contributor writes. In addition, each of Cκfin and Dκ have a component K –
the capacity – that stores the values that contributors have already written. The
set of control states of Dκ is P(G)×Q×G, and the initial state is (∅, qinit , ginit).
The input and the stack alphabets, ΣD and ΓD, are inherited from D. So a
configuration of Dκ has the form (K ⊆ G, t ∈ QΓ ∗D, g ∈ G). The transitions of
Dκ are:

(K, t, g)
w(h)−−−→(K, t′, h) if t

w(h)−−−→ t′ in ∆,

(K, t, g)
r(h)−−−→(K, t′, h) if t

r(h)−−−→ t′ in ∆ and h ∈ K ∪ {g},

(K, t, g)
ν(h)−−−→(K ∪ {h}, t, h) if h 6∈ K .

The finite transition system Cκfin is defined similarly, it just follows in addition
the transitions of Dκ (first line below). The set of states of Cκfin is P(G)×Pfin×G,

input alphabet ΣC , and initial state (∅, pfin
init , ginit). The transitions of Cκfin are:

(K, p, g)
w(h)−−−→(K, p, h) , (K, p, g)

r(h)−−−→ (K, p, h) , (K, p, g)
ν(h)−−−→ (K ∪ {h}, p, h)

(K, p, g)
w(h)−−−→(K, p′, h) if p

w(h)−−−→ p′ in δ and h ∈ K

(K, p, g)
r(h)−−−→(K, p′, h) if p

r(h)−−−→ p′ in δ and h ∈ K ∪ {g} .

Note that in both Dκ and Cκ some additional reads r(h), r(h) are possible when
h ∈ K – these are called capacity-reads.

Notation. We write ΣD,ν for ΣD ∪Σν . Similarly for ΣC,ν and ΣC,D,ν . By v|Σ
we will denote the subword of v obtained by erasing the symbols not in Σ. Note
that the value of the register after executing a trace v, in both Cκfin and Dκ, is
determined by the last action of v. We denote by last(v) the register value of the
last action of v (for v non-empty).

We now come back to examining when there exists an ultimately periodic
run of Sfin . Clearly, a run (or loop) of Sfin induces a run (or loop) of Dκ, but the
converse is not true. For the other direction we extend the notion of supported
trace [27] to ω-support. Informally, a trace v of Dκ is called ω-supported when
(1) for each first write ν(h) in v there is a trace of Cκfin witnessing the fact that a
contributor run can produce the required action w(h), and (2) all witness traces
can be completed to loops in Cκfin .

Definition 1. Consider a word v = v1ν(h1) · · · vmν(hm)vm+1 ∈ Σ∗D,ν , where
v1, . . . , vm+1 ∈ Σ∗D, and h1, . . . , hm ∈ G are pairwise different register values.
Let p1, . . . , pm ∈ Pfin be states of Cfin .

We say that v is ω-supported from (p1, . . . , pm) if for every 1 ≤ i ≤ m there
is some trace ui ∈ (ΣC,D,ν)∗ of Cκfin of the form

ui = ui1ν(h1) · · ·uiiν(hi) w(hi) u
i
i+1 · · ·uimν(hm)uim+1

such that: (i) ui|ΣD,ν = v, and (ii) (∅, pi, g)
ui−→ (K, pi, g) in Cκfin , where g =

last(v).

Note that K = {h1, . . . , hm} in the above definition, and that uij |ΣD,ν = vj
holds for all j. The next lemma states that the notions of capacity and of ω-
support suffice for checking the existence of Büchi runs. The intuition behind
the proof of the lemma is that a finite number of contributor instances, starting
in one of the states pi, can simultaneously ensure that all capacity-reads are
possible, and get back to state pi.

Lemma 2. The parametrized pushdown system S has some Büchi run iff there
is some reachable configuration (M, qAα, g) of Sfin and a word v ∈ Σ∗D,ν such
that:

1. Dκ has a run of the form (∅, qA, g)
v−→ (K, qAα′, g), and > appears in v.

2. v is ω-supported from some (p1, . . . , pm) such that [p1, . . . , pm] ≤M .

Observe that by Definition 1, we have m ≤ |G| in Lemma 2.

Algorithm. Recall that a word u is a subword of v, written u v v, if u is
obtained from v by erasing some symbols. The downward closure of a language
L ⊆ Σ∗ is L↓= {u ∈ Σ∗ : ∃v ∈ L. u v v}. By a classical result in combinatorics
(Higman’s lemma) we know that the downward closure of any language is regular,
however not effective in general. For pushdown systems it is effective [10] and a
finite-state automaton of exponential size can be computed on-the-fly in Pspace.

For our Pspace algorithm we first observe that the capacity-aware leader Dκ
can be replaced by its downward closure, since adding some transitions of the
leader does not affect the support of contributors:

Lemma 3. Let v = v1ν(h1) · · · vmν(hm)vm+1 be ω-supported from p1, . . . , pm,
and let vj v vj for every j. Assume that v = v1ν(h1) · · · vmν(hm)vm+1 satisfies
last(v) = last(v). Then v is also ω-supported from (p1, . . . , pm).

The proof of Theorem 3 is based on Lemmas 2 and 3. The algorithm checks
emptiness of the product of at most |G|+ 1 finite-state automata of exponential
size – the automaton for the downward closure, and the automata for ω-support.
Together with a reachability check for the initial trace segment, we get a Pspace
algorithm for liveness.

5 Max-safety

Recall that universal reachability amounts to ask that some special action > of
the leader occurs in every trace, no matter how many contributor instances are
around. This is a typical question to ask when we are interested in something
that is computed by a parametrized system. The max-safety problem is just the
complement of universal reachability. A (maximal) safe run is a (maximal) run
that does not contain >.

We show in this section that the max-safety problem is NP-complete when
contributors are finite-state systems, and Nexptime-complete when contributors
are pushdown systems (the leader is in both cases a pushdown system). As
for liveness, we can reduce the second case to the first one, thus obtaining the
Nexptime upper bound. The lower bound is more challenging.

Set semantics. As a first step we will introduce a set semantics of parametrized
pushdown systems that is equivalent to the multiset semantics of Section 3 when
only finite traces are considered. The idea is that since the number of contributors
is arbitrary, one can always add some contributor instances that copy all the
actions of a given contributor. So once a state of C is reached, we can assume that
we have arbitrarily (but finitely) many copies of C in that state. In consequence,
multisets can be replaced by sets. Very similar ideas have been already used
in [15,27]. Here we need to be a bit finer because we are interested in maximal
runs.

Consider a parametrized pushdown system with the notations on page 7
(Eq. (1)):

C = 〈S, δ, sinit〉 D = 〈T,∆, tinit〉 .

Instead of multisets M ∈ NS , we use sets B ⊆ S. As we have done for
multisets, we lift the transitions from elements to sets of elements:

B
a−→ B′ in δ if s

a−→ s′ in δ, and B′ is either B ∪ {s′} or (B ∪ {s′}) \ {s}
for some s ∈ B.

The intuition is that B
a−→ B ∪ {s′} represents the case where some contributors

in state s take the transition, and B
a−→ (B ∪ {s′}) \ {s} corresponds to the case

where all contributors in state s take the transition. The transitions in the set
semantics are essentially the same as for the multiset case:

(B, t, g)
w(h)−−−→(B, t′, h) if t

w(h)−−−→ t′ in ∆

(B, t, g)
r(h)−−−→(B, t′, h) if t

r(h)−−−→ t′ in ∆ and h = g

(B, t, g)
w(h)−−−→(B′, t, h) if B

w(h)−−−→ B′ in δ

(B, t, g)
r(h)−−−→(B′, t, h) if B

r(h)−−−→ B′ in δ and h = g

Remark 2. The set semantics is a variant of the accumulator semantics used
in [27], in which only transitions of the form B

a−→ B ∪ {s′} (but not B
a−→

(B ∪ {s′}) \ {s}) were used. The accumulator semantics is nice because it is
monotonic, and it suffices for reachability. But it is not precise enough when
dealing with maximal runs. �

Recall that a support of a multiset is the set of elements that appear in it
with non-zero multiplicity. We have modified the accumulator semantics so that
runs preserve the support as stated in the next lemma.

Lemma 4. 1. If (M0, t0, g0)
a1−→ . . .

an−−→ (Mn, tn, gn) in the multiset semantics,

and Bj is the support of Mj, for every j = 0, . . . , n, then (B0, t0, g0)
a1−→

. . .
an−−→ (Bn, tn, gn) in the set semantics.

2. If (B0, t0, g0)
a1−→ . . .

an−−→ (Bn, tn, gn) in the set semantics, then there exist
multisets M0, . . . ,Mn such that Mj has support Bj, and for some ij > 0,

(M0, t0, g0)
(a1)

i1

−−−−→ (M1, t1, g1)
(a2)

i2

−−−−→ . . .
(an)

in

−−−−→ (Mn, tn, gn)

in the multiset semantics.

Corollary 2. Fix a parametrized pushdown system. In the multiset semantics
the system has a finite maximal safe run ending in a configuration (M, t, g) iff
in the set semantics the system has a finite maximal safe run ending in the
configuration (B, t, g) with B being the support of M .

Finite-state contributors. We start with the case where contributors are
finite-state. An easy reduction from 3-SAT shows:

Lemma 5. The max-safety problem is NP-hard when contributor and leader are
both finite-state systems.

For the upper bound of the max-safety problem with finite-state contributors
we need to distinguish between finite and infinite maximal safe runs.

The case of infinite safe runs reduces to the liveness problem, using Theorem 4
(items 2. and 3.): we can construct from a given parametrized pushdown system
S a parametrized pushdown system S ′ such that S has an infinite safe run iff S ′
has a run with infinitely many leader writes, but not >. To decide if S ′ admits
such a run, we remove > and test for each possible value g of the register if there
is a run with infinitely many writes w(g). Since liveness is in NP for finite-state
contributors [12] we obtain:

Lemma 6. For finite-state contributors and pushdown leader, it can be decided
in NP whether a parametrized pushdown system has an infinite safe run.

It remains to describe an algorithm for the existence of a finite maximal safe
run. By Corollary 2 we can use our set semantics for this. From now on we will
also exploit the fact that D is a pushdown system. Recall that the states of D are
of the form qα where q is the state of the pushdown automaton defining D and α
represents the stack. The question is to decide if there is a deadlock configuration

(B, qα, g) in the parametrized pushdown system, such that (B, qα, g) is reachable
without using the > action. Note that we can determine whether (B, qα, g) is a
deadlock by looking only at B, q, g and the top symbol of α. Our algorithm will
consist in guessing B, q, g and some A ∈ ΓD, and then checking reachability.

To check reachability in NP we first show that it is sufficient to look for
traces where the number of changes of the first component of configurations (the
set-component) is polynomially bounded:

Lemma 7. For every finite run ρ of the parametrized pushdown system in the
set semantics, there exists some run ρ′ with the same action labels, same end
configuration and of the form ρ′ = ρ′0 · · · ρ′k with k ≤ 2|S|, where in each ρ′j, all
states have the same set-component.

Proof. Take a run ρ = (B0, t0, g0)
a1−→ (B1, t1, g1)

a2−→ . . .
an−−→ (Bn, tn, gn) of

the parametrized pushdown system. We claim that there exists a run ρ′ =
(B′0, t0, g0)

a1−→ (B′1, t1, g1)
a2−→ . . .

an−−→ (B′n, tn, gn) such that B0 = B′0, Bn = B′n,
and for all s ∈ S and 0 ≤ i < n, if s ∈ B′i and s /∈ B′i+1, then for all j > i, s /∈ B′j .

Indeed let us define B′i by induction on i: B′0 = B0, and for i > 1,

– if Bi+1 = Bi, then B′i+1 = B′i.
– if Bi+1 = Bi ∪ {s}, then B′i+1 = B′i ∪ {s}.
– if Bi+1 = (Bi\{s})∪{s′} and s /∈ Bj for all j > i, then B′i+1 = (B′i\{s})∪{s′}.

If s ∈ Bj for some j > i, then B′i+1 = B′i ∪ {s′}.

Clearly, ρ′ is a run of the parametrized pushdown system. Moreover, for all i,
Bi ⊆ B′i ⊆

⋃n
j=iBj . So in particular, Bn = B′n.

Now we take the run ρ′. Let i0 = 0, and i1 < · · · < ik be the indices such that
B′i 6= B′i−1. Then ρ′ can be decomposed into ρ′ = ρ′0 · · · ρ′k, where for all j, the
set-component of all states in ρ′j is B′ij . Consider the sequence B′i0 , B

′
i1
, . . . , B′ik .

There are states s1, . . . , sk ∈ S such that for all 0 ≤ j < k, B′ij+1
= B′ij ∪ {sj}

or B′ij+1
= (B′ij ∪ {s}) \ {sj} for some s. Moreover, each s ∈ S is added at most

once, and removed at most once from some B′i, which means that there are at
most two distinct indices j such that s = sj . Hence k ≤ 2|S|. �

The next lemma follows now from Lemma 7: we first guess a sequence of
sets of states B0, B1, . . . , Bk = B of length k ≤ 2|S|, then construct a pushdown
automaton of polynomial size according to the guess, and finally check reachability
in polynomial time [4]:

Lemma 8. The following problem is in NP: given a parametrized pushdown
system with finite-state contributors and a configuration (B, qA, g) in the set
semantics, decide if there exists α such that (B, qAα, g) is reachable from the
inital configuration.

Proof. The set semantics of the parametrized pushdown system corresponds
to a pushdown automaton A with set of control states 2S × Q × G, input
alphabet ΣC ∪ΣD, and stack alphabet ΓD. We first guess a sequence {sinit} =
B0, B1, . . . , Bk = B of sets of contributor states, where k ≤ 2|S|. Then we

construct the restriction of A to runs where the first component of the state
is equal to B0, then B1, up to Bk. The pushdown automaton thus obtained
has polynomial size, and we can check in polynomial time whether it has some
reachable configuration (B, qAα, g) [4]. �

Combining Lemmas 5, 6 and 8 we obtain the complexity result for finite-state
contributors:

Theorem 6. The max-safety problem is NP-complete when contributors are
finite-state systems.

Pushdown contributors. We now return to the case where contributors are
pushdown systems, and show first a lower bound, by a reduction from a tiling
problem [18]:

Lemma 9. The max-safety problem is Nexptime-hard for parametrized push-
down systems.

Proof. We reduce the following tiling problem [18] to the max-safety problem:

Input: A finite set of tiles Σ, horizontal and vertical compatibility relations
H,V ⊆ Σ2, and an initial row x ∈ Σn.
Question: is there a tiling of the 2n × 2n square respecting the compatibility
relations and containing the initial row in the left corner?

A tiling is a function t : {1, . . . , 2n}2 → Σ such that (t(i, j), t(i, j + 1)) ∈ H
and (t(i, j), t(i+ 1, j)) ∈ V for all i, j, and t(1, 1)t(1, 2) · · · t(1, n) = x.

The idea of the reduction is that the system will have a maximal run without >
if and only if the leader can guess a tiling respecting the horizontal compatibility,
and the contributors check that the vertical compatibility is respected as well.

The leader will write down the tiling from left to right and from top to bottom,
starting with the initial row. The sequence of values taken by the register on a
(good) run will have the form

A1,1, A1,1, A1,2, A1,2, . . . , A1,2n , A1,2n , . . . , A2n,2n A2n,2n ($$)2
n

� .

The Ai,j are guessed and written by the leader, and the Ai,j are written by
contributors. Letters Ai,j have two purposes: they ensure that at least one
contributor has read the preceding letter, and prevent a contributor from reading
the same letter twice. For technical reasons, this sequence is followed by a
sequence ($$)2

n� of writes from the leader (with $, � /∈ Σ), and we will consider
that (A, $) ∈ V for all A ∈ Σ.

The leader uses her stack to count the number i of rows (using the lower part
of the stack), and the number j of tiles on each row (using the upper part of the
stack). So, she repeats the following, up to reaching the values i = 2n, j = 2n:
(i) guess a tile A compatible with the one on its left (if j 6= 1), and write A on
the register, (ii) wait for an acknowledgment A from one of the contributors, (iii)
increment j, (iv) if j > 2n, increment i and set j = 1.

Finally, she repeats 2n times the actions w($), w($), then finishes by writing
w(�) and going to some distinguished state qf .

Each contributor is supposed to read the entire sequence of values written in
the register. He alternates between reading values of the form A and A, which
ensures that no value is read more than one time. At the same time, he uses his
stack to count the number of writes w(A) (A ∈ Σ ∪ {$}) of the leader, up to
(22n + 2n), so that he can check that no value was missed. This operation will in
fact be divided between counting up to 22n, and counting up to 2n, as described
below.

Every contributor decides non-deterministically to check vertical compatibility
at some point. He chooses the current tile A 6= $, and needs to check that the
tile located below it (that is, occurring 2n tiles later in the sequence of values
written by the leader) is compatible with it. This is done as follows: after reading
A 6= $, the contributor writes A on the register (rather than waiting for another
contributor to do so), and remembers the value. He interrupts his current counting,
and starts counting anew on the top of the stack, up to 2n. Upon reaching 2n,
he stores the value A′ of the register, for later check. Then he resumes the
first counting while reading the remaining of the sequence, up to 22n. At any
moment, the contributor can read �. If he reads � and either (A,A′) /∈ V or the
counting up to 2n failed (i.e., his stack is not empty), then he writes # (with
/∈ Σ ∪Σ ∪ {$, �}) and stops; otherwise he simply stops. In state qf , the leader

may read any value g 6= �, and she then does >: qf
r(g)−→ >−→. From every other

state q 6= qf , the leader can do >, too.
It can be verified [17] that there is a tiling of the 2n × 2n square, if and only

if, there is a maximal run without any occurrence of >. For the left-to-right
implication the leader should write a sequence of register values corresponding to
the tiling, and every contributor can end up with the empty stack upon reading
�, so no > will be generated. For the right-to-left direction, observe that in
the maximal run the leader should reach qf . In this case the acknowledgment
mechanism is set up in such a way that all the values written by the leader should
be successfully checked by contributors. �

For the upper bound, similarly to the case of finite-state contributors we need
to consider maximal finite and infinite runs separately. The case of infinite runs
can be again reduced to liveness using Theorem 4, and turns out to be easier:

Lemma 10. It can be decided in Pspace whether a parametrized pushdown
system has some infinite safe run.

For finite maximal runs, we show that we match the Nexptime lower bound.
For this we reduce the problem to the case of finite-state contributors, using
Lemma 1 that gives a polynomial bound for contributor stacks. Then we can
apply Lemma 8 that states that the complexity is NP for finite-state contributors:

Lemma 11. It can be decided in Nexptime whether a parametrized pushdown
system has some finite, maximal safe run.

The three lemmas together prove Theorem 2.

6 Regular c-expanding properties

In this section, we outline the proof of our general result stated in Theorem 1.
The proof is based on Theorem 4, that says that we can focus on properties that
refer only to leader actions. The proof idea for Theorem 4 is that in the new
parametrized pushdown system, the register becomes part of the leader’s state.
This releases the register, that can be used now by contributors to communicate
with the leader regarding the actions that they intend to perform, but the leader
is in charge to execute them. Contributors in the new parametrized pushdown
system write into the register the read/write action they want to execute; the
leader executes the action and confirms this to the contributors by writing back
into the register. The confirmation is read by contributors who at this point know
that their action request has been read and executed. The simulation makes use
of the fact that the property we want to check is c-expanding. The details of
the construction, and the correctness proof, are a bit tedious since it is always
possible that a value is overwritten before it gets read.

The proof of Theorem 1 is, once again, divided into two cases: one for finite
and the other for infinite traces. For finite maximal traces we use the results
about the max-safety problem, and for infinite traces we reduce the problem to
liveness.

Lemma 12. The following question is Nexptime-complete: given a parametrized
pushdown system S and a c-expanding ω-regular property P over S (described by
a Büchi automaton or by an LTL formula), determine if S has some maximal,
finite trace in P.

Proof sketch. By Theorem 4 we can assume that we need to check a property P
that refers only to actions of the leader. If P is given by an LTL formula, we start
by constructing an equivalent finite automaton of exponential size. By taking
the product of the leader D with this automaton representing P , we can assume
that D has a distinguished set of final (control) states such that a finite run of
the parametrized pushdown system satisfies P iff D reaches a final state.

The result then follows using Lemma 1, together with Lemma 8. Recall that in
order to decide if a finite run is maximal it is enough to look at the top of its last
configuration. Lemma 1 then tells us that there exists a maximal finite run in the
parametrized pushdown system S with D ending in a final state iff there exists
such a run in the parametrized pushdown system Sfin , where contributors are
finite-state; and by Lemma 8 the latter can be decided in NP in the size of Sfin ,
so overall in Nexptime. The matching Nexptime-hardness lower bound follows
from the proof of Lemma 9, as the parametrized pushdown system constructed
there has no infinite safe trace, and the max-safety problem restricted to finite
traces is a special instance of our problem. �

As for the max-safety problem, the case of infinite runs turns out to be easier.
It is also interesting to observe that the complexity now depends on whether the
property is described by an automaton or by a formula.

Lemma 13. The following question is Pspace-complete: given a parametrized
pushdown system S and a c-expanding ω-regular property P over S described by
a Büchi automaton, determine if S has some infinite trace in P.

Proof sketch. Applying again Theorem 4 and slightly modifying the parametrized
pushdown system we can reduce the satisfaction of P to an instance of the
liveness problem; observe also that liveness is a special case of our problem. With
this reduction, Pspace-completeness follows from Theorem 3. �

Lemma 14. The following question is Exptime-complete: given a parametrized
pushdown system S and a c-expanding ω-regular property P over S described by
an LTL formula, determine if S has some infinite trace in P.

Proof sketch. The lower bound comes from the situation where there are no
contributors at all [4]. For the upper bound: from an LTL formula we first
construct a Büchi automaton of exponential size. As in Lemma 13, the first step
is to reduce the problem of deciding if the parametrized pushdown system has
a trace in P to the liveness of some parametrized pushdown system S ′. In the
obtained system S ′ the leader D′ is of exponential size, and C′ is of polynomial
size. As a second step we adapt the procedure given in the proof of Theorem 3:
we do not build the downward closure of the leader, and we enumerate all
possible sequences ν(h1), . . . , ν(hm) and intermediate states, instead of guessing
them. Then we follow the lines of the proof of Theorem 3, checking emptiness of
pushdown systems of exponential size in Exptime. �

7 Conclusion

We have established the decidability and exact complexity for verifying linear-
time properties of parametrized pushdown systems, a model introduced in [20]
that can be seen as adapting a formulation from [19] to communicating pushdown
processes as in [21]. For decidability we needed to require that properties are
c-expanding, a lighter version of stuttering invariance. On the way to this result
we have determined the exact complexity of deciding liveness properties, which
turned out to be an easier problem than deciding the existence of maximal runs.

Technically, our upper bound results for liveness as well as for maximal runs
require to build on both the techniques from [12] and [27]. As pointed out in [12]
the techniques for deciding reachability are not immediately applicable to the
liveness problem. For reachability we can assume that for every write there is a
separate contributor responsible to produce it. This is a very useful simplification
that does not apply to repeated reachability, since we require that the number of
contributors is bounded over the complete infinite run. For the case of maximal
runs we introduced a simplification of the original semantics that is sensitive to
divergence. The lower bound result for this case shows that being able to detect
termination increases the complexity of the problem.

The model considered in this paper can be extended with dynamic thread
creation. Reachability is still decidable for this extension [32]. The decidability

proof is based on upper closures and well-quasi orders, so it does not provide any
interesting complexity upper bounds. It is actually open whether the verification
of regular properties of parametric systems with dynamic thread creation is
decidable.

References

1. M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for concurrent
programs with dynamic creation of threads. Logical Methods in Computer Science,
7(4):1–48, 2011.

2. T. Ball, S. Chaki, and S. K. Rajamani. Parameterized verification of multithreaded
software libraries. In TACAS’01, volume 2031 of LNCS, pages 158–173. Springer,
2001.

3. R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder.
Decidability of Parameterized Verification. Morgan & Claypool Publishers, 2015.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR ’97, volume 1243 of LNCS,
pages 135–150. Springer, 1997.

5. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of
multithreaded software with asynchronous communication. In FSTTCS’05, volume
3653 of LNCS, pages 348–359. Springer, 2005.

6. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In CONCUR’05, pages 473–487. Springer, LNCS
3653, 2005.

7. P. Bouyer, N. Markey, M. Randour, A. Sangnier, and D. Stan. Reachability in
networks of register protocols under stochastic schedulers. In ICALP’16, LIPIcs,
pages 106:1–106:14. Leibniz-Zentrum für Informatik, 2016.

8. R. Chadha, P. Madhusudan, and M. Viswanathan. Reachability under contextual
locking. In TACAS, volume 7214 of LNCS, pages 437–450, 2012.

9. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks. ACM
Trans. Program. Lang. Syst., 19(5):726–750, 1997.

10. B. Courcelle. On constructing obstruction sets of words. Bulletin of EATCS, 1991.

11. G. Delzanno. Parameterized verification and model checking for distributed broad-
cast protocols. In ICGT’14, volume 8571 of LNCS, pages 1–16. Springer, 2014.

12. A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar. Model checking
parameterized asynchronous shared-memory systems. Formal Methods in System
Design, 50(2-3):140–167, 2017. Journal version of CAV’15.

13. E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS’03,
pages 361–370, 2003.

14. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS’99, pages 352–359. IEEE, 1999.

15. J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous
shared-memory systems. J. ACM, 63(1):10:1–10:48, 2016. Journal version of
CAV’13.

16. K. Etessami. A note on a question of Peled and Wilke regarding stutter-invariant
LTL. Inf. Process. Lett., 75(6):261–263, 2000.

17. M. Fortin, A. Muscholl, and I. Walukiewicz. On parametrized verification of
asynchronous, shared-memory pushdown systems. CoRR, abs/1606.08707, 2016.

18. M. Fürer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In Logic and Machines:
Decision Problems and Complexity, Proceedings of the Symposium ”Rekursive
Kombinatorik”, pages 312–319, 1983.

19. S. A. German and P. A. Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992.

20. M. Hague. Parameterised pushdown systems with non-atomic writes. In FSTTCS’11,
LIPIcs, pages 457–468. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

21. V. Kahlon. Parameterization as abstraction: A tractable approach to the dataflow
analysis of concurrent programs. In LICS’08, pages 181–192. IEEE, 2008.

22. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via
locks. In CAV, volume 3576 of LNCS, pages 505–518, 2005.

23. A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In CAV’10, volume 6174 of LNCS, pages 645–659. Springer,
2010.

24. Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Network invariants in action. In
CONCUR’02, LNCS, pages 101–115. Springer, 2002.

25. S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized
concurrent programs using linear interfaces. In CAV’10, volume 6174 of LNCS,
pages 629–644. Springer, 2010.

26. S. La Torre, P. Madhusudan, and G. Parlato. Sequentializing parameterized
programs. In FIT’12, volume 87 of EPTCS, pages 34–47, 2012.

27. S. La Torre, A. Muscholl, and I. Walukiewicz. Safety of parametrized asynchronous
shared-memory systems is almost always decidable. In CONCUR’15, volume 42 of
LIPIcs, pages 72–84. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

28. P. Lammich and M. Müller-Olm. Conflict analysis of programs with procedures,
dynamic thread creation, and monitors. In SAS, volume 5079 of LNCS, pages
205–220, 2008.

29. P. Lammich, M. Müller-Olm, H. Seidl, and A. Wenner. Contextual locking for
dynamic pushdown networks. In SAS, pages 477–498. Springer, LNCS 7935, 2013.

30. P. Lammich, M. Müller-Olm, and A. Wenner. Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In CAV, pages 525–539. Springer, LNCS
5643, 2009.

31. A. W. Lin and P. Rümmer. Liveness of randomised parameterised systems under
arbitrary schedulers. In CAV’16, volume 9780 of LNCS, pages 112–133. Springer,
2016.

32. A. Muscholl, H. Seidl, and I. Walukiewicz. Reachability for dynamic parametric
processes. In VMCAI’17, volume 10145 of LNCS, pages 424–441. Springer, 2017.

33. K. S. Namjoshi and R. J. Trefler. Analysis of dynamic process networks. In
TACAS’15, LNCS, pages 164–178. Springer, 2015.

34. D. A. Peled and T. Wilke. Stutter-invariant temporal properties are expressible
without the next-time operator. Inf. Process. Lett., 63(5):243–246, 1997.

35. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Trans. Program. Lang. Syst. (TOPLAS), 22(2):416–430, 2000.

	Model-checking linear-time properties of parametrized asynchronous shared-memory pushdown systems

