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Quality contrai by attribute (2], (7] may be used with grain lots in order to detect GMO. But usually the contrai cannot be made on each grain separately. The presence of GMO is rather tested in groups of grains the size of which is an important parameter which can be used to find a cost optimal testing scheme among those which give acceptable buyer and seller risks. This group contrai has been studied for virus or bacterium detection in grains by the Elisa method (4],[3Jand is advocated by (6] for GMO detection. But no optimisation method to select the cheapest testing scheme has yet been described.

Given a cost function depending on the number of groups to analyse and of the total number of grains, we describe in this paper a practical way to get the less expensive testing scheme keeping both the consumer and the producer risks below a predetermined threshold.

Introduction

GMO control is compulsory in numerous countries including those of the European Union. Since tîe introduction of nove! food and ingredient 258/97/EC regulation, ail foods containing GMO or •o erived compounds should be labelled above a 1 % threshold of fortuitous presence in each ingredient (:-egulation 49/2000/EC).

GMO detection is generally made either through a protein specific of the GMO trait, or by PCR amplification and subsequent detection of the corresponding DNA sequence. ln many cases, the result of this detection is a quantitative response, e.g. the Ct in real time quantitative PCR, which can be used, by comparison to known standards, to get an evaluation of the GMO concentration. But doing that rigorously implies a good knowledge of the distribution of this response and of the factors i:,fiuencing it. For instance since test samples and standards have been extracted separately, it is e ssential to know the variability induced by the extraction to evaluate the induced errors.

An easier and more robust way of dealing with such a response is to use it only to detect the presence of GMO (6]. Once a representative sample from the grain lot inspected has been collected, one or several subsamples of it are ground and analysed. For each analysed subsample, the result is t:"'len "yes, it contains the searched GMO" or "no, it does nof'. This yes or no result is known in quality contrai as an attribute of the subsample. The control is then made from the attributes of the different subsamples.

Following (6], we distinguish between "sampling' and "testing' plans. The sampling plan is the physical procedure used to form a representative sample from a bulk load of grains. Weil established such sampling plans are available from GIPSA, Grain Inspection, Packers, and Stockyards Administration of USDA (1 OJ and we don't consider them here. Once such a sample, thought to be as representative as a completely random sample, has been obtained, subsamples are taken and analysed do detect GMO. The way this is done is the testing plan. Severa! testing plans using the control by attribute of the subsamples are proposed in [6). Similar testing plarrs had been described previously for the detection of viruses or bacteria by [START_REF] Maury | Group analysis using ELISA: determination of the level of transmission of Soybean Mosaic Virus in soybean seed[END_REF], [START_REF] Maury | Seed certification for viruses. ln: Plant virus, disease control[END_REF]. The subsamples are called "pools' in one case (6), "groups' in the other [START_REF] Maury | Group analysis using ELISA: determination of the level of transmission of Soybean Mosaic Virus in soybean seed[END_REF], but the approaches described in these articles are essentially the same. Following (4) we shall refer to this kind of control as group analysis.

Testing schemes using the control by attributes are also recommended by GIPSA and used by numerous seed producers and grain exporters. ln [START_REF] Gipsa | Sampling and Testing Recommendations for the Detection of Cry9C Protein in Hybrid Seed Corn[END_REF], such a control is described and recommended for the detection of Starlink, a maize developed by Aventis CropScience which produces a protein Cry9C with insecticidal properties effective in controlling the European corn borer and which was approved for use as animal feed only. ln that case, the GIPSA proposai to check that the lot does not include Starlink kernels is to ground and test enough grains to give the buyer, if no GMO is found in them, a very low probability of accepting a lot with an unacceptable GMO rate. For instance if a p-.roportion above 0.3% is considered unacceptable, 2300 grains have to be used to get a 0.1 % prob.ability of accepting a lot reaching this 0.3% GMO rate. Since detection is made in that case through the expressed protein Cry9C, it is recommended to perform the analysis on separate subsamples of sf.ze -100 insuring that even 1 GM grain in the subsample is reliably detected. The lot is accepted if n::me of the subsamples contains GMO. Thus the GIPSA procedure also uses subsamples and their a~rib'Jtes, but the size of these subsamples is only dictated by the limit of the analytical method of d-etection and does not take into account the seller risk to see his lot refused when there is a slight fortuitous GMO presence. ln this paper the seller and buyer risks are both taken into account. The testing plans studied are t.ased on the simple or double control by attributes [START_REF] Schilling | Acceptance sampling in quality contrai[END_REF]. They are called single-stage or double stage testing by [6). For each of them, we describe a practical algorithmic way to get the cheapest testing p :an keeping both the buyer and the seller risks below a predetermined level. A similar optimisation is done by a program like (5) for ordinary quality control , but the approach is complicated here by the fact that one can play to optimise on the size of the subsamples as well as on their number. Moreover i, ï double contrai, the size need not be the same in the first and second stage. Modifying this size t ,etween the two stages can bring a lot more flexibility and consequently allow an important economy.

As indicated by its name, double control proceeds in two stages. A few subsamples are first tested. A second more important set of subsamples is then tested only if the first results leave some doubt. Since in many cases the first tests are conclusive, this double control may achieve the same risk c::mtrol with a cost far smaller than the simple control which test ail subsamples simultaneously.

These simple and double controls are described more precisely in section 2, the buyer and seller risk constraints in section 3. Section 4 presents the cost function to minimise. Section 5 then oescribes a minimisation algorithm for simple control first, then for double contrai. The results are it lustrated by some operating characteristic curves (figure 4). Their dependance on the cost of the k ernel nature, cost which is higher if the grains are commercial seeds, and much higher with breeder's seeds, clearly appears.

Simple and double control

ln a simpre control. N groups of n grains are separately ground and analysed to determine if they are GMO positive or not. If there are X out of the N groups including GMO, the GMO proportion is estimated by X/N and the lotis accepted if X SA, refused if X > A, where Ais a predetermined acceptance threshold.

As already mentioned, it may be more economicar to use a double contrai instead. First N1 groups of 11 1 grains are tested. The lot is accepted if X 1 S A 1 where Xi is the number of groups including GMO and .4 1 a predetermined threshold. If X 1 ;::: R 1 , where Ri is a predetermined rejection threshold, the lotis refused. ln between, that is if .4 1 < X 1 < R 1, N2 new groups are tested. The lot is men accepted if X 2 S A 2 (Xi), where X 2 is the number of those N2 new groups which include GMO and .•h(X 1 ) a predetermined threshold. The function A 2 : X1 i--+ A-2{X 1 ) giving for each value of X 1

the acceptance threshold at the second step must be a decreasing function of X 1 because the bigger ès X 1 , the smaller must be X 2 to compensate.

Buyer and seller risks

The aim of a control is to insure the buyer that the lot is refused with high probability whenever the proportion of GM kernels is above a non tolerable threshold Pnt, called Low Quality Level_(LQL) (X" Consumer Quality Level (COL) in quality control. But for the seller sake, there must be also a high probability to accept if the GMO proportion is below a tolerable threshold Pt called Acceptable Ouality Level (AOL) or Producer Qality Level (POL) in quality control. Of course, the tolerable threshold must be smaller than the non tolerable one, that is Pt < Pnt, otherwise there cannot be any agreement between the buyer and the seller.

The buyer requirement can thus be formalised by the inequality Prob (acceptance I Pnt) ~ /3

(1)

which means that the risk for the buyer to accept the lot if the GMO proportion reaches the non tolerable threshold must be smaller than /3. Similarly the seller requirement is expressed by the in equality

Prob (refusai I Pt) ~ a (2)
meaning that his risk to refuse if the GMO proportion is the tolerable one Pt does not exceed a. These maximum tolerated risks /3 and a are called buyer and seller risks respectively.

The choice of Pnt , f3, Pt , a de pends on many considerations: risk for humans, risk for environ ment, oegree of purity that can be obtained, nature of the kernels (commercial seeds, basic seeds, breeder's seeds, grain for human food, for animal feed, etc ... ). Once there is an agreement between contractors on their choice, the problem is to find the testing scheme leading to a minimal cost among tiïose which satisfies the constraints ( 1) and ( 2). This cost mainly depends on the number of tests and kernels. ln the next section, its expression is formalised for the two kinds of control considered, the simple and the double.

Cost function

We let C 9 be the cost of testing one group, that is the cost of the whole sequence of operations t.;.Sed to detect GMO in this group (grinding, protein or DNA extraction, immunological or PCR metiïod). Since in simple control there are N such tests, the global cost of test is NC 9 . Toit must be added the cost of the kernels making up the subsamples which strongly depends on their nature ( ::>rdinary grains, commercial seeds, breeder's seed . .. ). This cost is CkNn if Ck is the cost of one kernel. The whole cost therefore takes the form (3) 1-: is always possible to assume that Cg = l, that is to take the test cost as unit price. The cost Ck is t"1en relative to this test cost. For instance Ck = 0.001 if the price of one kernel is 1/1000 of the test price, or equivalently if the cost of a test is equivalent to the cost of 1000 grains. ln double control, the cost is random since the second step only occurs if A 1 < X 1 < R 1 , hence ' N ith a probability denoted by Prob(step 2lp) which depends on the real GMO proportion p. lt is the expectation of this cost for a given p which has to be optimised. This expectation is

C = C(N1,n1) = C 9 N1 + CkN1n1 + Prob(step 2lp) C(N2,n2) + Prob(step 2 jp) (CgN2 + CkN2n2) (4)
where C is defined as in simple control by [START_REF] Maury | Seed certification for viruses. ln: Plant virus, disease control[END_REF]. ln this form it is assumed that the N 2 n 2 kernels needed for the second step have to be paid only if this second step occurs. ln practice, it may be n ecessary to get and pay the N 2 n 2 kernels of the second stage even if they remain unused, in order b avoid a second sampling in the lot and because it may be difficult to return them . The cost then t:akes the following form [START_REF] Qalstat | Logiciel pour PC[END_REF] Though we consider here only the first form (4) of the cost, it is not difficult to adapt the methodology ro the second form.

The parameter p appearing in (4) and ( 5) is unknown. To get an idea of how the optimal testing scheme depends on it, two values Pt and Po = pt/10 will be given toit in this paper. Similarly, the ratio Ck/C 9 giving the cost of a grain relatively to the cost of analysis of a subsample will also be given two values 0.001 and 0.01. The cost defined by ( 3) and ( 4 

Case of the simple control

Let p be the proportion of GM kernels in the lot. The sample used for the test is assumed to be representative of the lot so that each kernel in it has probability p to be GMO, independantly of the other kernels. The probability that no kernel is GMO in a group of n kernels is (1p)n and consequently the probability that a group contains at least one GM kernel is p = l -(l -pt. [START_REF] Schilling | Acceptance sampling in quality contrai[END_REF] Tne number X of groups among the N including GM kernels follows a binomial law B(N,P) so that the acceptance and refusai probabilities are respectively

A Prob(X ~ Alp) = ~ (~)P 20 (l-P)N-z, N Prob(X > Alp) = 1 -Prob(X ~ Alp) = L ( ~) P 20 (1 -P)N-z . z=A+l (8)
The buyer requirement (1) is that the acceptance probability is smaller then f3 when p = Pnt, the s~ller one (2) that the refusai probability is smaller than a: when p = Pt:

Prob(X ~ Alpnt) ~ /3, Prob(X > AIPt) ~ a: . (9)
These probabilities are given by [START_REF] Gipsa | Sampling and Testing Recommendations for the Detection of Cry9C Protein in Hybrid Seed Corn[END_REF] where P takes the corresponding values Pnt and Pt:

Pnt = 1 -(1 -Pntt , Pi = 1 -(1 -v t) n.
The problem is to find N, n and A minimising (3) and satisfying the constraints [START_REF] Gipsa | GIPSA. Grain Inspection Handbook, Book 1, Grain Sampling[END_REF].

Let us first consider fixed values of N and n. lt is easy to determine the acceptance numbers A 1 -sading to a consumer risk smaller than {3, if any. They are the integers A satisfying I'"' there is at least one such integer, we denote by A max the greatest of them, defined by

Prob(X ~ ÂmaxlPnt) ~ f3, Prob(X ~ 1 + AmaxlPnt) > /3.
Similar1y the acceptance numbers A giving a producer risk smaller than a: are defined by 1/\/e denote by Amin the smallest one defined by Prob(X ~ AminlPt) ~ 1 -a:, Prob(X ~ Amin -llPt) < 1 -a:. 10) is satisfied at least for A = 0, then .the A satisfying both the buyer and seller constraints [START_REF] Gipsa | GIPSA. Grain Inspection Handbook, Book 1, Grain Sampling[END_REF] are those lying between these two values: Amin ~A~ Amax• To illustrate the methodology, we adopt in the sequel of this article the following values for the parameters defining the constraints: Pnt = 1%, /3 = 5%, Pt= 0.2%, a:= 5%.
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Note that the 1% value for Pnt is the current European threshold for food labelling.

For these values, figure 1 represents the evolution of Amax ( +) and Amin {_) in function of N for n = 300. For a fixed n, the cheapest choice of N compatible with the constraints ( 9) is the smallest iinteger 1 Y such that Amin ~ Amax, that is such that _ is below + or at the same level. Any integer value between Amin and Amax is then valid for A. ln the case of the figure 1 where n = 300 and the constraint parameters are defined by ( 14), the smallest N is 7 and for it Amin = A max = 5 so that n ecessarily A = 5.

Tne figure suggests the following algorithm to find the smallest N associated with a given n. The difference Amax -A min is negative for small values of N (N < 7), then oscillates around O in a small range of values of N (7 ~ N ~ 11) and finally become positive for larger values of N (N > 11). This p rompts to find a value of N such that A min = Amax by a dichotomie process and then to look for the minimum N such that A mi n = A max in the vicinity of the found solution. ln the example of figure 1, the dichotomie process gives as first solution N1 = 11, and the comput ation of A max and A min for the values of N below 11 then gives the solution N = 7. Sorne preliminary c omputations led to the conclusion that this algorithm works quite generally provided about 20 values o f JY are explored below the first minimum found by the dichotomie process.

Such a search for N is very fast and can be easily done for ail feasible values of n. This allows t :::> draw a graph like the one in figure 2 giving for each n the minimum acceptable N and the corresponding value of A . Note that about 20 seconds were necessary on a 366 Mhz microcomputer to get !:i'le table giving for each n between 50 and 1000 the corresponding N , table from which the figure is made.

The minimum acceptable number of groups N is always greater or equal to 7. The smaller value o f n leading to this minimum is 204. The corresponding acceptance threshold is A = 4.

The corresponding testing scheme tests the presence of GMO in 7 groups of 204 kernels and accept the lot if the number X of groups where GMO is detected is below 4: X ~ 4. This scheme guarantees that the buyer risk to accept a lot with more than 1 % GMO and the seller risk to reject a lot with less than 0.2% GMO are both below 5%. Note that this testing scheme does not minimise the number Nn of kernels used and is therefore not always the optimal choice. Consider for instance the two values of Ck introduced in section 4. If 

C" = C 9 /

Case of the double control

The double control allows to reach the same risk targets with a much lower cost. Let P1 = 1 -(1 -;,) "' and P 2 = 1 -(1-p)" 2 . The probability to accept the lot at the first step is

Prob(X 1 s A1 IP) = t (~' :)Pt 1 (1-Pi)1"'i -xi . x1=0 (15)
There is a second step only if X 1 takes a value x1 such that A1 < x1 < Ri. ln that case the lotis accepted if X 2 s .4 2 (x1), hence with probability

Prob(X 2 s A 2 (xi) lp) = :t) (~:)pf2(l -A)N2-x2 . ( 16 
)
As the probability to get X1 = x 1 and 

X 2 s A 2 (xi) is Prob(X1 = xilp) Prob(X2 s A2(x1) lp), the p robability of acceptance when A 1 < X 1 < R 1 is R1 -l L Prob(X1 = x1 IP) Prob(X2 S A2(x1) lp)

Finding an optimal double control scheme

To determine an optimal double contrai scheme in classical quality control, Daudin et al. [START_REF] Daudin | Plans de controle double optimaux[END_REF] first vary the parameters of the testing plan continuously in lR, then select integer values in the vicinity o: the real optimal solution. ln GMO control, the cost is strongly dependant on the number of tested grnups. Therefore only small values of N 1 and N 2 have to be examined and it is possible to work dï rectly on sets of integer parameters. The number of possible values for n 1 , n 2 is however too ir.iportant to examine ail of them. So the optimisation is carried out in two steps. First for each possible s,-at of parameters T = (N 1 ,A 1 ,R 1 ,N 2 ,A 2 ), the optimal couple (n1 ,112) satisfying the constraints, if a.,y, is looked for and the associated cost C(T) computed. Then the optimal set T is obtained by e::::,mparison between these C(T) for ail possible T.

Figure 3 illustrates the constraints on (11 1 ,n 2 ) for two choices of T = (N1 ,A1 ,Ri ,N2,A2), with the c::::,nstraint parameters {14). To satisfy the buyer and seller constraints

-1 e point ( n 1 ,n 2 ) must be above the curve B (Buyer curve) defined by P 0 (pnt) = f3 and below the cJrve S (Seller curve) defined by 1 -P 0 (pt) = a. If the area thus defined is empty as in figure 3.ii, tïere is no couple (n 1 ,n 2 ) satisfying the constraints. When it is not empty as in figure 3.i, the following s:ep is to find the couple giving the minimum cost.

,.. T o satisf)• the buyer constraint, the couple (n1 ,n2) must be above curve B. lt must be below curve S to satisfy :lie seller constraint. Thus B and S are respectively the bottom and top borders of the constraint area. Figure i) illustrates a situation where this admissible area, below S and above B, is not empty while figure ii) illustrates on :.he contrary a situation v.here the buyer and seller constraints cannot be simultaneously satisfied.

The figure 3 suggests the following specific algorithm to determine if the constraint area is empty or not. The minimum of the difference curve D = B -S is looked for. This difference D appears to be first decreasing, then increasing in function of n 1 . lt is easy to find its minimum by a dichotomie process, as the point where its derivative in function of n 1 is zero. If B is below S at this minimum, there is a couple (n 1 ,n 2 ) satisfying the constraints and the constraint area, bordered at its top by S and at its bottom by B, is not empty. ln that case, the value of n1 corresponding to the point at the extreme left of the constraint area can be easily found as the value such that B -S = O.

For n 1 tixed, it appears from (6) that the optimum n2 is the smallest one compatible with the constraints, that is the one associated to n 1 on the B curve. So the following optimisation step is to find the minimum cost along the buyer curve B.

ln most cases, the cost C given by (6) appears to be first decreasing, then increasing when moving from the left to the right on the buyer curve. A dichotomie process can be used again to find the zero o~ its derivative dC / dn 1 with respect to n 1 . The corresponding point on the B curve gives the searched optimum. ln some case however, it gives only a local optimum but it was observed that this occurs o:ily for parameters N 1 , A 1 , R 1 , N 2 , A 2 which are far from the optimum.

When C" = O and p small, the derivative dC /dn 1 is already positive at the leftest point of the ex>nstraint area. This point is then optimal. This is for instance the case in figure 3 For p sufficiently small, this quantity increases with P hence with n 1 and so does C.

lt is crucial in the sequence of operations leading to the optimum choice of (n 1 ,n2) to have an 1=tficient way of determining the n 2 associated to a given n 1 on the Sand B curves. These values are found as the solutions of the equations 1 -Pa(Pt) = a and P 0 (pnt) = /3. lt can be easily proved that f.:lr fixed values of the other parameters, the acceptance probability P 0 (p) is a decreasing function of r. 2 • This result can be used to salve efficiently these equations in n 2.

Example. The algorithm is used with the parameters defined by ( 14). The number of groups N1 is ,,aried between 1 and-! and .4 1 , Ri among all possible compatible sets of values. Then N2 is varied between 1 and 10 and .4 2 among all compatible decreasing acceptance function A 2 .

There are 6017 possible combinations (Ni ,Ai ,R 1 ,N 2 ,A 2 ) to explore. For 3899 of them, D = B -~ is negative at its minimum and so there exists a couple (ni ,n2) satisfying the buyer and seller c onstraints. For each of these 3899 combinations, the couple (n 1 ,n2 ) at the left of the constraint area, i.e. with minimum n i , is first looked for. lt appears that this couple minimises the cost function C(p,O) ;iven by (6) for the two values Pt and Po of p introduced in section 4.

Tuen optimas are searched along the B curve for the cost functions C(p,Ck) where p takes the 1 ,alues Po = 0.02%, p, = 0.2% and Ck the values 1/1000, 1/100 (Ck is expressed as in (6) with the . :.irice of the group test as unit price, i.e. C 9 = 1).

The whole search take approximately 40mn on a 366 Mhz microcomputer, i.e. about 30mn to get tïe 3899 admissible conditions with the couple (n 1 ,n 2 ) at the left of the constraint area, then about :.omn to get the corresponding optimal ni for the four costs with Ck :j; O. ln many cases, it can be i ,imediately checked that these last ones coïncide with the former value ni. Table 2 gives the optimal :esting schemes thus obtained. Note that most of the time is spent on condition N 1 = 4 which appears i :,teresting only to minimise the cost computed with p = Pt, C" = 0.01.

The statistical properties of a testing scheme are well summed up by the operating characteristic curve representing the acceptance probability P 0 (p) in function of p. This probability is given by (17) in the double contrai, by [START_REF] Gipsa | Sampling and Testing Recommendations for the Detection of Cry9C Protein in Hybrid Seed Corn[END_REF] in the simple one. Figure 4 gives this curve for some simple and double :esting schemes. The double control scheme 4 in this figure uses only one test in the first step and goes to step 2 with probability 0.06 if p = p 0 = 0.0002 and 0.49 if p = Pt• lt is far less expensive than :he simple contrai optimal testing scheme 3•with N = 7 which gives a similar operating characteristic curve. The simple contrai 1 would be adopted to limit to 5% the risk of accepting a lot with 1 % GMO content if, like in [START_REF] Gipsa | Sampling and Testing Recommendations for the Detection of Cry9C Protein in Hybrid Seed Corn[END_REF], one does not care about the seller risk.

Thus an appropriate choice of a testing scheme by attribute can lead to a quite economical contrai :aking into account both the buyer and seller requirements. ln some cases, this testing scheme can iead to acceptance even if some tested subsamples are GMO positive. This tact must be explained to users as perfectly coherent with the agreement reached by sellers and buyers on the choice of a non zero tolerable threshold Pnt . These testing schemes have still to be compared to testing schemes using the very sensitive quantitative response provided by quantitative real time PCR, which could be more adequate in some cases but need more work to know which factors are influencing the distribution of the quantitative response. -1 -Sorne testing scheme operating characteristic curves with constraint parameters (14} ~ and 5 are the double contrai testing schemes respectively minimising the costs C(0.02%,0.001) and C(0.2%,0.001) onder the buyer and seller constraints defined by (14) (see table 2). 3 gives the cost optimal simple contrai when C k/C 9 = 1/1000 under the same constraints (see table 1). The simple contrai testing scheme 1 takes only the :iuyer constraint into account, while the testing scheme 2 shows what can be achieved with a simple contrai if no ::::iore than 3 groups are to be tested.
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  FIG.-1 -Sorne testing scheme operating characteristic curves with constraint parameters (14}

  1000, this scheme minimises the cost function[START_REF] Maury | Seed certification for viruses. ln: Plant virus, disease control[END_REF] but if Ck = C 9 /100 then the cheapest choice is 1\' = 8, n = 164, A = 4. Table1illustrates this point. = N + 0.00lNn 19.1 15.4 10.3 9.3 10.6 10.8 10.8 8.4 8.5 10.9C(N,11) = N + O.OINn 28.8 28.0 21.6 21.1 25.2 27.0 27.3 21.3 21.6 27.8 L~B . 1 -Minimum N and associated costs for some values of n, constraints parameters (14} E.xample: if each group bas n = 204 grains, the buyer and seller requirements can be simultaneously satisfied only if N ~ 7, and for N = 7, A must be equal to 4. However, if the grain cost is e.g 1% of a one group test cost, h-e. nce proportional to N + O.OlNn, then it is cheaper to use N = 8 groups of 164 grains than N = 7 groups of
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-:-be graphie gï,•es an information similar to that of table 1. The constraints remain those defined by (14). For ::. fixed n in abscissa, the symbol * gives the minimum acceptable N, the symbol . the corresponding A. The 2.ccumulation of these symbols forms respectively thick (*) and t hin ( . ) lines. The minimum N of 7 is obtained -•hen n = 204 as in table
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  .i. The optimum is obtained for ni = 393, n 2 = 330 when Ck = O and p = p 0 . To explain this, note that when Ck = 0, the C:)St (6) becomes C(p,O) =Ni+ Prob(step 21p)N 2 . lt does not depends on n 2 and its dependance on r. 1 is only through Prob(step 21 p) which can be written

	R 1 -l Prob(step 2 lp) = L ci	1 Pi(1-P)Ni-i, where P = l -(1 -p)n' .	(19)
	j=A1 + l		

  Optimal testing parameters for some cost function C(p,Ck) in double contrai E.xample: if the me.an GMO rate is p = 0.02% and the cost of a kernel about 1 % of the cost of one group test, the more economical double contrai tests first 1 group of 314 grains. The lot is accepted if the result is negative, o-:hel"\\;se 9 other groups of 182 grains are tested and the lot accepted only if Jess than 4 of them are GMO p,:isiti\'e.
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		C(0.2%,0.01)	4 155	1	5	5 147 (2,1,0)
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