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ANALYSIS OF NON SCALAR CONTROL PROBLEMS FOR
PARABOLIC SYSTEMS BY THE BLOCK MOMENT METHOD*

FRANCK BOYER' AND MORGAN MORANCEY?

Abstract. This article deals with abstract linear time invariant controlled systems of parabolic
type. In [Annales Henri Lebesgue, 3 (2020), pp. 717-793], with A. Benabdallah, we introduced the
block moment method for scalar control operators. The principal aim of this method is to compute
the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in
particular in the case when spectral condensation occurs. The purpose of the present article is to
push forward the analysis to deal with any admissible control operator. The considered setting leads
to applications to one dimensional parabolic-type equations or coupled systems of such equations.

With such admissible control operator, the characterization of the minimal null control time is
obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the
control space) followed by a constrained optimization procedure of the cost of this resolution. This
leads to essentially sharp estimates on the resolution of the block moment problems which are uniform
with respect to the spectrum of the evolution operator in a certain class. This uniformity allows the
study of uniform controllability for various parameter dependent problems. We also deduce estimates
on the cost of controllability when the final time goes to the minimal null control time.

We illustrate how the method works on a few examples of such abstract controlled systems and
then we deal with actual coupled systems of one dimensional parabolic partial differential equations.
Our strategy enables us to tackle controllability issues that seem out of reach by existing techniques.

Key words. Control theory, parabolic partial differential equations, minimal null control time,
block moment method

AMS subject classifications. 93B05, 93C20, 93C25, 30E05, 35K90, 35P10
1. Introduction.

1.1. Problem under study and state of the art.
In this paper we study the controllability properties of the following linear control
system

y'(t) + Ay(t) = Bu(t),

1.1
(1) y(0) = yo.

The assumptions on the operator A (see Section 2.1) will lead to applications to
linear parabolic-type equations or coupled systems of such equations mostly in the
one dimensional setting. In all this article the Hilbert space of control will be denoted
by U and the operator B will be a general admissible operator.

The question we address is the characterization of the minimal null control time
(possibly zero or infinite) from yo that is: for a given initial condition yg, what
is the minimal time Ty(yo) such that, for any T > Ty(yo), there exists a control
u € L2(0,T;U) such that the associated solution of (1.1) satisfies y(T) = 0. A
more precise definition of the minimal null control time is given in Definition 2.1 in
Section 2.1.1.
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For a presentation of null controllability of parabolic control problems as well as
the possible existence of a positive minimal null control time for such equations we
refer to [4] or [9, Section 1.1] and the references therein. Such a positive minimal
null control time is due either to insufficient observation of eigenvectors, or to con-
densation of eigenvalues or to the geometry of generalized eigenspaces, or even to a
combination of all those phenomena. Let us underline that this phenomenon is com-
pletely unrelated to the minimal control time arising from constraints on the state
or on the control as studied for instance in [31], or to the one arising in hyperbolic
problems due to intrinsic finite speed of propagation in the equation.

Under the considered assumptions on A, the problem of characterizing the mini-
mal null control time has been solved for scalar controls (dimU = 1) in [9] where the
block moment method has been introduced in that purpose. The aim of the present
article is to push forward the analysis of [9] to extend it to any admissible control
operator. The new difficulties come from the interplay between spectral condensation
phenomena and the particular geometry of the control operator.

To present the general ideas, let us assume for simplicity that the operator A*
has a sequence of real and positive eigenvalues A and that the associated eigenvectors
o, for A € A, form a complete family of the state space (the precise functional setting
is detailed in Section 2.1). Then, the solution of system (1.1) satisfies y(7') = 0 if and
only if the control v € L?(0,T;U) solves the following moment problem

T
(1.2) / e M (T — 1), B )y dt = —e T (yo, 90),  VYAEA.
0

o Solving moment problems associated with a scalar control operator.
In the scalar case (U = R), provided that B*¢, # 0, the moment problem reduces
to

T
(1.3) / e Mu(T —t)dt = —e AT <yo, qu)‘ > , YA€ A.
0 éx

This problem is usually solved by the construction of a biorthogonal family (gx)xea
to the exponentials

{te (0, T) e ™M; AeA}
in L?(0,T;U), i.e., a family (gx)xea such that

T
/ o (t)e Mt = 6y, YA 1€ A.
0

From [36], the existence of such biorthogonal family is equivalent to the summability
condition

(1.4) > % < +oo0.

REMARK 1.1. This condition (which will be assumed in the present article) is the
main restriction to apply the moment method. Indeed, due to Weyl’s law it imposes
on many examples of partial differential equations of parabolic-type a restriction to the
one dimensional setting. However, in some particular multi-dimensional geometries,
the controllability problem can be transformed into a family of parameter dependent
moment problems, each of them satisfying such assumption (see for instance [8, 3, 15]
among others).
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With such a biorthogonal family, a formal solution of the moment problem (1.3)
is given by

w(T —t)=— Z e AT <y0, Bf;)\ > (), te(0,7).

AEA

Thus if, for any yo, the series defining u converges in L?(0,T;U) one obtains null
controllability of system (1.1) in time T. To do so, it is crucial to prove upper bounds
on ||Q>\||L2(O,T)-

Suitable bounds on such biorthogonal families were provided in the pioneering
work of Fattorini and Russell [21] in the case where the eigenvalues of A* are well
separated i.e. satisfy the classical gap condition: inf {|A — u|; A\, u € A, X # u} > 0.
When the eigenvalues are allowed to condensate we refer to the work [5] for almost
sharp estimates implying the condensation index of the sequence A. A discussion on
other references providing estimates on biorthogonal families is detailed below. These
results have provided an optimal characterization of the minimal null control time
when the eigenvectors of A* form a Riesz basis of the state space (and thus do not
condensate).

However, as analyzed in [9], there are situations in which the eigenvectors also
condensate and for which providing estimates on biorthogonal families is not sufficient
to characterize the minimal null control time. In [9], it is assumed that the spectrum
A can be decomposed as a union G of well separated groups of bounded cardinality.
Then, the control u is seeked in the form

w(T —t) =Y valt),

Geg

where, for any G' € G, the function vg € L?(0,T;U) solves the block moment problem

T
Myg(t)dt = e A 2 VA
/0 € UG( ) € Yo, B*(]SA 5 € Gv

T
/ e Mug(t)dt = 0, YA€ G.
0

(1.5)

This enables to deal with the condensation of eigenvectors: the eigenvectors (¢x)xea
are only assumed to form a complete family of the state space.

e Solving moment problems associated with a mon scalar control operator.

When the control is not scalar there are less available results in the literature. Here
again, these results rely on the existence of a biorthogonal family to the exponentials
with suitable bounds. For instance, in [6], null controllability in optimal time is proved
using a subtle decomposition of the moment problem into two families of moment
problems. In a more systematic way, one can take advantage of the biorthogonality

in the time variable to seek for a solution u of the moment problem (1.2) in the form

u(T 1) = = 3" e (4. 0n) n (1) o2

—.
Aeh 1B*éally

This strategy was introduced by Lagnese in [25] for a one dimensional wave equation

and used in the parabolic context for instance in [17, 2, 18, 3].

In the present article we deal with such general admissible control operators.
As the eigenvectors will only be assumed to form a complete family, for each initial

3
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condition g, we study its null control time for system (1.1) by solving block moment
problems of the following form

T
/ <VG(t)a€7’\tB*¢,\>U dt = (yo,e *Thy), VAEG,
(1.6) 0

T
/ (Vo (t),e B ¢x), dt =0, YA ¢ G.
0

Let us recall that, for pedagogical purposes, we have restricted this first introductory
subsection to the case of real simple eigenvalues. The general form of block moment
problems under study in this article is detailed in Section 2.2.

The strategy to solve such block moment problem and estimate its solution is
presented on an example in Section 1.3. Let us already notice that the geometry of
the finite dimensional space Span{B*¢, ; A € G} is crucial.

For instance, if this space is one dimensional, say generated by some b € U, the
strategy of Lagnese can be adapted if one seeks for Vi solution of the block moment
problem (1.6) in the form

VG(t) = UG(t)ba
where vg € L?(0,T;R) solves a scalar block moment problem of the same form
as (1.5).

If, instead, the family (B*¢x)req is composed of linearly independent vectors
then it admits a biorthogonal family in U denoted by (b3)ree. Then, one can for
instance seek for Vi solution of the block moment problem (1.6) in the form

Va(t) = va(t) (Z b;) :

A€G

where vg solves a scalar block moment problem of the form (1.5). An upper bound
of the minimal control time can then be obtained thanks to an estimate of the family
(b3)aec, but without guarantee of optimality.

In the general setting, taking into account the geometry of the observations of
eigenvectors to solve block moment problems of the form (1.6) is a more intricate
question that we solve in this article, still under the summability condition (1.4).

Let us mention that we not only solve block moment problems of the form (1.6)
but we also provide estimates on their solutions to ensure that the series defining the
control converges. These estimates will lead to an optimal characterization of the
minimal null control time for each given problem.

We pay particular attention to these estimates so that they do not directly depend
on the sequence A but are uniform for classes of such sequences. This is an important
step to tackle uniform controllability for parameter dependent control problems. Esti-
mates of this kind have already proved their efficiency in various contexts such as: nu-
merical analysis of semi-discrete control problems [2], oscillating coefficients [32], anal-
ysis of degenerate control problems with respect to the degeneracy parameter [17, 18],
analysis of higher dimensional controllability problems by reduction to families of one
dimensional control problems [8, 1, 3, 15] or analysis of convergence of Robin-type
controls to Dirichlet controls [11].

Another important feature of the estimates we obtain is to track the dependency
with respect to the final time 7" when 7" goes to the minimal null control time. As pre-
sented in Remark 2.8, this allows applications in higher dimensions (with a cylindrical
geometry) or applications to nonlinear control problems.

4
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o An overview of some estimates on biorthogonal families.

Finally, let us recall some classical results providing estimates for biorthogonal
families to a sequence of exponentials.

Under the classical gap condition, uniform estimates for biorthogonal families
were already obtained in [22] and sharp short-time estimates were obtained in [8].
In this setting, bounds with a detailed dependency with respect to parameters were
given in [19]. In this work, the obtained bounds take into account the fact that the
gap property between eigenvalues may be better in high frequencies. Similar results
were also obtained in [26].

Under a weak-gap condition of the form (2.4), that is when the eigenvalues can
be gathered in blocks of bounded cardinality with a gap between blocks (which is
the setting of the present article), uniform estimates on biorthogonal sequences follow
from the uniform estimates for the resolution of block moment problems proved in [9].
Similar estimates, but where the sharp dependency with respect to T" of the different
constants is tracked, were obtained in [24]. Using the strategy detailed in [12], the
estimates of [9] can also be supplemented with such dependency with respect to T
(see Theorem A.1). Let us mention that similar results were also obtained in [16] with
stronger assumptions, namely with a weak-gap assumption on the square roots of the
eigenvalues.

In the absence of any gap-type condition, estimates on biorthogonal families were
first proved in [5] involving the condensation index and then later in [3] involving a
local measure of the gap.

1.2. Structure of the article.

To ease the reading, let us give here the detailed outline of this article.

In Section 1.3 we detail, for a simple example, the obtained results as well as
our strategy of proof. This allows to explain the contents of this article without
introducing too many notations.

In Section 2.1, we detail the framework, assumptions and notations that will be
used throughout this article. The main results concerning the resolution of block
moment problems with a non scalar control are stated in Section 2.2. The application
of these results to the characterization of the minimal null control time is stated in
Section 2.3. We provide in Section 2.4 more explicit formulas to compute the minimal
null control time. We also deduce from our study some estimates on the cost of
controllability that are given in Section 2.5.

The results concerning the resolution of block moment problems are proved in
Section 3. The application of these results to the characterization of the minimal
null control time and the study of the cost of null controllability are then proved in
Section 4. More explicit formulas for the computation of the minimal null control
time are proved in Section 5.

Finally we apply these results to different examples. First we deal in Section 6
with academic examples. For these examples the computations are rather simple and
this allows to highlight the different phenomena at stake in this minimal null control
time study. We end this article with the analysis of null controllability for systems of
coupled linear partial differential equations of parabolic type in Section 7.

1.3. Our analysis on a toy system.

To highlight the ideas we develop in this article (without drowning them in tech-
nicalities or notations), let us present our strategy of analysis of null controllability
on an abstract simple example.

This manuscript is for review purposes only.



206 We consider X = L2(0,1;R)? and w C (0,1) a non empty open set. For a given
207 a > 0 we define

208 A= {)\k:,l = kQ, )\k’g = k2 + e_ak2 s k> 1},
209 and take (px)r>1 a Hilbert basis of L?(0,1;R) such that

210 inf .
0 ut llorllz2(wy >0

211 Let ¢p1 := (£k> and ¢p 2 1= <£ ) We define the operator A* in X by
k k

212 A bp1 = Mg 10k 1, A 2 = A 2Pk,2,
213  with
214 D(A*) = ; M qai A a}
(A") = ak,1Qk,1 + Ak 20k2 ; k,10%,1 T Ap 20k 2 < +00
k>1 k>1

215 The control operator B is defined by U = L?(0, 1;R) and
i 0
216 B:ueU'—>< )eX.
1,u

217 The condition infy>1 ||k z2(w) > 0 yields
218 (1.7) B*¢r1 = B*¢k,2 =1,k # 0, Vk > 1.

219 This ensures approximate controllability of system (1.1).

220 We insist on the fact that the goal of this article is not to deal with this particular
221 example but to develop a general methodology to analyze the null controllability of
222 system (1.1). The general assumptions that will be considered in this article are
223 detailed in Section 2.1.

224 o Let yo € X. From Proposition 2.1 and the fact that {¢g1, dr2; k > 1} forms a
225 complete family of X, system (1.1) is null controllable from yo at time 7T if and only
226 if there exists u € L?(0,T;U) such that for any k > 1 and any j € {1,2},

T

227 / eIt (W(T — 1), B )y dt = —e 97T (yo, i j) 5 -
0

228 Following the idea developed in [9], we seek for a control u of the form

229 (1.8) u(t) = — ka(T —t)

k>1
230 where, for each k > 1, v, € L?(0,T;U) solves the block moment problem

T
/ e Mt (o (t), B* b )y dt = e 9T (yo, dr i) i Vi € {1,2},
231 (1.9) 0

T
/ e (o (8), B Gne )y At = 0, VK # &, Vi € {1,2).
0
6
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233

236

e To solve (1.9), for a fixed k, we consider the following auxiliary block moment
problem in the space U

T

/ e Matu(t)dt = Qi g, Vi € {1,2},
0

(1.10) T

/ e Mty (t)dt =0, VK #k, Vj € {1,2},
0

where Q4 ; € U have to be precised. If we impose that Q1 and €y o satisfy the
constraints

(111) <Qk,j78*¢k7j>U = e_Ak’jT <y07¢k7j>X ) VJ c {172}7

we obtain that the solutions of (1.10) also solve (1.9). The existence of Qj, and
Q2 satisfying the constraints (1.11) is ensured by the approximate controllabil-
ity condition (1.7); however there exist infinitely many choices. A crucial point
is that, by orthogonal projection, there exists €1 and ;o in the space U, =
Span{B*¢y 1, B*¢r 2} satisfying the constraints (1.11).

Then, for any 4.1, Q.2 € Uy, since the space Uy, is of finite dimension, applying

the scalar results of [9] component by component leads to the existence of v, €
L?(0,T;U) satisfying (1.10). It also gives the following estimate

(1.12) ”vk”%Z(O,T;U) < CT,EGE)"“F(Qk,th,Q),
with 2
Qo —Q
F i (Qna, Q2) € U2 Qe |l + HM .
>\k,2 - >\k’1 U

Using (1.12) and minimizing the function F' under the constraints (1.11) we obtain
that there exists vy € L?(0,7T;U) solution of the block moment problem (1.9) such
that

(1.13)  wklZ2070) < Cree™t inf {F (1, Q2) 5 Qir, Q2 satisfy (1.11)}.

The corresponding general statements of the resolution of block moment problems
are detailed in Section 2.2 (see Theorem 2.4) and proved in Section 3. Actually using
a refined version of the results in [9] (see Theorem A.1) we obtain sharper results
including dependency with respect to 7.

e Now that we can solve the block moment problems (1.9), a way to characterize the
minimal null control time is to estimate for which values of T the series (1.8) defining
the control u converges in L?(0,T;U).

To achieve this goal, we isolate in the estimate (1.13) the dependency with respect
to T'. Notice that the function F' does not depend on T but that the constraints (1.11)
do.

For any £ > 1 and any Qy 1, Q2 € Uy we set

ﬁk,j = e/\’“'jTQk’j, Vj c {172}.

Then, there is equivalence between the constraints (1.11) and the new constraints

(114) <§k,j78*¢k,j>U = <y07¢k,j>x7 VJ € {172}
7
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Now these constraints are independent of the variable T'. From the mean value theo-
rem we obtain

_ ~ 2
~ 2 e 2 2TQ), o — =2 T()
o k2 —€ k,1
F(Q1,Q2) =H€ A’”'{‘FQmH +
U Ak2 — A1
U
2 Do — O ||
_ ~ _ k2 — Q1
S e 2)\k,1T HQk71” + 26 2>\k,2T 3 9
U Ak2 — Ak
e 2T _ o= AT L 2
+2 [0
Ak2 — k1 U

<2(1+ T2)6_2>"“*1TF(§~21€,1, £~2Ic,2)-

The general statement of this estimate is given in Lemma 4.1.
Plugging this estimate into (1.12) and optimizing the function F' under the con-
straints (1.14) yields

(1.15) lvellZ2 0,70y < Crce™ e 217 Cr(yo)
where C(yo) is the quantity, independent of T', given by
Q-

=2 0,0, € Uy satist
)\k)2_)\k’1 NEYARRYS] k Yy

)
(1.16)  Cr(yo) := inf{ HShHU -

U
(0,B"00s) = 0. drs)x Vi € {1,2}}.

Estimate (1.15) proves that for any time 7' > 0 such that

1
T > lim sup 2rklYo) Cr(yo)
k—+o0 2)\k,1

the series (1.8) defining the control u converges in L?(0,T;U). Thus, null controlla-
bility of (1.1) from yo holds for such T

We also prove that the obtained estimate (1.15) is sufficiently sharp so that it
characterizes the minimal null control time from yy as

1
(1.17) To(yo) = limsup M.
k—+o00 2/\k,1

The corresponding general statements regarding the minimal null control time
together with bounds on the cost of controllability are detailed in Section 2.2 (see
Theorem 2.5) and proved in Section 4.

o At this stage we have characterized the minimal null control time as stated in (1.17).
However to be able to estimate the actual value of Ty(yp) one should be able to
estimate the quantity C(yo) as defined in (1.16). This formula is not very explicit
and it does not get better in the general setting.

However, we notice that (1.16) is a finite dimensional optimization problem that
we explicitly solve in terms of the eigenelements of A* and their observations through
B*.
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Indeed the minimization problem (1.16) has a unique solution characterized by
the existence of multipliers my, mo € R such that for any Hy, Ho € U we have
(1.18)

~ -0 Hy—H
<H1,Ql>U+< 2 ! 2 ! > =m <HlaB*¢k,l>U+m2 <H27B*¢)k,2>U-
U

A2 — M1 Ak2 — A

Setting Hy = Hy = H for any H € Uy, implies
51 =m1 B dr,1 + maB ¢y 2.
Setting Hy = 0 and Hy = (Ag,2 — Ag,1)H for any H € Uy implies
Q, = miB*pp.1 + malB*dr o + ma(Apa — A1)’ B dra.
Getting back to the constraints (1.14) we obtain
19 (dryy) = Gon)
where the 2 x 2 matrix M is defined by
M = Gramy (B* ¢y 1, B*dk.2) + Gramy (0, (Ak2 — Ak,1)B ¢ 2) -

Setting Hy = Q and Hy = €y in (1.18) and using (1.19) impliy

t < (<yo,¢k,1>x> <m)>

. (Yo, Pr,2) ) " \ma2

_ <(<y07¢k,1>x> Mot <<yo,¢k,1>x)>
(Yo, Pr2)x )’ Yo, Pr2)x) /"

Thus, after computations, for the particular example we are considering here, the
obtained formula reads

1 © 2 €2ak2 @ 2
Cr(yo) = 75— <y0, ( k>> + 5 <Z/07 ( k>> :
||90k|‘%2(w) Yk) [ x ||‘Pk||2L2(w) 0 X

Then, from (1.17), it comes that the minimal null control time from X of this example
is given by

Qo — Oy

-2
) =[], + |5
«(v0) iy * A2 = Ak,

To(X) = a.

Notice, for instance, that this expression also gives that for a given yq if the set

teers (o (5)), 0}

is finite, then null controllability from yo holds in any positive time, i.e. Tp(yo) = 0.

We obtain different explicit formula depending on the configuration for the multi-
plicity of the eigenvalues of the considered block. The general statements of an explicit
solution of the corresponding optimization problem are detailed in Section 2.4 (see
Theorem 2.8 and Theorem 2.10) and proved in Section 5.

9
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2. Main results.

We state in this section the main results of this article concerning the resolution
of block moment problems and the application to the characterization of the minimal
null control time. We start by giving the functional setting and assumptions we use.

2.1. Framework, spectral assumptions and notations.

2.1.1. Functional setting.

The functional setting for the study of system (1.1) is the same as in [9]. For the
sake of completeness, let us briefly detail it. Unless explicitly stated, all the spaces
are assumed to be complex vector spaces.

We consider X a Hilbert space, whose inner product and norm are denoted by
(e,0) and [|e|| y respectively. The space X is identified to its anti-dual through the
Riesz theorem. Let (A, D(A)) be an unbounded operator in X such that —A generates
a C®—semigroup in X. Its adjoint in X is denoted by (A*, D(A*)). Up to a suitable
translation, we can assume that 0 is in the resolvent set of A.

We denote by X; (resp. X7) the Hilbert space D(A) (resp. D(A*)) equipped
with the norm ||z||, := ||Az| x (resp. ||z|;. := [|A*z||x) and we define X_; as the
completion of X with respect to the norm

(y,2)
lyll_y == sup ~Z—
2€X7 [ 1=

Notice that X_; is isometrical to the topological anti-dual of X7 using X as a pivot
space (see for instance [38, Proposition 2.10.2]). The corresponding duality bracket
will be denoted by (e,) ; ;. and satisfies

<y,cz>71)1* = 6<y,z>71,1* , Yy e X_1,Vz € X7 ,Ve e C.

The control space U is a Hilbert space (that we will identify to its anti-dual). Its inner
product and norm are denoted by (e, ), and |[e||; respectively. Let B: U — X_; be
a linear continuous control operator and denote by B* : X{ — U its adjoint in the
duality described above.

Let (XZ,|.]l,») be a Hilbert space such that X{ C X! C X with dense and
continuous embeddings. We assume that X is stable by the semigroup generated by
—A*. We also define X_, as the subspace of X_; defined by

(Y, 2) 11+
X oi=9yeX q;|yl_, = sup ———— < 4005,
zeXy HZ' o*
which is also isometrical to the anti-dual of X} with X as a pivot space. The cor-
responding duality bracket will be denoted by (e, e) Thus, we end up with the
following five functional spaces

—0,0"

XfcX;cXcX_,CcX_.

We say that the control operator B is an admissible control operator for (1.1) with
respect to the space X_, if for any T" > 0 there exists Cp > 0 such that

T 2
(2.1) / HB*@’(T’”A zHUdt <CrlzlP., VzeX;.
0

10
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Notice that if (2.1) holds for some 7" > 0 it holds for any 7' > 0. The admissibility
condition (2.1) implies that, by density, we can give a meaning to the map

(t s B (T-0A" z) e L2(0,T;U),

for any z € X}. Then, we end up with the following well-posedness result (see [9,
Proposition 1.2]).

PROPOSITION 2.1. Assume that (2.1) holds. Then, for any T >0, any yo € X,
and any u € L?(0,T;U), there exists a unique y € C°([0,T]; X_o) solution to (1.1)
in the sense that it satisfies for any t € [0,T] and any z; € X,

A ! (t—s)A
_ —t A" — * —(t—s)A*
WO 2) = (e W) = [ (a8 ) s

Moreover there exists Cr > 0 such that

sup [ly()]|_ < Or(llyoll_o + llullz20,m;0))-
t€[0,T]

REMARK 2.1. By analogy with the semigroup notation, when v = 0, we set for
any t € [0,T], e ™y := y(t). This extends the semigroup e~** defined on X to X _,
and implies that for any z € X _,,

(2.2) <e_TAz, ¢>70’0 = <z, e_TA*¢> , Vo € X

—0,0

With this notion of solution at hand, we finally define the minimal null control
time from a subspace of initial conditions Yj.

DEFINITION 2.1. Let Yy be a closed subspace of X_o and let T > 0. The sys-
tem (1.1) is said to be null controllable from Yy at time T if for any yo € Yy, there
exists a control u € L?(0,T;U) such that the associated solution of (1.1) satisfies
y(T) = 0.

The minimal null control time To(Yy) € [0, +00] is defined by

o for any T > To(Yy), system (1.1) is null controllable from Yy at time T';
o for any T < Ty(Yy), system (1.1) is not null controllable from Yy at time T.

To simplify the notations, for any yo € X_o, we define Ty (yo) := To(Span{yo}).

2.1.2. Spectral assumptions.

In all this article we assume that the operators A and B satisfy the assumptions
of Section 2.1.1. Moreover to solve the control problem we will need some additional
spectral assumptions.

* Behavior of eigenvalues.

We assume that the spectrum of A*, denoted by A, is only composed of (countably
many) eigenvalues. Moreover, we assume that the eigenvalues lie in a suitable sector
of the complex plane, i.e., there exists 7 > 0 such that

(2.3) ACS;

where
Sr:={z€C; Rz >0 and |Sz| < (sinh7)Rz}.
11
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REMARK 2.2. In [9], the assumption on A was stronger. Namely, in that article
it was assumed that A C (1,400). The fact that min A > 1 was only used in the
lower bound on the solution of scalar block moment problems (see estimate (A.3)).
The extension to complex eigenvalues satisfying (2.3) was done in [12] and is stated
in Appendiz A.

If necessary, one can replace the operator A by A + o without modifying the
controllability properties. Then, in the different estimates, the behavior with respect
to o can be carefully tracked if needed.

As in the case of a scalar control (see [9]) we assume that this spectrum satisfies
a weak-gap condition. Namely, there exists p € N* and g > 0 such that

(2.4) ﬁ(A N D(u, Q/Z)) <p,  Vuec,

where D(u, 0/2) denotes the open disk in the complex plane with center p and radius
0/2. This means that the eigenvalues are allowed to condensate by groups but the
cardinality of these groups should be bounded. To precise this, let us recall the notion
of groupings used in [9, Definition 1.6, Proposition 7.1] and extended to the complex
setting in [12, Proposition V.5.26].

PROPOSITION 2.2. Let p € N* and 9 > 0. Let A C C be such that the weak-gap
condition (2.4) holds. Then, there exists a countable family G of disjoint subsets of A
satisfying

(2.5) A=(J@

Geg
and each G € G satisfies
(2.6) diam G < g,
(2.7) tG < p,
and
. 0
(28) dist (COHV G, A\G) > W

Let us mention that the results do not depend on the particular construction done
in [12, Proposition V.5.26] and remain valid for any grouping G satisfying (2.5)-(2.8).

Concerning the asymptotic behavior of the spectrum we will use the counting
function associated to A defined by

Npy:r>0—=t{AeA; A <r}.

We assume that there exists £ > 0 and 6 € (0, 1) such that

(2.9) Na(r) <wr®,  ¥r>0
and
(2.10) INA(r) = Na(s)| < & x (L+]r —s|?), vr,s > 0.

Notice that this condition is slightly stronger than the classical summability condi-
tion (1.4) used for instance in [22, 5, 9] and many other works.

12
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REMARK 2.3. Let us underline that if we do not assume (2.10) to hold all the
results of the present article still hold with a slight change in the estimates. To lighten
the writing we only detail this change for Theorem A.1 concerning the resolution of
block moment problems with a scalar control (see Remark A.1). However, as proved
in Section 7, the assumption (2.10) holds for many examples.

Notice also that (2.9), with r = inf |A|, implies the following lower bound on the
bottom of the spectrum

inf |A| > k9.

Our goal is not only to study the controllability properties of our system but also to
obtain estimates that are uniform in a way to be precised. To do so, we define the
following class of sequences: let p € N* o, 7,k > 0, 8 € (0,1) and consider the class

(2.11) Ly(p,0,7,0,k) :={A CS;; A satisfies (2.4), (2.9) and (2.10)}.

* Multiplicity of eigenvalues.

In our study we allow both algebraic and geometric multiplicities for the eigenval-
ues. We assume that these multiplicities are finite and that the algebraic multiplicity
is globally bounded. More precisely, we assume that

(2.12) v = dimKer(A* — A\) < 400, YA €A,

and that there exists n € N* such that

(2.13) Ker(A* — \)7 = Ker(A* — \)"T!, VA€ A

For any A € A we denote by a, the smallest integer such that
Ker(A* — \)* = Ker(A* — \)*2 !

and set
Ey :=Ker(A* — \)*.

* (Generalized) eigenvectors.
To study null-controllability, we assume that the Fattorini-Hautus criterion is
satisfied

(2.14) Ker(A* — X) NnKer B* = {0}, VA eA.

It is a necessary condition for approximate controllability. Note that, under additional
assumptions on A and B it is also a sufficient condition for approximate controllability
(see for instance [20, 34]). However, when studying null controllability of system (1.1)
for initial conditions in a closed strict subspace Y, of X_,, the condition (2.14) can be
too strong, see for instance Sections 7.1.2 and 7.1.3.

We assume that the family of generalized eigenvectors of A*

(D:{d)GEA;)\EA}: UE)\
AEA

is complete in X7 i.e. for any y € X_,,

(2.15) ((y,¢>_070 -0, Voe <I>) — y=0.
13
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In the following, to simplify the writing, we gather these assumptions and say
that the operators A and B satisfy (H) if there exists p € N*, o, 7,k > 0 and 6 € (0,1)
such that

A and B satisfy the assumptions of Section 2.1.1;
(H) A = Sp(A*) belongs to L (p, 0, 7,0, k) and satisfies (2.12) and (2.13) ;
the associated (generalized) eigenvectors satisfy (2.14) and (2.15).

2.1.3. Notation.
We give here some notation that will be used throughout this article.
e For any a,b € R, we define the following subsets of N:

[a,b] := [a,b] NN, [a,b]:= [a,b) N N.

e In all the present paper, (e, o) denotes the usual inner product in finite di-
mension i.e.

(f,9)="fg.

e For any t € R we denote by e; the exponential function

e, :C—C

z e 7,

e We shall denote by C,,,.. ., > 0 a constant possibly varying from one line to
another but depending only on the parameters vy, ..., ;.
e For any non empty subset I' C A, we set

(2.16) rp = inf R
Aer
Notice that assumptions (2.3) and (2.4) imply that rr > 0 for any T' C A.
e For any multi-index a € N™, we denote its length by |a| = Z?Zl a; and its
maximum by |a|e = max;eqy n] ;-
For o, u € N, we say that p < « if and only if p1; < «; for any j € [1,n].
e In all this article the notation f[---] stands for (generalized) divided dif-
ferences of a set of values (z;, f;). Let us recall that, for pairwise distinct

T1,...,T, € Cand fy,..., f, in any vector space, the divided differences are
defined by

fled =ty Sl ozy) = L2 S t]

Ty — 1

The two results that will be the most used in this article concerning divided
differences are the Leibniz formula

J
@Dlns- vz = S gl wil flon - 35),
k=1
and Jensen inequality stating that, when f; = f(z;) for an holomorphic
function f, we have
|f(jfl)(z)|
x| £ e/
|f[£L’1, ?xJ”— (]_1)| 3
14
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with z € Conv{z1,...,z;}. For more detailed statements and other useful
properties as well as their generalizations when x4, ..., x, are not assumed to
be pairwise distinct we refer the reader to [12, Appendix A.2] This general-
ization is used in the present article whenever there are algebraically multiple
eigenvalues.

e For any closed subspace Y of X_, we denote by Py the orthogonal projection
in X_, onto Y. We denote by Py € L(X}) its adjoint in the duality X_,,
X,

2.2. Resolution of block moment problems.

* Definition of block moment problems.

Using the notion of solution given in Proposition 2.1 and the assumption (2.15),
null controllability from g in time 7" reduces to the resolution of the following problem:
find w € L?(0,T;U) such that

T
(2.17) / <u(t),6*e—(T—t)A*¢> dt = — <y0,e—”*¢> , Vo€ Ex, VA€ A.
0 U

—0,0

Following the strategy initiated in [9] for scalar controls, we decompose this problem
into block moment problems. Hence we look for a control of the form

(2.18) u=—Y vg(T —e)

Geg

where G is a grouping (as stated in Proposition 2.2) and, for every G € G, vg €
L?(0,T;U) solves the moment problem in the group G i.e.

T
(2.19a) / <Ug(t),l5’*e—tA*¢> t = <yo,e—“*¢> , Vo By VAeq,
0 U

—0,0

T
(2.19b) / <vg(t), B*e*tA*¢>U dt =0, Voe Ey, YAe A\G.
0

In fact it is sufficient to solve the following block moment problem

T
(2.20a) / <UG(t)aB*e’tA*¢>U dt = <e*TAy0, ¢>70’0, Vo € Ex, VA€ G,
0
T _
(2.20D) / va(t)tle ™ Mdt =0, VA€ A\G, VI € [0,n]
0

where e~ T4yq is defined in (2.2).
Indeed, for any ¢ € E), from [9, (1.22)], it comes that

(2.21) A= e NS #(A* “N6 =D e [ATHI] (a4t =y,

r>0 ’ r>0
where the sums are finite (and contains at most the first oy terms). Thus, every
solution of (2.20) solves (2.19). The orthogonality condition (2.20b) is more restrictive
than (2.19b) but leads to negligible terms in the estimates.

15

This manuscript is for review purposes only.



538
539
540
541
542
543

ot
=~
at

546
547
548

549

* Resolution of block moment problems.

In our setting, the block moment problem (2.20) is proved to be solvable for any
T > 0. The resolution will follow from the scalar study done in [9] and refined in [12]
(see Theorem A.1).

Due to (2.18), the main issue to prove null controllability of (1.1) is thus to sum
those contributions to obtain a solution of (2.17). This is justified thanks to a precise
estimate of the cost of the resolution of (2.20) for each group G which is the quantity

inf {||vg || 22(0,750) ; ve solution of (2.20)} .

To state this result, we introduce some additional notation.
To solve the moment problem (2.20) we propose to lift it into a ‘vectorial block
moment problem’ of the following form (see (3.1))

T AV
/ vg(t)( lf) e Mt =0, VAe @, Vle[0,a]
0 .

T _
/ vg(t)tte ™ dt =0, VX e A\G, Vi € [0,n],
0

where QIX belongs to U. Following (2.21), to recover a solution of (2.20), we need
to impose some constraints on the right-hand side that are given in the following
definition.

DEFINITION 2.2. For any A € A and any z € X_,,, we set

(2.22) O\ 2) = {(QO,...,Q“*_l) eU™M;

ax—1
ST QLB AT N10), = (5,0)_o., Vo EA}.

1=0
For a given group G, we set
(2.23) O(G,z) = [[ 0\ 2) c U™
e
where « is the multi-index of the algebraic multiplicities of the eigenvalues.

Consider any sequence of multi-indices (Hl)le[[o,kx\]] such that

W<l vie [l
(2.24) =1, Wieo,lall,
la] —

W = a.

To measure the cost associated to the group G = {\1,..., s} let us define the fol-
lowing functional

Kl

(225)  F:Q= (.00 .00 .. e ) eul =y
=1

2

o[

U

with the convention

o[ =al, vielg), vie D al

16
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The use of such functional to measure the cost comes from the analysis conducted for
scalar controls in [9] (see Proposition 3.3). It appears in the following lower bound
for solutions of block moment problems.

PROPOSITION 2.3. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2). Let T € (0,400), and G C A be a group satisfying (2.7).
There exists Cp p o > 0 such that, for any z € X_o, any vg € L*(0,T;U) solving

T
| (wetnre®o) at= (o) ... voeELAEG
0

satisfies

(2.26) loelZs ) = CrnaaC(G.2)
where

(2.27) C(G,z)=inf{F(); Qe OG, =)}

with F defined in (2.25) and O(G, z) defined in Definition 2.2.

The first main result of this article concerns the resolution of block moment
problems of the form (2.20). It roughly states that, up to terms that turns out to be
negligible, the lower bound obtained in Proposition 2.3 is optimal.

THEOREM 2.4. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2). Let T € (0,400), and G C A be a group satisfying (2.6)—(2.8).
For any z € X_,, there exists vg € L?(0,T;U) solution of

T *
(2.28a) /0 <vg(t), Bre~t4A ¢>>U dt=(z,¢)_,., VoeExNEG,

T _
(2.28b) / vg(t)tle™dt =0, VA€ A\G, Vi € [0,1],
0

satisfying the following estimate

C
(2.29) ||UG||2LQ(07T;U) < Cexp <T9> exp (rqT) exp (C’r%) C(G,2).

In this estimate, C(G, z) is defined in (2.27) and r¢ is defined in (2.16). The constant
C > 0 appearing in the estimate only depends on the parameters T, p, o, n, 0 and k.

Before giving the application of this resolution of block moment problems to the
null controllability of our initial system (1.1), let us give some comments.

e As it was the case in [9], the considered setting allows for a wide variety
of applications. In (2.15) the generalized eigenvectors are only assumed to
form a complete family (and not a Riesz basis as in many previous works)
which is the minimal assumption to use a moment method-like strategy. The
weak gap condition (2.4) is also well adapted to study systems of coupled one
dimensional parabolic equations (see Section 7).

e The main restriction is the assumption (2.9). As detailed in Section 1.1, this
assumption is common to most of the results based on a moment-like method.
Though restrictive, let us underline that the moment method is, to the best
of our knowledge, the most suitable method to capture very sensitive features
such as a minimal null control time for parabolic control problems without
constraints.

17
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e The main novelty of this theorem is to ensure solvability of block moment
problems coming from control problems with control operators that are only
assumed to be admissible. In particular, the space U can be of infinite di-
mension. Results concerning block moment problems with more general right-
hand sides, that is not necessarily coming from a controllability problem, are
stated in Appendix C

e The estimate (2.29) does not explicitly depend on the sequence of eigenval-
ues A but rather on some parameters such as the weak-gap parameters and
the asymptotic of the counting function. As presented in Section 1.1, the
uniformity of such bounds can be used to deal with parameter dependent
problems.

e Let us also underline that the obtained estimate (2.29) tracks the depen-
dency of the constants with respect to the controllability time 7. This will
be crucial to estimate the cost of controllability in Proposition 2.11. We re-
fer to Remark 2.8 for possible applications of such estimates of the cost of
controllability.

e Though quite general and useful for the theoretical characterization of the
minimal null control time, the obtained estimate (2.29) still requires to be able
to evaluate quantities of the form C(G, z), which can be intricate. We provide
in Section 2.4 some explicit formulas that makes this estimation possible in
many actual examples.

2.3. Determination of the minimal null control time.

The resolution of block moment problems stated in Theorem 2.4 allows to obtain
the following characterization of the minimal null control time of our abstract control
problem from a given initial condition.

THEOREM 2.5. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2) and let G be an associated grouping as stated in Proposition 2.2.
Then, for any yo € X_., the minimal null control time of (1.1) from yo is given by

1 +
(2.30) To(yo) = limsup In” C(G, o)
Geg 2rg

where C(G,yo) is defined in (2.27).

In this statement we have used the notation In™ s = max(0,In s), for any s > 0.
If one considers a space of initial conditions (instead of a single initial condition),
the characterization of the minimal null control time is given in the following corollary.

COROLLARY 2.6. Let Yy be a closed subspace of X_. Then, under the assump-
tions of Theorem 2.5, the minimal null control time from Y} is given by

+
Ty(Yp) = limsup ™ C(G, Yo)
Geg 2rg
with
C(G7YO) = sup C(G7y0)
Yo €Yo
llyoll _ =1

18
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2.4. More explicit formulas.

Assume that the operators A and B satisfy the assumption (H). Let G C A be
such that 4G < p and diam G < p. We have seen in Theorem 2.5 that the key quantity
to compute the minimal null control time from yq is

C(G,yo) =inf{F(Q); Q€ O(G,y0)}-
where the function F' is defined in (2.25) and the constraints O(G,yp) are defined
in (2.23). Let us give more explicit formulas to compute such costs.

Notice that, for any z € X_,, the quantity C(G, z) can be expressed as a finite
dimensional constrained problem. Indeed, for a given group G we consider the finite
dimensional subspace

(2.31) Ug =B*Span{¢ € Ex; A € G}

and Py, the orthogonal projection in U onto Ug. Then, for any Q € O(G,z) it
comes that Py, Q € O(G, z) and F(Py,Q) < F(Q). Thus, the optimization problem
defining C(G, z) reduces to

C(G, 2) = inf {F(Q) - Qe0G, )N U‘g'} ,

which is a finite dimensional optimization problem. From [9, Proposition 7.15], the
function F' is coercive which implies that the infimum is actually attained:

(2.32) C(G, 2) = min {F(Q)  Qe0(G,2)N U'G?‘} .

In this section, solving the optimization problem (2.32), we provide more explicit
formulas for this cost for some particular configurations for the multiplicities of the
eigenvalues in the group G (and only in that particular group).

* A group G of geometrically simple eigenvalues.

First, assume that the eigenvalues in G = {A1, ..., Ay} are all geometrically simple
i.e. v =1 for every A € G where 7, is defined in (2.12).

For any j € [1, ¢] we denote by gzﬁ‘; an eigenvector of A* associated to the eigen-
value A; and by (¢§‘)le[[0,aj[[ an associated Jordan chain i.e.

(A" =Nl =o' Ve l,a4]
To simplify the writing, we set
vo=BleU,  VIie[o,q4[, Vi€ [l,g]

Recall that the sequence of multi-index (,Ul)ZG[[o,\aH] satisfy (2.24) and let

o]
(2.33) M:=)"T,
=1
with
I .= Gramy | 0,...,0,b [AE"L“H)] [ E“““H)}
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where for every uy,...,u, € U, Gramy(uq,...,u,) denotes the Gram matrix whose
entry on the i-th row and j-th column is (uj;,u;),;. To explicit the cost C(G,yo), we
will use the inverse of this matrix. Its invertibility is guaranteed by the following
proposition which is proved in Section 5.2.

PROPOSITION 2.7. Under condition (2.14), the matriz M defined in (2.33) is in-
vertible.

The matrix M plays a crucial role in the computation of the cost C(G,yo). Let us
give some comments. It is a sum of Gram matrices whose construction is summarized
in Figure 1 on an example with G = {\1, A2} with a1 = 3 and as = 2. Each of these
matrices is of size |«| which is the number of eigenvalues (counted with their algebraic
multiplicities) that belong to the group G. Thus, on actual examples (see Section 7),
the size of these matrices is usually reasonably small.

S
=

VAVAVAVY,
/
\
/

o
S
=

0 0 bl AR
0 0. b AR, Ao b, AP
0 0 A1, Ao oA, AP \
\ Gram matrix FL
0 % o) \

Gram matrix [';

g i \
\ Gram matrix Fﬁ

Gram matrix F';

=
o

/N

Gram matrix Fi

FIGURE 1. Construction of the Gram matrices Fit in the case of a group G = {\1, 2} with
multiplicities oo = (3,2) and the sequence of multi-indices u = ((0,0), (1,0), (2,0), (3,0), (3,1), (3,2))

Then, we obtain the following formula for the cost of a group of geometrically
simple eigenvalues.

THEOREM 2.8. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2). Let G = {A1,..., g} C A be such that §G < p and diam G < ¢
and assume that vy =1 for every A € G. Then, for any yo € X_,, we have

e )

5

C(G,yo) = (M',&),  where & = : c Clal

e )

20
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and M is defined in (2.33).
Moreover, if Yy is a closed subspace of X_,

(2.34) C(G,Yo) = p (Gramxy; (¢4, ... W) M)

j
where ; = Py ¢ )\SH ) and, for any matriz M, the notation p(M) denotes the
spectral radius of the matriz M.

REMARK 2.4. Notice that we do not choose any particular eigenvector or Jordan
chain. To compute explicitly the cost C(G,yo) on actual examples, we will often choose
them to satisfy

1Bl =1, (9,05, =0, Vie[l,ql
to simplify the Gram matrices. Obviously, as the quantity C(G,yo) is independent of
this choice, we can choose any other specific Jordan chains or eigenvectors that are
more suitable to each problem.

REMARK 2.5. In the case where the eigenvalues of the considered group G are
also algebraically simple, then the expression of M given in (2.33) reduces to

g
(2.35) M=>"T" with T'=Gramgy [0,...,0,b[\],....b[\,..., A
=1 Y

-1

and the expression of & reduces to

<y07 ¢[>‘1}>—<>,<>

<y07 ¢[)‘1’ : ) )‘g]>—<>,o

* A group G of semi-simple eigenvalues.

We now assume that all the eigenvalues in G are semi-simple i.e. for any A € G
we have ay = 1 where ) is defined in (2.13).

For any j € [1, g], we denote by (¢;)ic[1,,,] & basis of Ker(A* — ;). To simplify
the writing, we set

bj,i == B ¢ji, Vi e [1,4g], Vi€ [1,]

and yg :=7vy1 + -+ 4. '
For any 7 € [1,g], we set 6} := 1 and

j—1

(2.36) =T (=), Vie[2.g]
k=1

Notice that &5 = 0 as soon as j > i.
Let

g
(2.37) M =) "T" with T' = Gramy (6{b1,1,- -, 6 b1y, -, 07Dy, ., 67bg ) -
=1

Here again, to explicit the cost C(G,yo) we will use the inverse of this matrix. Its
invertibility is guaranteed by the following proposition which is proved in Section 5.3.
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PROPOSITION 2.9. Under condition (2.14), the matriz M defined in (2.37) is in-
vertible.

Notice that the square matrix I'" is of size v¢ and can be seen as a block matrix where
the block (7, §) with ~; rows and -y; columns is

<5ljbj71,6;'bi,1>U <5fbj77j’5fbi,1>U

<6{bj,1,<.5§bm>U <5fbj77j’.5fbi,vi>U

Thus, the block (4, ) of T is identically 0 for 4,5 € [1,I[.
Then, we obtain the following formula for the cost of a group made of semi-simple
eigenvalues.

THEOREM 2.10. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2). Let G = {A1,..., g} C A be such that G < p and diam G < o
and assume that ay =1 for every A € G. Then, for any yo € X _o, we have

C(G7 yO) = <M_1§7 £>
where
<y07 ¢1,1>_070

<y07 ¢17'71 > —0,0

<y07 ¢g,1>_<>,<>

<y07 ¢g,7g >,<>’<>

and M is defined in (2.37).
Moreover, if Yy is a closed subspace of X _,

(238) C(G,Yb) =p (Gramxg (¢1,1, . ,¢17717. .. 7¢g,17 e ,¢g779)M71)

where ;; := Py ¢;i and, for any matriz M, the notation p(M) denotes its spectral
radius.

REMARK 2.6. When the eigenvalues of the group G are geometrically and alge-
braically simple, Theorem 2.10 gives a characterization of the cost of the block C(G, yo)
which is different from the one coming from Theorem 2.8 and detailed in Remark 2.5.
A direct proof of this equivalence (stated in Proposition D.3) using algebraic manipu-
lations is given in Appendiz D.

* Dealing simultaneously with geometric and algebraic multiplicity.

Combining Theorems 2.8 and 2.10, we can deal with operators A* which have
both groups of geometrically simple eigenvalues and groups of semi-simple eigenval-
ues. However, for technical reasons, in the case where both algebraic and geometric
multiplicities need to be taken into account into a group G we do obtain a general
formula for the cost of this group C(G,yo). Nevertheless, if this situation occurs in
actual examples, computing this cost is a finite dimensional constrained optimization
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problem which can be solved ‘by hand’. We present in Section 5.4 an example of such
resolution for a group G that does not satisfies the assumptions of Theorem 2.8 nor
of Theorem 2.10.

2.5. Estimate of the cost of null controllability.
When system (1.1) is null controllable, we obtain the following bound on the cost
of controllability.

PROPOSITION 2.11. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2) and let G be an associated grouping a as stated in Proposition 2.2.

Let yo € X_ and let T > To(yo). There exists a control u € L?(0,T;U) such
that the associated solution of (1.1) initiated from yo satisfies y(T) = 0 and

c e) (1+T)277 Z e*%o(yO)TGe*QTGTO(yO)C(G,YO)_
(T' = To(yo)) ™7 Geg

The constant C > 0 appearing in the estimate only depends on the parameters T, p,
0,1, 0 and k.

||“||2L2(0,T;U) < Cexp (

Though quite general the above formula is not very explicit. More importantly,
it is proved in [29, Theorem 1.1] that, with a suitable choice of A and B satisfying
our assumptions, any blow-up of the cost of controllability can occur. We give below
a setting (inspired from [29, Theorem 1.2]) in which this upper bound on the cost of
controllability is simpler and can have some applications (see Remark 2.8).

COROLLARY 2.12. Assume that the operators A and B satisfy the assumption (H)
(see Section 2.1.2) and let G be an associated grouping as stated in Proposition 2.2.
Let B > 0. For any yo € X_, satisfying,

(2.39) C(G,yo) < Be?reTowo) |jyo]® VG e G,

for any T > To(yo) close enough to To(yo), there exists a control u € L?(0,T;U) such
that the associated solution of (1.1) satisfies y(T) =0 and

(T — To(yo)) ™7

where the constant C' > 0 only depends on the parameters 3, T, p, 0, 1, 8 and k.

C
||UHL2(0,T;U) < Cexp (9) ||Z/0||_<>7

REMARK 2.7. In the setting of Corollary 2.12, replacing the assumption (2.39)

by
C(G,yo) < BePrac?raTolo) yol? | VG € g,

with o € (0,1) leads to the following estimate

C
||u||L2(07T7U) S Cexp max(6,0) ||y0||—0 :
— T—max(8,0)
(T = To(y0))

REMARK 2.8. Giving the best possible estimate on the cost of small time null
controllability is a question that has drawn a lot of interest in the past years.

In classical cases, for instance for heat-like equations, null controllability holds
in any positive time and the cost of controllability in small time behaves like exp (%)
(see for instance [37]). There are two main applications of such estimate.
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e Controllability in cylindrical domains.
1t is proved in [8] that null controllability of parabolic problems in cylindrical
geometries (with operators compatible with this geometry) with a boundary
control located on the top of the cylinder can be proved thanks to null con-
trollability of the associated problem in the transverse variable together with
suitable estimates of the cost of controllability. Their proof relies on an adap-
tation of the classical strategy of Lebeau and Robbiano [28] and thus uses
an estimate of the cost of controllability in small time of the form exp (%)
These ideas were already present in [10] and later generalized in an abstract
setting in [1].
e Nonlinear control problems.
The source term method has been introduced in [30] to prove controllability
of a nonlinear fluid-structure system (see also [7, Section 2] for a general
presentation of this strategy). Roughly speaking it amounts to prove null con-
trollability with a source term in suitable weighted spaces and then use a fized
point argument. The null controllability with a source term is here proved by
an iterative process which strongly uses that the cost of controllability of the
linearized system behaves like exp (%)
Notice that from the upper bound given in Corollary 2.12, the cost of controllability
in small time can explode faster than exp (%). Yet, as studied in [35] and in [35,
Chapter 4], the arguments of the two previous applications can be adapted with an

explosion of the cost of the form exp <T1099> with 0 € (0,1).

However, these two applications uses a decomposition of the time interval [0, T
into an infinite number of sub-intervals (which explains the use of the asymptotic of
the cost of controllability when the time goes to zero). Thus their extension in the
case of a minimal null control time is an open problem.

3. Resolution of block moment problems.

In this section we prove Theorem 2.4 that is we solve the block moment prob-
lem (2.28). To do so, we first consider a vectorial block moment problem (see (3.1)
below) which is proved to be equivalent to the block moment problem (2.28) in Propo-
sition 3.1. This equivalence strongly relies on the constraints (2.22). Then we prove
the lower bound for solutions of block moment problems stated in Proposition 2.3.

Finally, in Section 3.2, we solve the vectorial block moment problem (3.1) which
will conclude the proof of Theorem 2.4.

3.1. An auxiliary equivalent vectorial block moment problem.

Let A C S, G={M,....;0¢} CA, npeNand o = (av1,...,04) € N7 with
|aeo < 7. For any

Q=(Q0,....00 1 ...,Q0 ... Q) e Ul

we consider the following auxiliary vectorial block moment problem : find vg €
L?(0,T;U) such that

T l
—t —
(3.1a) / vg(t)(T)e_)‘jtdt = Qé—, Vj e [1,9], VI € [0, o5,
0 .

T _
(3.1b) / va(t)tte ™ Mdt =0, VYA€ A\G, VI € [0,7].
0
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This block moment problem is said to be wectorial: the right-hand side 2 belongs
to Ulel and its solution vi(t) belongs to the control space U for almost every t. Its
resolution with (almost) sharp estimates is given in Proposition 3.3.

Through (2.21), when the right-hand side Q of (3.1) satisfy the constraints (2.23),
solving this vectorial block moment problem provides a solution of the original block
moment problem (2.28). More precisely we have the following proposition

PROPOSITION 3.1. Let T > 0 and z € X_,,. The following two statements are
equivalent:
i. there exists Q € O(G,z) such that the function vg € L*(0,T;U) solves (3.1);
i. the function vg € L?(0,T;U) solves (2.28).

Proof. Assume first that there exists 2 € O(G, z) and let v € L?(0,T;U) be such
that (3.1) holds.
Then, using (2.21), for any j € [1,g] and any ¢ € Ey; we have

T T aj—1
/O <v(t),B*e’tA*¢>Udt:/0 <v(t),e)‘1t ; (zf) B*(A* )\j)lgb>Udt
T ¢ 1
=3 </O oit) 1

= 3 (OB 0)0),

=

e tdt, B (A* — Aj)l¢>
U

(=)

G R

Since (QO QO,‘J'_1> € O(\j, 2) (see (2.22)) , this leads to

T
/ (v(®). B¢ 6) dt=(20) ., Vie€llglVoe By,
0

which proves that v solves (2.28).
Assume now that v € L%(0,T;U) solves (2.28). Setting

T 1
. (=t) 5
Q; .—/0 v(t)Te itdt
we obtain that v solves (3.1). As in the previous step, the identity (2.21) implies that
Qe O(G,z). 0

Using this vectorial block moment problem allows to prove the lower bound stated
in Proposition 2.3.

Proof (of Proposition 2.3). Let vg € L?(0,T;U) be any solution of (2.28a). Let

Y L o) I P b N a, vieql gl v
j 0 vG(t)Te t= o ’UG(t)@t |: J ] t, J € [[ 79]]7 € Ho,ajﬂ'
As in the proof of Proposition 3.1, the use of (2.21) implies that

Q= (0.0 ...,00,....Q09 ) € 0G,2).

Thus,
|ex| ) 2
(3.2) C(G,2) <F(Q) =) |Q [A,“ }
=1 U
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Notice that .
(! 1
o [30"] = [“uate |37 at, vic ool
0

Using Jensen inequality [9, Proposition 6.1] yields,
t17 1 ef’l"(;t

~(uh) o (;tl) ’<
e = e b <

Together with Cauchy-Schwarz inequality this implies

7(}}{1) +oo tl—le—rct %
QA < —dt )
H [ * } U (/0 (=1t e z2(0,m;v)

Then, as rg > rp and |a| < pn, estimate (3.2) ends the proof of Theorem 2.4. d

3.2. Solving the original moment problem.
In view of Proposition 3.1, to solve (2.28), we prove that there exists at least one
Q satisfying the constraints (2.22).

PROPOSITION 3.2. Let A € A and z € X_. Then, under assumption (2.14), we
have

O\ z2) # @.

Proof. Let T > 0. The finite dimensional space E) is stable by the semi-
group e~*4" (see for instance (2.21)). Using the approximate controllability assump-
tion (2.14) we have that

b€ By s HB*(’A*Qs’

L2(0,T,U)
is a norm on E). Then, the equivalence of norms in finite dimension implies that the
following HUM-type functional

1 L2
Ji¢€ By ] HB*&‘A ¢‘

-R <Za ¢>—<>7<>

L2(0,T,U)
is coercive. Let (5 € E) be such that

J(¢) = inf J(¢)

PEEN

and v := B*e*'A*ds. The optimality condition gives (paying attention to the fact that
E, is a complex vector space)

T
(3.3 | (oBre o) di=zor,,. voen

Finally, we set Q := (Q°,...,Q*~1) with

Q! ;:/ o(t) e N, I € [0,0u]
0 .

Using (3.3) and following the computations of Proposition 3.1 we obtain that Q €

O\, 2). O
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We now turn to the resolution of the vectorial block moment problem (3.1).

PROPOSITION 3.3. Let p € N*, o, 7,5 >0 and 0 € (0,1). Assume that
A‘ 6 ﬁw(p’ 1977_7 0’ I{/)'

Let G = {A\1,..., ¢} C A be a group satisfying (2.6)—(2.8). Let T € (0,+c0) and
n € N*. For any multi-index o € N9 with |a|eo <1 and any

Q= (9., ... ) e Ul

there exists vg € L2(0,T;U) solution of (3.1) such that

C
oo < Cexp (=5 ) exp (raT) exw (C1r5) FIE),

where F' is defined in (2.25) and rq is defined in (2.16). The constant C > 0 appearing
in the estimate only depends on the parameters 7, p, 0, 1, 6 and k.

Proof. Let (ej);e[1,q4) be an orthonormal basis of the finite dimensional subspace
of U given by

Span{Qg ;e llgl, 1ef0,a40}

Then, for any j € [1,g] and [ € [0, o[, there exists (ai {)Tj(lﬂ)

]) e Clol such
i€[1,d]
that the decomposition of Qé reads

d
~—(+1
Qé:Zal {)\J( )] €;.
i=1

From Theorem A.1, for any i € [1,d], there exists v; € L?(0,7T;C) such that

T l
—t — -
/ Uz(t)( ) eiAjtdt = a; |:)\j(l+1):| , Vj € [[l,g]], RS [[0,0éj[[,
0

{!
T _
/ v;(t)tle Mdt = 0, YA € A\G, VI € [0,7],
0
and
__0 . — 2
HUz‘||2L2(0 T:c) < CeCT 7 076 max |a; [)\1(“1), cee )\g(“g)] ‘ .
” neN?
pla
Setting

d
v i= E Vi€,
i=1
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we get that v solves (3.1) and using [9, Proposition 7.15]

d
HU||%2(0,T;U) = Z Hvi||%2(0,T;C)
i=1

T T o Crt ~— (1) (1g)7] |2
<Ce e'e GE max |a; |\ e Ag
peN?

i=1'<a
0 0 lo d (uP) 2
CT 1-0 roT C G
< CponCe e'ét et Z Z a; [)\, ”
p=1 \i=1

_ 6 | Py7 (12
= CeCT 77 graTelra Z HQ [XEH )] H .
p=1

This ends the proof of Proposition 3.3. ]
We now have all the ingredients to prove Theorem 2.4.

Proof (of Theorem 2.4). From Proposition 3.2, we have O(G,z) # &. Recall
that, from (2.32), the optimization problem defining C(G,z) can be reduced to a
finite dimensional optimization problem for which the infimum is attained. Thus, let
€ O(G, z) be such that

F(Q) =C(G,2).

Let vg € L?(0,T;U) be the solution of (3.1) given by Proposition 3.3 with € as right-
hand side. As Q € O(G, z), from Proposition 3.1 we deduce that vg solves (2.28).
The upper bound (2.29) on |lvg||z2(0,7;v) is given by Proposition 3.3. |

4. Application to the determination of the minimal null control time.

This section is dedicated to the consequences of Theorem 2.4 on the null control-
lability properties of system (1.1).

From Theorem 2.4, the resolution of block moment problems (2.20) associated
with null controllability of (1.1) will involve the quantity C(G, e~Tyy). To formulate
the minimal null control time we isolate the dependency with respect to the variable
T leading to quantities involving C(G,yo). The comparison between these two costs
is detailed in Section 4.1.

Then, this leads to the formulation of the minimal null control time stated in
Theorem 2.5. We then prove the estimates on the cost of null controllability stated
in Proposition 2.11 and Corollary 2.12. This is detailed in Section 4.2.

4.1. Relating the different costs.
Let us prove that the cost C(G, e_TAz) appearing in Theorem 2.4 roughly behaves
like e=27¢TC(@, z). More precisely, we have the following estimates.

LEMMA 4.1. Assume that the operators A and B satisfy the assumption (H) (see
Section 2.1.2). There exists Cp o, > 0 such that for any G C A with §G < p and
diam G < o, for any T > 0 and any z € X_,,

(41) C(G, C_TAZ) < CP’Q’U(l + T)2|a‘e—27‘cTc(G,Z)

and

(4.2) e 26TC(G, 2) < Cp (1 + T)2e20TC(G e TAz).
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956 Proof. Recall that from (2.2) we have

- —TA" _ -TA *
957 <y07€ ¢>_070 - <€ Yo, ¢>7<>’<>7 V(b € X<>‘
958 Weset G = {A1,...,\g}.
959 e We start with the proof of (4.1).
960 From (2.32), let Q € O(G, ) be such that F() = C(G, z). We define Q by
961 QL = (er) {A (””} . Vie[lgl Ve[ al

962  with the convention

963 Q {Tj(lﬂ)} =QL,  Vjie[l,g), Ve o,ql

964 Let us prove that Q € O(G,eT42). For any j € [1,g] and any ¢ € E,,;, using [9,
965 Definition 7.12] we obtain

966 > (9B (AT =)y, = ZeT [ TH)} <§§_T,B*(A* — Aj)l¢>

VM

1>0 1>0 r=0 v
967 =Y er [ (r1) } <Ql "B (A — j)l¢>
r>0 I>r v
968 => er [ (0 } <Ql B*(A* )\j)l+7'¢> :
969 r>0 10 v
970 Since Q € O(G, 2) and er [/\ (H_l)} = er [)\yﬂ)} for any r > 0, using (2.21) this
971 yields
* * r+1 *
972 S QL BHAT =N ), =Y er [Ag + ﬂ (2 (A" = 2)78) .,
1>0 r>0

973 (4.3 = —TA = (e TA , .
w49 (ne™0) |, =l nd)
975 This proves the claim.
976 Applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9, Propo-
977 sition 6.1] we obtain,

N : =Y 5 [
978 HQ [)\, } = ZeT [)\, ] Q [A, }

U q=1

1

979 <Cpgn(1+T\a|e raT (i” { Q)]H>

980
981 Thus,
982 F(Q) < Cpon(l+T)2e 26T R(Q) = C, (1 + T)20le=26TC(G, 2).

983 As Q € O(G, e TAz2), this proves (4.1).
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e The proof of (4.2) uses the same ingredients.
From (2.32), let Q € O(G,e~T4z%) be such that F(Q) = C(G,e"T42). For any
j€[1,9] and any I € [0, o[, let

4= (er9) 3]

where

Q {)\ ”“)} — Q.

As previously, applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9,
Proposition 6.1}, since \; satisfies ®A; < rg + o for any j € [1, g, we obtain

Q[ NG >]H < Cprp(1 + T)2l0lelra+0)T (ZHQ[ o) >

The same computations as in (4.3) give that Q € O(G, z). Thus

C(G,2) < F(Q) < Cp py(1+ T)2l0le2retT p(()
= Op,g,n(l + T)z‘a|€2(TG+Q)TC(Ga efTAZ)

and (4.2) is proved. O

4.2. The minimal null control time.

This section is dedicated to the proof of Theorem 2.5 and Corollary 2.6 concerning
the minimal null control time. Proposition 2.11 and Corollary 2.12 concerning the
cost of null controllability will follow from the estimates obtained in the proof of
Theorem 2.5. This is discussed at the end of the current section.

Proof (of Theorem 2.5).
e We start with the proof of null controllability in time 7" > Ty(yo).

We set e =T — Ty(yo) > 0. Let G € G and let vg € L?*(0,&;U) be the solution
of the block moment problem (2.28) in time ¢ associated with z = e~y given by
Theorem 2.4 i.e.

€
[ (vet.8 2 6) dt=(cT4p06) . Vo By WAEG,
0
€ —
/ va(t)tle ™ dt =0, YA e A\G, Vi € [0,n][.
0
We still denote by vg € L?(0,T;U) the extension of vg by 0. Thus, vg satisfies
T
/ <UG(t), Bre~tA ¢>U dt = (e Ty, ¢)__ . VpeEy VAEG,
A :
T _
/ vg(t)tle ™ dt =0, VA€ A\G, VI € [0,n].
0

From (2.21), this implies that vg solves (2.19). Thus, the only point left is to prove
that the series (2.18) defining the control u converges in L?(0,T;U).
From Theorem 2.4 we have that

2]
~1-9 0 _
o122 0,70 = 06122 0,00y < Ce© 7 eToeTeC(G, e T Ayo).
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Studying the maximum of the function x € [0, +00) — Cz? — £z it comes that
eCT% < 60671*9 e%rc
where in the right-hand side the constant C' > 0 has changed but still depend on the
same parameters. Thus,
_ e,
lGllZa0.ma) < Ce% T eEereC(G e T y).

Using (4.1) we obtain

0

”UG”QL?(O,T;U) < Cele 7 (1 _|_T)2|a\e—§rce—2rc(T—s) C(G, o).

Recalling that e = T — Ty (yo) this gives
(4.4)
C _ T—Ty(yq)
lvll3z0.r0) < Cexp [ —————— | (1+T)2ele=—2
(T — To(yo))™°

Recall that in (2.30) we have defined Ty(yo) by

ra =26 ToWo) (@, ).

1 +
To(y) = lim sup - C(&¥0)
Geg 2ra

Thus, when r¢ is sufficiently large, we have

e—2raTo(yo) C(G, yo) < exp (T - Zo(yo)rg> )

Together with (4.4) this implies, for r¢ sufficiently large,

C «
HUG||2L?(0,T;U) <Cexp | ————— | (1 + T)2| |exp (—

T — To(yo) )
_0 ra
(T — To(yo)) *°

4

and proves that the series

(4.5) u = Z va(T — o)

Geg

converges in L?(0,T;U). This proves null controllability of (1.1) from yo in any time
T > To(yo)-

e We now end the proof of Theorem 2.5 by proving that null controllability does not
hold in time T' < Ty(yo). The proof mainly relies on the optimality of the resolution
of the block moment problems given in Proposition 2.3 (see (2.26)).

Let T > 0. Assume that problem (1.1) is null controllable from yy in time 7.
Thus there exists u € L%(0,T;U) such that y(T) = 0 and

llull 20,70y < Cr |lyoll_ -

Let v := —u(T — ). Then, for any G € G, v satisfies (2.282a) with z = e~ T4y,.
From (2.26), this implies
2 _
46)  ChlwllZs = lulZero = 10122010 = ComraC(Gre™ yp).
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Applying (4.2) we obtain
C(G,y0) < Crpome®eTC(G, e T y).
Together with (4.6) this implies

(4.7) C(G,90) < Crpomra ||yo||2_<> e?ret.
Getting back to the definition of Tp(yo) given in (2.30), this implies that T > Ty (yo)
and ends the proof of Theorem 2.5. ]

REMARK 4.1. It is worth noticing that the control vg constructed is only active on
the time interval (0,7 —To(yo)). Thus, whenever To(yo) > 0, the series (4.5) defining
the control u proves that it is possible to control yo to 0 in any time T > To(yo) with
a control that is identically vanishing on the time interval (O7 To (yo)).

We now turn to the proof of Corollary 2.6.

Proof (of Corollary 2.6). By definition, we have Ty(Yy) = sup,,cy, To(yo). Using
the definition of C(G, Yy) and Theorem 2.5, it directly comes that

In* Y,
To(Yy) < Hmsupw_
Geg 2rg

We now focus on the converse inequality. Let T' > 0 such that

In* Y;
T < limsup M
Geg 2rg
and let us prove that T' < Ty (Yp).

There exists ¢ > 0 and a sequence of groups (Gj)reny € GV such that for any
k € N*, there exists yox € Yy with |lyo x|l _, = 1 satisfying

!
(4.8) T4 e < mCGHYok)
2ra,

By contradiction, assume that for any yo € Yy, we have T > Ty(yo). Thus,
from (4.7), there exists Crp .5,r, > 0 such that for any k& € N*

In C(Gkn yo,k) < In CT;IJ;Q;"%TA
2TGk - 2er

+T.

Taking k sufficiently large, this is in contradiction with (4.8). d

We end this section with the proof of Proposition 2.11 and Corollary 2.12 con-
cerning the cost of null controllability.

A careful inspection of the proof of null controllability in time T' > Ty(yo) detailed
in Section 4.2 allows to give a bound on the cost of controllability.

Proof (of Proposition 2.11 and Corollary 2.12). The proof of Proposition 2.11 fol-
lows directly from (2.18) and (4.4).

The proof of Corollary 2.12 then follows directly from Proposition 2.11, assump-
tion (2.39) and the estimate

Co,s
Yoo Con s
Geg .
proved in [12; Proposition A.5.32]. d
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5. Computation of the cost of a block.

In this section we prove more explicit formulas to estimate the cost C(G,yo)
of the resolution of a block moment problem depending on the assumptions on the
eigenvalues in the group G. More precisely, we prove here Theorems 2.8 and 2.10.
For pedagogical purpose, we start in Section 5.1 with Theorem 2.8 for algebraically
(and geometrically) simple eigenvalues i.e. when ay = v, = 1 for any A € G. Then,
in Section 5.2, we prove the general statement of Theorem 2.8 that is when all the
eigenvalues in the group are geometrically simple i.e. vy =1 for any A € G.

The formula for the cost C(G,yo) when all the eigenvalues in the group G are
semi-simple (i.e. ay =1 for any A € G) stated in Theorem 2.10 is then proved in
Section 5.3. The extension to spaces of initial conditions (2.34) and (2.38) does not
depend on the matrix M and follows directly from Lemma B.1. Thus, their proofs
are not detailed here.

When both algebraic and geometric multiplicities appear in the same group we
do not get a general formula but describe the procedure on an example in Section 5.4.

Recall that from (2.32), computing C(G,yo) is a finite dimensional optimization
problem given by

C(G,yo) = min{F(Q) Qe OG, )N ng\}

where the function F is defined in (2.25), the constraints associated with O(G, y) are
defined in (2.23) and Ug is defined in (2.31).

5.1. The case of simple eigenvalues.

In all this section, we consider the simpler case where a) = 7, = 1 for every
A € G. Thus, in the rest of this section, we drop the superscript 0 associated to
eigenvectors.

We start with the proof of the invertibility of the matrix M stated in Proposi-
tion 2.7.

Proof. Recall that, as ay = v, = 1, the positive semi-definite matrix M is defined
in (2.35). Let 7 € CY be such that (M7, 7) = 0. Then, for each I € [1, g, we have

<FlT, ’7'> =0.
We prove that 7 = 0. By contradiction let
| = max{j € [1,9] s 75 # 0}.

Then from (2.35) this leads to (I'lr,7) = ||b[)\l}||[2j |71/2. Using (2.14) implies 7, = 0.
This is in contradiction with the definition of [ which proves the invertibility of M.O

We now prove Theorem 2.8.

Proof. First of all, notice that the function F' to minimize reduces to

FE) =Y [lok,... 5|
j=1

and, as yx» = ay = 1, the constraints defining the set O(\;,yo) reduce to

(Q,05) 1 = (Yo, 85) o, -
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Thus, the minimization problem reduces to

(5.1) C(G.yo) = min {F(Q) Q= (Q,...,Q,) € U such that

<Qj7bj>U = <y07¢j>—o,<>7 Vj e [[Lg]]}'

For the sake of generality, let us consider for this proof any wi,...,wy € C and the
more general constraints
(5.2) <Qj’bj>U = Wy, Vj S Hl,g]].

Using the formalism of divided differences, this is equivalent to the family of con-
straints

(5.3) (Q.0)y A, N = w0 N Vi€ L)
We consider the constrained complex minimization problem
min {F(Q); Q= (Q,...,Qy) € UL such that (5.3) holds}.

It has a unique solution, which is characterised by the existence of multipliers (12;)c1,4] C
C such that

Ga) S (HD )00 i )

Jj=1

for any Hy,...,Hy € Ug.
Then, for a given g € [1, ¢g], using Leibniz formula [12, Proposition A.2.11], the
constraints (5.3) can be rewritten as

q
(5.5) WAL - A = (D) M, Z RYVERSIO VI NP VAR Vi

Jj=1

To relate (5.5) and (5.4), we look for Hy, ..., H,; € Ug such that, for a given g € [1, g]
we have

_ _ BN, ...\, for j <g,
H[AL, ... 0] = A 2 .
0, for j > q.

This can be done by setting Hy; = b[A1, ..., A\y] and, from the interpolation formula [9,
Proposition 7.6], by defining H; by the formula

H, Z(rp —m)mxl,...,m, vj € [24].

i=1 \k=1

Then, from (5.5) we obtain

WA, A =D (DL N HD LN,

j=1
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Now relation (5.4) leads, after conjugation, to

W gl = ST (H )y s ).

The application of Leibniz formula [12, Proposition A.2.11] yields

=Y (z <H[A1,...,m,b[Al,...,AJ—]>U>

j=1 =1
g min(j,q)
= ZWJ <b[)‘l7 ’)‘q]vb[)‘la ’)‘J]>U
j=1 =1
Conjugating this relation leads to
o g min(j,q)
w[)‘lv 7)‘q] = ij <b[)‘17 ﬂ)‘J]ﬂbP‘lv >/\q]>U
j=1 1=1
g 9
= ZijFIQJ = (Mm),,
=1 j=1

Let

£ = e CI.

We have just proved that m = M~1¢. Getting back to (5.4) with H = Q together
with the constraints (5.3), we obtain

Q) =3 @by (. ) = (M76.8).

With the specific choice, w; = (yo, ¢;) _ ., this ends the proof of Theorem 2.8 with
the extra assumption that ay =1 for all A € G. Indeed, by anti-linearity we have

w[)\l,...,/Tj]:<y0,¢[/\1,...,)\j]>_070, VJE Hl,g]] O

REMARK 5.1. As mentioned in Remark 2.4, estimate (5.1) implies that the cost
of the block G (i.e. the quantity <M‘1§,§>) can be estimated using any eigenvectors:
there is no normalization condition.

REMARK 5.2. Rewriting the constraints in the form (5.3) is not mandatory but,
as the function to minimize involves divided differences, it leads to more exploitable
formulas and will ease the writing when dealing with algebraic multiplicity of eigen-
values. Dealing directly with (5.2) would lead to the expression (D.9) for the cost of
the block G as it will appear in the proof of Theorem 2.10.
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5.2. The case of geometrically simple eigenvalues.

The proof of Proposition 2.7 and Theorem 2.8 under the sole assumption vy =1
for any A € G follows closely the proof done in Section 5.1. The main difference is the
use of generalized divided differences (see [9, Section 7.3]) instead of classical divided
differences as detailed below.

Proof (of Proposition 2.7). Due to (2.24), for any [ € [1,|«|] the multi-index

put — p!=1 is composed of only one 1 and g — 1 zeros. Thus,

b =
for a certain j € [1,¢]. From (2.14) it comes that
b [AE“L‘“Z’I)} £0, Vie[Llal].
The rest of the proof follows as in Section 5.1. O

Proof (of Theorem 2.8). As yn = 1, the constraints defining the set O(\;,yo)
reduce to

1
l r * * r
> (5,857 Z (QF, B* (A" = X))"dh),,
<y0,¢>l> oo VLET0, 04l
-(1+1) . .
By definition of (£2,b),, [ ] this is equivalent to
(1+1)
<Q7 b> |:)‘ i| < 07¢l> o0 vl e [[Oa a; [[
Thus,
. O A0 ar—1 0 ag—1 o
(5.6) C(G,yo) —mm{F(Q), Q=(00,..., .., 00 ..., Q%) e UL
—(+1) .
such that (Q,b),, |:)\j } = <y07¢§->70)0, Vi e[l,g], Vi e [[O,aj[[}.
For the sake of generality, let us consider for this proof any

0 a;—1 0 ags—1 «
(wl,.. W Wy, W )E(CH

and the more general constraints

(. b),, [/\ ““)} —wl, Vje[lg], Vie[oal

VR
From (2.24), this is equivalent to the family of constraints
.80y "] =w [N"]L vp e [ all,

and we proceed as in Section 5.1. The only difference is the use of generalized divided
differences. For instance, the equation (5.4) now reads

ol ol l
Z<H[>\.(“ R IwGR) > Zml (H,b)y "), VH = (H') e U,
=1

The rest of the proof remains unchanged. 0
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REMARK 5.3. As mentioned in Remark 2./, estimate (5.6) implies that the cost
of the block G (i.e. the quantity <M’1f,§>) can be estimated using any eigenvectors
and any associated Jordan chains.

5.3. The case of semi-simple eigenvalues.
We start with the proof of Proposition 2.9.

Proof (of Proposition 2.9). Recall that the positive semi-definite matrix M is de-
fined in (2.37). Let 7 € C7¢ be such that (M7,7) = 0. Then, for any [ € [1,¢],
<FlT, T> = (0. We prove that 7 = 0. By contradiction let

I =max{j € [1,7¢]; 75 # 0}
and [ € [1, g] be such that
Mt <l<m+o

with the convention that = 1 when ig v1. We denote by o € C" the I*® block of 7
i.e.
Typ4-+y—1+1
o= :
Tyit+m

From (2.36) we have §7 = 0 when i < [. Thus all the blocks (i, j) of T are equal to 0
when 4, j € [1,1]. This leads to

<I‘l7, ’7'> = |5ll|2 (Gramy (b1, .,biy)0,0).

As the eigenvalues A1,..., )\, are distinct it comes that §! # 0 (see (2.36)) which
implies
(Gramy (by1,...,b1,4,) 0,0) =0.
From (2.14), we have that b;1,...,b; 4, are linearly independent. This proves the
invertibility of Gramy (b;,1,...,b,,) and gives ¢ = 0. This is in contradiction with
the definition of | which proves the invertibility of M. 0
We now turn to the proof of Theorem 2.10.

Proof (of Theorem 2.10). First of all, notice that the function F' to minimize
reduces to

F) =Y [lok,... 5|
j=1

and, as ay = 1, the constraints defining the set O(\;, yo) reduce to

<QJ7B*¢>U = <y07 ¢>—<>,<>7 v¢ S Ker(A* - A_7)
To simplify the writing, let us consider the linear maps
(o, B"¢j1)ys
Bj = : c E(U, (C’Yj).

<.7 B*djj?’yﬂ' >U
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Then the constraints defining O(\;,yo) can be rewritten as the equality

(Y0 j1) 0

(5.7) B;Q; = :
<y07¢ﬁ71>—op

Thus,

(5.8) C(G,yo) = min {F(Q) Q= (Q,...,Q,) € UL
such that (5.7) holds for any j € [[1,g]]}.

For the sake of generality, let us consider for this proof, for any j € [1, g], any w; € C%
and the more general constraints

(59) Bij = Wj, Vj c [[].,g]]

As the w;’s have different sizes we avoid in this proof the use of divided differences
to rewrite the constraints. This is why we end up with the formula (2.37) rather than
an adaptation of (2.35) (see also the discussion in Remark 5.2).

Arguing as before, the solution of our optimisation problem satisfies

g g

(5.10) Y (HQX1, ..., AL, A, =Y (BjHjmy), VHy,... Hy € Ug,
j=1 j=1

for some m; € C%,j=1,...,g.

Recall that in (2.36) we defined the numbers

=TI (v=x).  Viel2ql

Then, from the interpolation formula [9, Proposition 7.6], we obtain that
.1) 0 = S FOlN .
1=1

For any H € Ug and i € [1,g], let us design Hl(i), . ,Héi) € Ug such that
(5.12) HON, ..., N =6iH, Viel[l,i].

To do so, we set H 1(i) = H then, using the interpolation formula [9, Proposition 7.6],
we define recursively

i I = :
HJ(Z) :Z ‘le(l)[A17"'7>\l} = (Z(SZ(S{) H:a§l)H
=1

=1
with
g min(ij) _
(5.13) al’ =05l = > oiel.
=1 =1
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This ensures (5.12). Plugging this set of values H](i),j =1,...,¢1in (5.10) and taking
into account (5.11), leads to

<
Il
—

<
Il
—

(5.14) Q=" alBrm;.

Together with (5.9), using (5.13), we obtain that

g
Wi = Z ;l)B B*mj

:ii( ) (i2,) m,

<.
=

where M is defined in (2.37) and (Mm); € C” denotes the i*" block of Mm € CY¢.
Finally, if we set
w1

=11 | eCe,
Wy

we have proved that the multiplier is given by m = M~!¢. Applying (5.10) with
H; = Q; and using the constraints (5.7) leads to

= >l .. M= (g6,

which proves the claim. 0

REMARK 5.4. As mentioned in Remark 2./, estimate (5.8) implies that the cost
of the block G (i.e. the quantity <M‘1§,£>) can be estimated using any basis of
eigenvectors.

5.4. Dealing simultaneously with algebraic and geometric multiplici-
ties.

The proof of Theorem 2.8 strongly relies on the use of divided differences to rewrite
the constraints whereas the proof of Theorem 2.10 is based on the vectorial writing
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of the constraints through the operators B; € L£(U;C%). As the target spaces of
these operators do not have the same dimension, one cannot directly compute divided
differences. Thus, the setting we developed to compute the cost of a given block does
not lead to a general formula when both kind of multiplicities need to be taken into
account in the same group. However, for actual problems, the computation of this
cost is a finite dimensional constrained optimization problem which can be explicitly
solved.

Let us give an example of such a group that does not fit into Theorem 2.8 nor
into Theorem 2.10 but for which we manage to compute the cost by hand. To simplify
a little the presentation, we give this example in the case of real Hilbert spaces and
real eigenvalues.

We consider a group G = {\1, A2} of two distinct eigenvalues such that vy, =
ax, =2 and vy, = ax, = 1. Let (¢9 1,47 ,) be a basis of Ker(A* — A1) and ¢9 | be
an eigenvector of A* associated to the eigenvalue Ag. Assume that the generalized
eigenvector (bil is such that

(-A /\1)(2511 1la

and that {¢? |, ¢1 1,5} forms a basis of Ker(A* — A1)?.
For this group, in the same spirit as in Theorems 2.8 and 2.10, we obtain the
following result.

PROPOSITION 5.1. For any yo € X_o, we have

Yo,
Yo, ¢12
Yo, ¢11
Yo, ‘2521

\/\/\/\/
f>
°

(
C(G,yo) = <M_1§,£> where £ = 2
(

and M is the invertible matriz defined by

M= GramU(bl 1 b 2 bl 15 b8,1)
+ Gramy (0, 0, b9 4, 669 ;)
+ Gramy (0, 0, 0, 6% )
with § = Ay — Aq.
Proof. Let
(w?,lvw?,zawiuwgg)t € R%.

As in the proofs of Theorems 2.8 and 2.10, the goal is to compute the minimum of
the function

F:(99,01,08) € U3 — 192 + |21 + 123, A2 %,
under the 4 constraints
<Q§’,b§’z> =w); Vi€ [l,] Vi€l 2],
(Q, 1,1>U+<le (1),1>U =wi -
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Then, the Lagrange multipliers m9 ;,m{ 5, m{ ; and m3 , satisfy the equations

(5.15) (8, HY),, + (i), + (D o B Aal) = mS y (H0,80),,
mf g (D005, + mi o (CHOLBEL )y + (LWL )y )+ md o (S, 8,4,
for every HY, Hi, HY € Ug. Considering successively
HY =b1,, Hyi=0, Hy="b,

H?:b(l),Zv ]:Il1 =0, Hg :b(lJ,Qa
HY = b%,l? H{ = b(lj,l? Hj = bh + (A2 — )\l)bg,p

and
HY =03,, Hi=M2—A)b9,, HI=(1+X—M)>+ A= A)") b5,

W?,l m(l),l
W mY

and plugging it into (5.15), we obtain that w%’2 =M m172 . Then, the same

1,1 1,1

w(z),l mg,l

argument as in the proofs of Theorems 2.8 and 2.10 ends the proof. ]

6. Application to the study of null controllability of academic exam-
ples.

In this section we provide examples to illustrate how to use the formulas obtained
in Theorems 2.5, 2.8 and 2.10 in order to compute the minimal null control time.

We start with academic examples for which computations are simpler. Then, in
Section 7, we study coupled systems of actual partial differential equations of parabolic

type.

6.1. Setting and notations.
Let A be the unbounded Sturm-Liouville operator defined in L?(0,1;R) by

(6.1) D(A) = H?*(0,1;R) N Hy (0, 15R), A= —0,(y0, ) +ce,
with ¢ € L®°(0,1; R) satisfying ¢ > 0 and v € C1([0, 1]; R) satisfying [10nlf] v > 0.
The operator A admits an increasing sequence of eigenvalues denoted by (vk)gen~-

The associated normalized eigenvectors (¢ )ren+ form a Hilbert basis of L2(0,1;R).

REMARK 6.1. The assumption ¢ > 0 ensures that for any k > 1, the eigenvalues
satisfies v, > 0. From Remark 2.2, the controllability results proved in the present
article still hold when the function c is bounded from below.

To lighten the notations, for any I C (0,1) we set || o [|; = || ® || z2(7).
Let f : Sp(A) — R be a bounded function. Associated to this function we consider
the operator f(A) defined on D(A) by the spectral theorem by

(6.2) f(A) = Z f(wk) (e, SOk>L2(0,1;1R) k-

E>1
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6.2. Spectral properties of Sturm-Liouville operators.

Let A be the Sturm-Liouville operator defined in (6.1). All the examples studied
in this article are based on this operator. We recall here some spectral properties that
will be used in our study.

From [2, Theorem 1.1 and Remark 2.1], there exist ¢ > 0 and C > 0 such that

(6.3) 0 < Vg41 — Vg, Yk > 1,
1
(6.4) ok s o)l < OV, Vo € {0,1}, Vk 2 1,

and, for any non-empty open set w C (0, 1),
. inf .
(6.5) inf k[l >0

Moreover, using [12, Theorem IV.1.3], the associated counting function satisfies

(6.6) N(l,k)k(T) <Cyr, VYr>0,
and
(6.7) [Nwe (1) = N (9)] < € (14 VIr=sl) . vrs>0.

We also recall the classical Lebeau-Robbiano spectral inequality

(6.8) Z appr|| < CeCVVE Z arpr|| , VK >1,V(ag)r CR.

k<K o k<K "

Indeed, as detailed for instance in [12, Theorem IV.2.19], the proof of this spectral
inequality given in [27] directly extends to the low regularity coefficients considered
here.

6.3. Perturbation of a 2x2 Jordan block.

Let w C (0,1) be a non-empty open set and U = L?(€2). Let A be the Sturm-
Liouville operator defined in (6.1) and f(A) be the operator defined in (6.2) with
f:Sp(A) — R satisfying

Fe)l <5 k=1L

We consider the operator A on X = L2(0,1;R)? defined by

(6.9) A= (6‘ Aé(A)) . D(A) = D(A) x D(A),
and

(6.10) B:iuel <13u> .

Then,

P2

It is easy to see that (—.A, D(A)) generates a Cp-semigroup on X and that B: U — X
is bounded. Thus we consider for this example that X7 = X = X _..

42
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PROPOSITION 6.1. Let us consider the control system (1.1) with A and B given
by (6.9)-(6.10). Then, null-controllability from X _o holds in any time i.e. To(X_o) =
0.

Proof. The spectrum of (A*, D(A)) is given by

A={vr; k> 1 U{ve + f(vr); k> 1}

Recall that (v)r>1 satisfies (6.3), (6.6) and (6.7). From [12, Lemma V.4.20] it comes
that there exists x > 0 such that A € £, (2, 2, %7 n).
An associated grouping is given by

Gk = {Ak,l = l/k}7 if f(l/k) =0.

If f(vg) # 0 the eigenvalues A\ 1 and Ag 2 are simple and we consider the associated

eigenvectors
—f(y 0
¢2,1 = < f§ k)> Pk ¢2,2 = <1) Pk-

If f(vi) = 0 the eigenvalue Ay 1 is algebraically double and we consider the associated

Jordan chain
0 1
(b%,l = (1> Pk ¢I%;71 = (0) Pk

From (6.5) it comes that (2.14) and (2.15) are satisfied. Thus, from Theorem 2.5, we
obtain that for any yo € X_,

{Gk = {>\k,1 =V, A2 =g+ f(l/}c)}, if f(Uk) #0,

In™ C(Gk, yo)
T = lim sup ——— 290/
0(o) i sup = G

Let us now conclude by estimating C(Gx, yo)-

e Consider first that f(vg) # 0. Then, ¢[Ag 1, Ak2] = (é) pr and

1ok — 10k

f(v) =0

b[Ak,1s Akj2) = B d[Ak,1, Ak2] =

From Theorem 2.8 it comes that

C(Gryyo) = (MTE,6)

with
M = Gram(b[A,.1], b[Ae.1, Ae.2]) + Gram(0, b[Ay.o]) = (II@SIZ ||<p2||i)
and
ot ) (b
e\ (o))
Thus, |

S (—im e \? < (1) il >2
C(Gk,yo)—<y07( 1 )||90k||w><>,<>+ Yo, { o lokllw 7070.
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e Consider now that f(v;) = 0. Then, b[)\,(fi] = 0. From Theorem 2.8 it comes
that

C(Gk7 yO) = <M_1€7 £>
with

2 0
My, = Gram(b[Ay, 1], b[A)]) + Gram(0, b[Ax1]) = (llwglw ||w«||2) :

and

—_

<Z/o, ¢[>\1(<2,)]>_ 7

W lo)ee)

)

o < <y0,¢[>\k,1]>_<>,o> _ <y0’ (0> S0’€>_M

0,0

As previously,

0 Pk 2 1 Pk 2
C(Gw) = (i (- (o) )
(G- 30) <y <1> |sok||w>o,o -\0) Toulo /o

B

Gathering both cases and using estimate (6.5) we obtain, for any yo € X_,,
C(Gr,w0) < Cllwol*,,  Vk>1.

Thus,

In* C(Gx, yo)
T = 1. - I - O
olbo) =l sup == G 0

6.4. Competition between different perturbations.
Let wy,ws C (0,1) be two open sets with wy # @ and U = L?(2)2. Let By, By €
R3. To simplify the computations, we assume that

0
B; = | Bip
B; s

Let o, 8 > 0 with a # 8 and f, g : Sp(A) — R be defined by

0 _av 0 _py
f(Vk):§€ k, 9(%)256 b

As previously, we consider the associated operators f(A) and g(A) defined by the
spectral theorem and we define the evolution operator A on X = L2(0,1;R)? by

A I 0
(6.11) A=10 A+ f(A) 0 , D(A) = D(4)*,
0 0 A+g(A)

and the control operator by

U1

(612) B: ( ) clUw— 1wlulBl + ].WQU,QBQ.

U2
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Then, the observation operator reads

1 € X s (10.)1 (B1,2¢02 +B1,3<P3)>

B*:
Zz 1,,, (B2,2¢2 + B2 3¢3)

PROPOSITION 6.2. Let us consider the control system (1.1) with A and B given
by (6.11)-(6.12).
i. If wg = @, we assume that

(6.13) Bi2Bi3 #0.

Then,
Ty(X_.) = B+ min{a, B}.

it. If wo # &, we assume that
(6.14) (Biy+B3,) (Bis+B3s) #0.
(a) If By and Bs are linearly independent, then,
To(X-0o) = 0.
(b) If By and By are not linearly independent, then,
To(X_s) = B+ min{«, B}

Proof. Tt is easy to see that (—A, D(A)) generates a Cy-semigroup on X and that
B:U — X is bounded. Thus we consider for this example that X7 = X = X_, and
Yo=X_,.

The spectrum of (A*, D(A)) is given by A = J,~,; Gr where

Gy = {>\k,1 = Vg, )\k,2 =V + f(l/k), >\k,3 =V + g(l/k)}.

Again, since (vg)r>1 satisfies (6.3), (6.6) and (6.7), the application of [12, Lemma
V.4.20] yields the existence of £ > 0 such that A € L, (3,%,1,%). The sequence
(Gk)k>1 is an associated grouping.

The eigenvalues are simple and the corresponding eigenvectors are given by

. —f(vi) . 0 . 0
¢k,1 = 1 Pk, ¢k,2 = 1 Pk ¢k,3 = 0 Pk -
0 0 1

Thus, the assumption (2.15) hold. Moreover,

1., 901B12 1., orB1 3)
6.15 b = b = 1 ’ , b — 1 5
( ) ' ? (1w250kB2a2) s (1(412901632,3

From (6.5) and (6.13) or (6.14) (depending on the assumption on ws) it comes
that (2.14) is satisfied. Thus, from Theorem 2.5, it comes that for any yo € X_,,

In* C(Gk,90)
T =1 i L
0(vo) s G
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Let us now estimate C(Gy,yo). From Theorem 2.8 it comes that

C(Gr,y0) = <M_157§>
with
M =Gram (b[Ar1], b[Ak,1, Ae2), [ k.1, Ak2, Ak,3])
+ Gram(O, b[Ak,2]s b[ Ak 2, )\k,3]) + Gram(O, 0, b[)\k,g])

and

(Y0, [ Ak,1]) o0
g = <y07 (b[)‘k,l? )‘k,2]>—<>,<>

(Y0, D[ Mk,15 A2, Aka]) oo

Explicit computations yield

—f(vr) 1
PAk,1] = 1 Pks A1, A2l = | 0| ¢x,
0 0
and
1 fwi) = g(v)
A A A = -1 .
e A Akl = 2 ) R A

1. Assume that wy = @.
After the change of variables

the system under study reads

A 1 0 0
Oz+ [0 A+ f(A) 0 z=1gu(t,z) | 1],
0 0 A+g(A) 1

2(t,0) = 2(¢,1) = 0.

This leads to
b[Ak,1] = b[Ak2] = b[Ak3] = Lo, k.
Thus, M = [|¢x||2, I3 and

2 2
—f(vk) 1

C(Gk,yo) = Yo, 1 Pk + Yo, 0 L

[F=ry oy llok |y

0 0

—0,0 —0,0

2 Fvi) = 9(v) ’
1 B P
* <9(Vk)(g(’/k) - f(%))) <y0’ 11 Nl >

—0,0

From (6.5), we obtain for any yo € X_o,

1 2
9(vi) (9(ve) — f(%)))

C(Gr,y0) < Clwol, [ 1+ <
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ii.

This leads to

To(X o) < limsup —In" Jg(v) (9(ve) — f(Vk))|.
k—+o0 Vg

Conversely, with the particular choice
1 0
= — 10
Yo Z " P>
E>1 1

we have

2
1 1
C(Gr,y0) = .
(Ghow0) = ST, <g<uk>(g<uk> - f<uk>)>
Thus, from (6.5), we obtain

To(X—o) = To(yo) = limsup —In Jg() (g(v) = ()|

k— 400 Vi

which gives

To(X_.) = limsup — 9@ (97) = 101))]|
k—+o0 vy,

Then, the same computations as [9, Section 5.1.3] yield
To(X_.) = 6 + mina, 8}.

We now consider the case wy # .

(a) Assume that By and By are linearly independent. If necessary, we con-
sider smaller control sets so that w; Nws = &. As we will prove that
To(X_o) = 0, this is not a restrictive assumption.

To ease the reading we drop the index k in what follows. As pre-
viously, the vector £ is not bounded. Let us consider the dilatation
D. = diag(1,1,€) with

e=g(v)(9(v) - f(v))
and £ = D.£. Then, from Section D.1, it comes that
C(G.yo) = (MEE)
with
M =Gram (b[A1], b[A1, Aa], €b[A1, Az, As])
+ Gram (0, b[A2], €b[A2, A3]) + Gram(0,0, eb[As]).

As Hﬂ is bounded, we simply give a lower bound on the smallest eigen-

value of M. Using (6.15), it comes that

by — by
gw) = f(v)’

47

1
b[A1, A2] =0, b[A2,A3] = b[A1, A2, As] = E(bs —b).
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Thus,
M =Gram(by,0, b3 — by) + Gram(0, by, g(v)(bs — b))
+ Gram(O, 0, ebg).

This gives that, for any 7 € R, we have

(616) (M7, 7) = lIraby + 75(bs = bo)IIf + lIm2b1 + 9(v)73 (b — b)IIF
+ ¢ msballf -
To obtain a lower bound on this quantity we use the following lemma.

LEMMA 6.3. There exists C > 0 (independent of k) such that for any
017 03 € R7
16161+ Osbs |7, > C (67 +63) .

Proof. As w1 Nwy = 2,
16101 + O3bs]7; = (Bu261 + Bi,363)* [|okl|?,
+ (B2,201 + B27393)2 lonllZ,-
Using (6.5) it comes that
16161 + B3bs][7, > C ((31,291 + Bi363)° + (Ba261 + BQ,393)2)
-z B @I
By Bss) \0s

Since By and Bs are linearly independent, this ends the proof. ]

Applying this lemma twice to (6.16) yield
<MT,T> >C ((71 — 73)2 + Tg + (12 — g(l/)Tg)2 + g(l/)27'32 + 627';)
>C((n—73) 475 + (12— g(v)73)?) .

Taking into account that 0 < g(v) < 3 for v large enough, the study of
this quadratic form in R? leads to

<M’7’,7’> > C’(le+7'22 +T§).

Thus the smallest eigenvalue of M is bounded from below. This leads to
the boundedness of <M 3 E> which concludes the proof of case ii (a).

Assume now that By and B, are not linearly independent. Then, there
exist 1, 9 € R such that

21Bi1g+x2B13=0
I1B272 + $2B273 =0.

Up to a change of normalization of the eigenvectors (independent of k)

we obtain
1, 0orr1B1 2
by = by = by = [ 1" ’
! 27 (1W2<Pk$132,2

and this amounts to case i. 0
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7. Analysis of controllability for systems of partial differential equa-
tions.

We now turn to the analysis of null controllability of actual partial differential
equations. We consider here coupled systems of two linear one dimensional parabolic
equations.

7.1. Coupled heat equations with different diffusion coefficients.
In this application, we consider the Sturm-Liouville operator A defined in (6.1)
and we define in X = L?(0,1;R)? the operator

A:(E‘ d;), D(A) = D(A)?,

with d > 0. We will assume d # 1, since the case d = 1 is much simpler and already
studied in the literature: see the computations of Section 6.3 in the case f = 0 or, for
instance, [23] for a more general study based on Carleman estimates.

We will consider two cases : the case where two boundary controls are applied to
the system, and the case where we consider the same distributed control in the two
equations of the system.

7.1.1. Spectrum of A*. Let Ay :=Sp(A) = {v; k > 1} and Ay := dA;.
The spectrum of A* is given by A = A; U Ay which belongs to £, (2, 0, %, /1) for
some g,k > 0 (see [12, Lemma V.4.20]).
For any A € A, there are two non mutually exclusive cases:
o If A =1, € Ay, then we can associate an eigenvector given by

1
¢)\,1 - <5k> Pk,

with g = m. Note that € tends to zero when k goes to infinity.

o If A =di; € Ay, then we can associate an eigenvector given by

Pr2 = (2) P1-

It clearly appears that the elements in A; N Ag (if this set is not empty) are ge-
ometrically double eigenvalues of A*, since in that case ¢, 1 and ¢, o are linearly
independent.

Note that (2.15) holds for the choices of X} that we will make in the sequel, since
(¢r)k>1 is a Hilbert basis of L2(0, 1;R).

7.1.2. Two boundary controls. In this section, we study the following bound-
ary control system

(7.1)

Oy + Ay =0, t e (0,7),
y(ta 0) = BOUO(t)v y(t7 1) = Blul (t)7 te (OaT)v

with

(7.2) By = G) and By — (2) .
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The control operator B is defined in a weak sense as in [38]. The expression of its
adjoint is given by

5o (1) ex; o -5 ( %JD (IO,

Considering X = H}(0,1;R)?, we obtain that B is admissible with respect to X _, =
H71(0,1;R)2.

PROPOSITION 7.1. For any d # 1, there exists Yy a closed subspace of H~1(0,1;R)?
of finite codimension such that
o for any yo & Yo, system (7.1) is not approzimately controllable;
o for any yo € Yy, system (7.1) is null controllable in any time T > 0.

REMARK 7.1. The situation with a single control is quite different. Indeed, con-
sidering By = ((1)> and By = 0, it is proved in [5] that, when A is the Dirichlet

Laplace operator, approzimate controllability holds if and only Vd € Q and in this
case that

In™ (1 )
To(X_o) = limsup dist (/\’A\{/\}) .

A— oo A
AEA

With this formula the authors prove that, for any T € [0,400], there exists a diffusion

ratio d > 0 such that the minimal null control time of system (7.1) satisfies To(X_o) =
T.

REMARK 7.2. From the definition of Yy in the following proof, we directly obtain
that in the case where A is the Dirichlet Laplace operator on the interval (0,1), then
Yy = H1(0,1;R)2.

REMARK 7.3. The particular choice of By and By is done to simplify the com-
putations. Notice that with this choice, it is not possible to steer to zero the second
equation and then control the first equation. This would be the case with the simpler

choice
0 1
By = <1> and By = (O) .

Proof. Let us compute the observations associated to the eigenvectors of A*.
For any k > 1, we define s, € R be such that ¢} (1) = sk} (0). From (6.4), there
exists C' > 0 such that

1
(7.3) ° <lsg| <C, Vk > 1.
e For any A = v € Ay, we have
* o 1 + €k
(74) B (ZSAJ = Qﬁk(o) (—Sk8k> .

e For any A = dv; € As, we have

(75) Bora =4t ().

—s
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Due to (6.4) and (7.3), it comes that (2.14) holds for any simple eigenvalue \ €
(A1 \ Az) U (Az\ Ay).

However, for a geometrically double eigenvalue A € A; N Ay, there can be non-
observable modes. Indeed, let k£ and [ such that A = v = dv;. Then, the condition

Ker(A* — X\) NKer B* # {0}

is equivalent to the fact that B*¢, 1 and B*¢r2 given by (7.4)-(7.5) are linearly
independent, which is itself equivalent to the condition

(76) SKEK :Sl(1+€k).

Due to the asymptotics ¢, — 0 it turns out that the set
k—4o00

O .= {)\ =y, =dy € A1 n A2 ; (76) hOldS}7

is finite.

For any A € ©, we can find ¢\ € Span(¢y 1, @»,) such that B*¢y = 0 and ¢y # 0,
that is a non observable mode.

Finally, we introduce the set

Yo i= {0 € X o5 (4o, ) o, =0, VA€ O}

which is, by construction, of finite codimension. For yy € Y, the associated moment
problem reduces to the one where the geometrically double eigenvalues A € © are now
considered as simple eigenvalues with associated eigenvector ¢ 2, since the moment
equation is automatically satisfied for the other eigenvector 1y.

We consider now a grouping G as given by Proposition 2.2, with p =2 and o > 0
small enough such that for ¢ € {1,2} we have

(7.7) A=l >0, YA\ pe A \#p
Hence, Theorem 2.5 gives the formula

Int C(G
To(yo) = lim sup M
Geg 2ra

We will prove in the sequel, analyzing the different possible blocks, that

(7.8) sup C(G, yp) < 400,
Geg

which will let us conclude the claim, that is Ty(yg) = 0.
e Blocks of a simple eigenvalue.
We immediately obtain

2
‘<y0, ¢)\,1>,0’0
((1+ex)? + seq) e, (0)2

,if A= Vi,

C((;,yo)::

2
‘ (Yo, Dr2) 4

(1+57) [@1(0)[?
51
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Using again (6.4) the estimate (7.3) and the fact that (ex)x goes to 0 as k goes
to infinity, we observe that the blocks consisting of a single simple eigenvalue
do not contribute to the minimal time: the quantity C(G,yo) is bounded
independently of G.

Moreover, by the discussion above, the blocks consisting of a single double
eigenvalue belonging to © do not contribute either.

Blocks of two simple eigenvalues: G = {A1 := v} U {A2 := dy}.

From Theorem 2.10 we obtain

C(G’ yO) = <M71'£, £>

with
M = Gram(b[\1],b[\2]) + Gram (0, (A2 — A1)b[A2])

- <<y07¢)\1,1>_0,0) '

<y05 d))‘272>—<>,<>

and

To ease the reading, we use the following change of normalization for the
eigenvectors

T Oaa T P2
¢)\1 . —(P;C(O)’ ¢)\2 . —@;(0)7

and we denote by M and §~ the associated quantities. Notice that, due to (6.4),
the quantity Hf” is bounded. Thus, to estimate C(G, yo) we give a lower bound

on the smallest eigenvalue of M. We have
M = Gram (b[A1], b[A2]) + Gram (0, (A2 — A1)b[A2])

_ (esi+ 1+ ) 1+ g+ cnssi n 0 0
14 e, + €LSES 1+ s7 0 Me—M)2*(1+s?))"

=Tt

For any 7 € R?, <MT,T> > <F17, ’7'>. Then,

det(T'!) (1 +ex)si —ersk)?
inSp(T'") > =
min Sp(I") = tr(CY) 14 (1+ep)? +e2s2 + 57

From (7.3), it comes that, for k large enough, min Sp(I'!) is bounded from
below by a positive constant independent of G.

Blocks made of a geometrically double eigenvalue which does not belong to
O:

Consider G = {A} with A = v, = dv; € A; N Ay. With the same notations as
previously, Theorem 2.10 implies that

where
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and

M= Gram(B o1 B ¢>"2) =T

—¢,(0)" —¢;(0)
Notice that since A ¢ ©, we have det(I'') = ((1 4+ &x)s; — epsp)? > 0.

Thus, the study of the previous item proves that, for A large enough, min Sp(T'!)
is bounded from below by a positive constant independent of \.

Gathering all cases, we deduce (7.8) and the proof is complete. ]

7.1.3. Simultaneous distributed control. Let us now consider the following
control problem

Oy + Ay =1, G) u(t,z), e (0,7),

y(t,0) =y(¢,1) =0, te (0,7).

(7.9)

In that case, the observation operator B* is given by

B*:(£> € X7 1,(f +9),

and is clearly admissible with respect to the pivot space X. Our result concerning
this example is very similar to Proposition 7.1 and reads as follows.

PROPOSITION 7.2. For anyd # 1, there exists Yy a closed subspace of H~1(0,1;R)?
of codimension less or equal than 1 such that
o for any yo & Yo, system (7.9) is not approzimately controllable;
o for any yo € Yy, system (7.9) is null controllable in any time T > 0.

REMARK 7.4. During the proof it will appear that there exists a countable set
D C (1,4+o0) such that for any d ¢ D U {1}, we have Yy = H~1(0,1;R)?, which
means that our system is null-controllable at any time T > 0 for any initial data. In
particular, it is noticeable that this property holds for any d < 1, that is in the case
where the diffusion coefficient is lower in the second equation (the one which does not
contain coupling terms).

Proof. We start by computing the observations related to the eigenelements of
A*
e For any A = v, € Ay, we have
(710) B*(ﬁ)\,l = (1 + 5k)90k1w~

e For any A = dv; € Ao, we have
(7.11) B o2 = ¢il,.

If for some k we have 1+ ¢ = 0, then we clearly get chat (2.14) does not hold. We
can thus introduce the set

@Z:{)\:l/k;].-f—{-?k:()},

which is of cardinal less or equal than 1 (by definition of the sequence (eg)g, see
Section 7.1.1). Note also that for d < 1, we always have €, > 0, so that © = &, see
Remark 7.4.
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We notice however that, for any A = di;, we have B*¢y 2 # 0 and that if A =
v =dy € Ay N Ay, with A € O, then B*¢x 1 and B*¢y 2 are linearly independent.
Let us introduce

Yy = {yo € X; s.t. <y07¢>‘71>X = O,V)\ S @} .

By definition of this set, for any initial data in Yp, the moment equation (1.2) related
to the eigenvector ¢, ; for A € O is automatically satisfied for any control since both
members are equal to zero.

As in the proof of Proposition 7.1, we consider a grouping G as given by Propo-
sition 2.2, with p = 2 and ¢ > 0 small enough such that for ¢ € {1,2} we have

|)‘_M|>Qv VA?MGAMA#/U’
Hence, Theorem 2.5 gives the formula

In*C(G
To(yo) = limsup 2 2 %) ( ,yo).
Geg 2rg
Let us now evaluate the quantities C(G,yo) for every possible block.
e Blocks made of a simple eigenvalue that does not belong to ©.

We immediately obtain

2
| (o, dr1) | A= 1y
(L+er)?lexl2 ’
C(GvyO) = |< d) > |2
s E

which is a bounded quantity thanks to (6.5) and the fact that (i) tends to
zero at infinity.

e Blocks made of two eigenvalues: G = {A; := v} U {2 := dy;}. Note that
the proof below works exactly the same in the case where Ay # )Xo, that is if
the two eigenvalues are simple, or in the case where A\; = Ay, that is if there
is only a geometrically double eigenvalue.

By the discussion above, we can assume that \; does not belong to © (if
not, this block has to be considered as a block containing only the simple
eigenvalue \g).

Thanks to Theorem 2.10 we have C(G,yo) < (]T/[/_lg,Q where

M = Gram(lws%, 1w<pl)a

(Yo, dar1) x
= 14 ¢
(Y0, Drs,2) x -
By using the Lebeau-Robbiano inequality (6.8), and the fact that |A; — Ag| <
0, we have that

(MT€,8) < Cre®VTele)” < Coe™ V™ |lyol %

where C1, Cs only depends on p, w and on the operator A.
All in all, we have obtained that

In™ C(G,y0) <C (14 rq).
Gathering all cases, we conclude that Tp(yg) = 0.
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7.2. Other applications.
Let us consider the following control system

(7.12)
Oy + (—am 5 amicQ(xQ y= (lwu(()t,x)) - BRSO,

y(t,0) =y(t,1) =0, te (0,T),
y(0,2) = yo(z),

where c1,c € L%(0, 1;R).
With the technics developed in this article, one can prove the following control-
lability result.

PROPOSITION 7.3. For any non-negative potentials ci, ca, system (7.12) is null
controllable in any time T > 0 from L?(0,1;R)2.

The proof follows closely the computations done for the same system with a boundary
control in [9, Section 5.2.1]. The only difference is that the contributions of terms of
the form ||B*e||, = || ® ||, are estimated using (6.5).

As the result stated in Proposition 7.3 is already known (it is for instance an
application of [23] with a proof based on Carleman estimates), we do not detail the
proof here to lighten this article.

With the technics developed in this article we can also analyze null controllability
for the following control system

Oy + <13 qgff)) Y= <1wu(()t,x)) , (t,z) € (0,T) x (0,1),
y(tﬂ 0) = y(tv 1) =0, te (O,T),
y(O,x) = y0($)7

where the coupling function ¢ belongs to L>(0,1;R) and w C (0,1) is a non empty
open set. We manage to characterize the value of the minimal null-control time
without any other assumption on ¢ and w.

This analysis extends previous results of [14] where approximate controllability
was studied and those of [6] where null controllability was studied in the particular
case where A is the Dirichlet Laplace operator and w is an interval disjoint of Supp q.
Our formalism also allows us to recover null controllability in any time when ¢ has a
strict sign on a subdomain of w as proved in [23] by means of Carleman estimates.

Since the analysis of this example makes use of refined spectral properties of
the underlying operator whose proofs are rather intricate, we will develop it in the
forthcoming paper [13].

(7.13)

Appendix A. Some refinements in the case of scalar controls.

In [9], the block moment method was introduced to solve null controllability
problems with scalar controls (U = R). With respect to block moment problems, the
main result of this paper is [9, Theorem 4.1]. In this work there were no assumptions
on the counting function. The spectrum A was only assumed to satisfy A C [1,+00)

and 1
— < .
Z h\ 400
Using the slightly more restrictive condition (2.9) on the asymptotics of the count-

ing function we allow the eigenvalues to be complex valued and we obtain sharper
55

This manuscript is for review purposes only.



1801
1802

1803

1804

1806
1807

1808

1810

1811

1812
1813
1814
1815

1816

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

1829

estimates together with the explicit dependency of the constants with respect to the
final time T (see Remark 2.8 for possible applications of such estimates). This im-
proved resolution of scalar block moment problems reads as follow and is proved in [12,
Theorem V.4.25].

THEOREM A.l. Let p € N*, o, 7,6 >0 and 0 € (0,1). Assume that
A€ Ly(p,o,7,0,K).

Let G = {A\1,..., g} C A be a group satisfying (2.6)—(2.8). Let T € (0,4+00) and
n € N*. For any multi-index o € N9 with |a|eo < n and any

_ 0 a;—1 0 ag—1 @
w-(wl,...,wl yeeey Wy oo e, W'T )E(C‘ L

there exists vg € L?(0,T;C) satisfying

T ) —
(A.1a) / vg(t)( l') e Mt =wh, Vje[l,g], V€ [0,q4,
O .

T AV
(A.1b) / vg(t)( ;) e~ Mdt =0, VA€ A\G, Vie[0,n]
0 !

The solution vg satisfies the following estimate

)

C T —
(A.2) lvalz20,m;0) < Cexp ( 0 ) exp (7‘@) exp (C’r%) max ’w [/\EH)]
T1-6 2 Me<N9

n<a

where rg is defined in (2.16) and with the convention

—(1+1 .
w [)\j( + )} :w;», Vj e [1,9], VI € [0, a;].
The constant C > 0 appearing in the estimate only depends on the parameters T, p,
0, n, 0 and k.

Moreover, there exists a constant Cp, .. > 0 such that any vg € L*(0,T;U)
solution of (A.la) satisfy

(A.3) lvallz207:0) = Cpara mas | [X"]] .
NE<N9
p<la

REMARK A.1l. If every assumption hold except (2.10) in the definition of the class
Ly(p,0,7,0,K), Theorem A.1 remains valid replacing 0 in estimate (A.2) by any
0" € (0,1) (see [12, Theorem V.4.25]).

Since every estimate on the resolution of block moment problems proved in this
paper follows from (A.2), this remark holds in the whole current paper. Notably it
applies to Theorem 2.4 and to the estimates of the cost of controllability stated in
Proposition 2.11 and Corollary 2.12.

The application of this theorem to the resolution of scalar block moment problems
can be found in [12, Section V.5.3]. Notice that in the estimate (A.2) the term ers7/2
can seem to be annoying. In [12, Corollary V.5.29], it is dealt with solving scalar
block moment problems in small time 7. The same strategy is used in the present
paper to prove Theorem 2.5 in Section 4.2.

Appendix B. An auxiliary optimization argument.
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1830 LEMMA B.1. Let Y be a closed subspace of X_,. Let g € N* and 1,...,%4 €
1831 Py XZ. Foranyy €Y, let

(v, ¢1>—<>,<>
1832 £ = :
<ya 'wg>—<>,<>
1833 Then, for any positive semi-definite hermitian square matriz M € My(C), we have
s (B) sup (Mg, 8,) = p(Gy M)
Il ﬁey 1
yll_o=

1835 with Gy = Gramxy; (¥1, ..., %y).

In the course of the proof we will use that there exists an isometric linear bijection
I:X_,+— X such that

Y 0) 60=UYy,90)s, Vy€X_o,Vpe X
Note that it satisfies

Iy, 0)ee = (v, T "0) . VyeX_o,Voe X,

Proof. Let S be the value of the supremum in the left-hand side of (B.1). By
assumption on the (1;);, we first observe that the supremum can be taken on the
whole space X _, instead of Y without changing its value. Then, for any 1 <i < g,
we have

<y7 ¢i>7<>)<> = (ya I_llbi)f<> )
and therefore the value of S does not change if we take the supremum over the set
{Iv’ = Span(lth s alzg) C X—<>7
1836 with
1837 (B.2) Ui = I
We write any element y € U as follows y=>7, :cii/;i, with © = (2;) 1,9 € C?
so that we can compute

@@wzi%@@xfmwhwqwm

Jj=

—

1) = 3 S ity (55.5) = (Sma),
i=1 j=1

where GJ is the Gram matrix in X_, of the family {7;1, e Jg}. Using that [ is an
isometry from X_, onto X7 it actually appears that
G 7= Gy.
Finally, we have proved that
2
& =Gyz, and |[jyl|IZ, = (Gyz,z).
The supremum we are looking for thus reads

S= sup (MGyz,Gyz).
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1838

1839

1840

1841

1842
1843
1844
1845
1846
1847
1848

1849
1850

e By compactness, we know that this supremum is actually achieved at some
point xzg € CY9, that is

(MGyzo, Gypzo) =S, and (Gyzo,zo) = 1.
The Lagrange multiplier theorem gives that there exists A € C such that
(B.3) (MGyxo, Gph) = A (Gyzo, h), VheCI.
Taking h = x( in this equation, we get
(MGyxo, Gypzo) = A{Gyxo, To) = A,

and thus A = 5, in particular A is a non negative real number.
From (B.3), we deduce
G¢MG¢:L‘0 = )\Gwl‘o.

and since Gyzo # 0 (we recall that (Gyxzo,zo) = 1), we conclude that A is an
eigenvalue of Gy M and therefore

S=A < p(Gd,M)

We have thus proved that
S < p(GyM).

o If p(Gy M) = 0, the claim is proved. If not, we set
A= p(GyM) = p(MGy) = p (65 MG}),

which is a positive number which is an eigenvalue of the three matrices above.
In particular, there exists zo € C9 \ {0} such that

MGw!L‘O = )\{E().
Taking the inner product with Gyzo we obtain

<]\4G¢ﬂ'507 Gw[L’o> = /\ <I‘0, Gw%o) s

12
and since (g, Gyzo) = HGion cannot be equal to zero, we deduce that
A< S,

and the proof is complete. ]

Appendix C. Solving general block moment problems.

As this paper is oriented towards control theory we do not deal with the most
general block moment problems. Indeed, in Theorem 2.4, the considered block mo-
ment problems have a specific right-hand side which is a linear form. This formalism
is chosen in order to avoid exhibiting a particular basis of the generalized eigenspaces.
The price to pay is this restriction on the considered right-hand sides. However the
proofs detailed in Sections 3 and 5 directly lead to the following more general results.

The study with a group composed of geometrically simple eigenvalues (see Sec-
tions 5.1 and 5.2) leads to the following theorem.
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1853
1854

1855

1860

1861

1862

1863

1864

1865

1866

1867
1868

1869

1870

1871

1872
1873

1877

1878

THEOREM C.1. Let p € N*, 0,7,k > 0 and 0 € (0,1). Assume that
A€ Ly(p o,T,0,k).

Recall that this class of sequences is defined in (2.11). Let G = {A\1,..., g} C A be
a group satisfying (2.6)—(2.8). Let T € (0,400) and n € N*. For any multi-index
a € N9 with |ale <7, any

w= (w?,...,wlal_l,...7w2,...,w;‘9—1) e Clol,

and any b € Ul with

0 .

bj 7& 0; V] € [[Lg]]v
there exists vg € L?(0,T;U) satisfying

T —(1+1) 1 .

(C.1a) i <vg(t), (e:h) [AJ— DU dt =t Vje[l,g], vie[o0,o,
T _

(C.1b) / vg(t)tle ™ dt =0, VA€ A\G,VI € [0,n].
0

The solution v satisfies the following estimate

C T _
llvallz2 om0y < Cexp <T199> exp (T’G2> exp (C’rg) <M 1£,§> ,
<[]
y [A,(”la)}

the sequence (11P)pefo,a)) i defined in (2.24), the associated matriz M is defined
in (2.33), rq is defined in (2.16) and with the convention

where

£ =

)

70

w [Tj(l+1)} = w! Vj € [1,9], VI € [0, ;.

The constant C > 0 appearing in the estimate only depends on the parameters T, p,
0, 1,0 and k.

Moreover, there exists a constant Cp, .. > 0 such that any vg € L*(0,T;U)
solution of (C.la) satisfy

HUG”LQ(O,T;U) > Cp,n,rA <M71£a€> .

REMARK C.1. As detailed in Remark 2.5, when the eigenvalues in G are also
algebraically simple, i.e. ay = yx =1 for any A € G, the expression of & reduces to

w[A]

and the expression of M reduces to the one given in (2.35).
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1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

1889

1890
1891

1892

1893

1894

1895

1896
1897
1898
1899

1900

The study with a group composed of semi-simple eigenvalues (see Section 5.3)
leads to the following theorem.

THEOREM C.2. Let p € N*, 0,7,k >0 and 0 € (0,1). Assume that
A‘ E £w(p7 977—7975)'

Recall that this class of sequences is defined in (2.11). Let G = {\1,...,A\g} C A be a
group satisfying (2.6)—~(2.8). Let y1,...,74 € N* and vg =~ +---+ 4. Let n € N*
and T € (0, +00).

For any (wj,;) € €€ and any (bj;) € U"¢ such

Jelt,gliel1,v;] Jell gl ie[l,v;]
that bj1,...,b;, are linearly independent for every j € [1,g], there exists vg €

L2(0,T;U) satisfying
T _
(C.2a) /0 <vG(t), e*Aﬂbj,i>U dt = wj, ¥j€[l,g], Vi€ [1,],
T _
(C.2b) / vg(t)tle ™ Mdt =0, VA e A\G, VI € [0,1].
0

The solution vg satisfies the following estimate

C T _
lvallz20,m;0) < Cexp < 9> exp (TG2> exp (Crl) (M7'E,¢)

Ti-+e
where £ € CY¢ s defined by blocks with
Wi 1

G=1 1,

Wi,g

the associated matriz M is defined in (2.37) and r¢ is defined in (2.16). The constant
C > 0 appearing in the estimate only depends on the parameters 7, p, o, 1, 6 and kK.

Moreover, there exists a constant Cp, . > 0 such that any vg € L2(0,T;U)
solution of (C.2a) satisfy

lvallL20.10) = Cpra (MTHEE).

Appendix D. Post-processing formulas.

The minimal null control time given in Theorem 2.5, together with the compu-
tation of the contribution of each group given in Theorems 2.8 and 2.10, allow to
answer the question of minimal null control time for a wide variety of one dimensional
parabolic control problems. However, for a given problem, the precise estimate of the
quantity of interest <M “le g > can remain a tricky question.

There is no normalization condition on the eigenvectors and no uniqueness of
the considered Jordan chains. Thus, it happens that there are choices for which the
quantity of interest <M “le g > is easier to compute (see for instance Remark 2.4). We
gather here some results that are used in Sections 6 and 7 to estimate such quantities.

We will make an intensive use of the following reformulation. Let n € N* and let
T,M € GL,(C). For any £ € C", let £ := T¢. Then,

(D.1) (Mg, ) = <M—1T—1£, T—1£> - <J\7—1£, £>
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1914
1915

1916
1917
1918

1919

1920

1921

1926

193¢
1929
1930

1931
1932
1933

1934
1935
1936
1937
1938
1939

1940

1941

where
(D.2) M :=TMT".

As the matrix M is a sum of Gram matrices we will also use the following lemma.

LEMMA D.1. Let X be a Hilbert space. Let n € N* and e = (eq,...,e,) € X™.
Let T € My (C). Then,

TGramx (e1,...,e,)T* = Gramx ((Te)1, ..., (Te)y,)

where, for any i € [1,n], (Te); is defined by

(Te)i = Z E,jej.
J=1

Proof. For any w € C", it comes that

(D.3) (T'Gramx (eq, ..., e,)T"w,w) = (Gramx (eq, ..., e,) (T"w) , (T*w))
(D.4) = Z(T*w)lez
zzl ) ,
(D.5) = Z Zﬁwjei
i=1j=1
(D.6) = ij (Te);
(D.7) = (Gramy ((Te)1,...,(Te)y)w,w). d

Depending on the phenomenon at stake on actual examples, with a suitable choice of

¢ (i.e. of T), the quantity <M*1£~, §~> can be easier to estimate than (M ~1&,€).

D.1. Dilatations.
Notice that

(MEE) < AT 141

When the minimal null control time can be estimated with rough estimates (this can
only characterize the minimal time when Ty = 0), it can simplify the computations
to have a bounded ||€]|. To do so, it is convenient to consider dilatations of €.

Let X be a Hilbert space. Let n € N* and eq,...,e, € X. Let £ € C" and g € C™
with non-zero entries. Let

T = Dg := diag(p) € GL,(C), and ¢&=T¢.
Then, from Lemma D.1, it comes that

TGramy (eq,...,e,)T" = Gramy (Eel, . ,ﬁ?en).
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1942 D.2. Invariance by scale change.

1943 In our assumptions there is no normalization condition on the eigenvectors (see
1944  Remark 2.4). This allows to have simpler expressions for these eigenvectors. Actually,
1945 the computation of <M _1§,§> can be done with a different scale change on every
1946 generalized eigenvector as detailed in the following proposition.

1947 PROPOSITION D.2. Let M and & be as defined in Theorem 2.8. Let § € Cl®l pe
1948 such that B? #£0 forall j €1,g]. Set

(0. (89) [A])

—0,0
1949 £=

(oo 39) [\0])

o0
1950 Then,
1951 <M71§,E>=<M71§~7§~>

1952 where

]
1953 (D.8) M := ZGramU 0,...,0,(58b) [/\(MZ_MH)} (V) {)\(N\akl_ﬂzfl)
1954 Proof. From Leibniz formula [9, Proposition 7.13], it comes that for any p €
1955 [1, |ef],
|17 )
1956 (B9) P\(u”)} -y 8 [A(up—;ﬂ* )} s P\(“q)} .
q=1

1957  Thus, é = T¢ where T is the following lower triangular matrix

1958 T — (1q§pm)

p,q€[1,]|e[]

1959 The diagonal entries of this lower triangular matrix are ,87? and thus T € GL4|(C).
1960  From (D.2), the associated matrix is

||

1961 M = ZTGT&IHU 0,...,0,b {)\(“l_“l%)} c.o..b [,\(H'“‘—“H)] T*.
=1 -1

1962 Let I € [1,]a|] and

1963 ep=---=¢e-1=0,

1964 ep=b[AD] L vp e [ lal]

1966  Then, for any p € [1, |a]],

||

1967 (T@)p = Z 1qu6 |:)\(Mp—ﬂq*1):| €q-
g=1
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1968

1969

1984

1985

1986

1988

1989

1990

1991

1992

Thus, (Te); = --- = (Te);_; = 0 and, for any p € [I, ][],

(Te)p = li 15<pB8 {)\(“L“qil)} €q = iﬁ {)\(HT’—MQ’I)} b [)\(u"—ul’l)] .

q=l

Then, using again Leibniz formula [9, Proposition 7.13], we obtain
(Te), = (8) [AU=+)]

Finally, applying (D.1) and Lemma D.1 ends the proof of Proposition D.2. 0

REMARK D.1. As there is no normalization condition on the eigenvectors a sim-
ilar statement automatically holds with M and & defined in Theorem 2.10.

D.3. An equivalent formula for simple eigenvalues.

In this section, we consider the case of a group of simple eigenvalues i.e. a) =
vx = 1 for every A € G. In that case, the cost of the group G can be computed either
using the formula of Theorem 2.8 for geometrically simple eigenvalues or the formula
of Theorem 2.10 for semi-simple eigenvalues. Even though these theorems imply that
those two formulas coincide (as they are both the cost of the group) we give a direct
proof of this statement.

PROPOSITION D.3. Let M and & be the matrix and the vector given in Theorem 2.8
i.e.

g
M= " Gramy | 0,...,0,b[A, ..., B[\, .., A
=1 -1

and

<?JOv ¢[A1]>—o,<>

<y07 (b[)‘lu . i )‘g]>_<> S

)

Let M andé be the matrixz and the vector given in Theorem 2.10 i.e.

)

(D.9) M=) Gramy (6/b[Ai],....07b[\,]) and €:= :
=t (yo, ¢[Ag]) o o

)

<y07 ¢[A1]>—o o

Then,
(M71¢) = (ME€)
Proof. The usual interpolation formula [9, Proposition 7.6] gives

(D.10) P[Ni] = Z <H()‘z - Ak)) B[A1, .- A

j=1 \k=1
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1993
1994

1995

1996

1997

1998
1999

2000

3002

2006

2012
2013

2014

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

Recall that the notation d% has been introduced in (2.36). With these notations,
€ = T¢ where T is the following lower triangular matrix

T = (6t GL,(C).
( ])i,je[[l,gﬂ € g( )
From (D.2), we define
- g
M= TGramgy [ 0,...,0,b[\],...,b[A,..., Al | T7,
=1 -1

so that we have (M~1£,&) = <]\/4\’1§~, §> We will now prove that M = M.
Let I € [1,g] and

e1=--=¢-1 =0,
ej = b[)\l,...,)\j], Vi e [[179]].

Then, (Te); = --- = (Te);—1 = 0 and for i € [l,g], using again the interpolation
property [9, Proposition 7.6], we obtain
(Te)i = 6ib[As, .., Aj]
j=t
=D 6N, A
j=l
i fi-1
=01 Y | TT =2 | bl -5 A
j=l \k=l
= 0;b[\].
Recalling that §} = --- = (55_1 = 0, we thus obtain

(Te)z = 5lzb[/\1]7 Vi e [[lvg]]'

Finally, from Lemma D.1, we deduce that M = M which ends the proof of Proposi-
tion D.3. ]
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