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ANALYSIS OF NON SCALAR CONTROL PROBLEMS FOR1

PARABOLIC SYSTEMS BY THE BLOCK MOMENT METHOD2

FRANCK BOYER∗ AND MORGAN MORANCEY†3

Abstract. This article deals with abstract linear time invariant controlled systems of parabolic4
type. In [Annales Henri Lebesgue, 3 (2020), pp. 717–793], with A. Benabdallah, we introduced the5
block moment method for scalar control operators. The principal aim of this method is to compute6
the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in7
particular in the case when spectral condensation occurs. The purpose of the present article is to8
push forward the analysis to deal with any admissible control operator. The considered setting leads9
to applications to one dimensional parabolic-type equations or coupled systems of such equations.10

With such admissible control operator, the characterization of the minimal null control time is11
obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the12
control space) followed by a constrained optimization procedure of the cost of this resolution. This13
leads to essentially sharp estimates on the resolution of the block moment problems which are uniform14
with respect to the spectrum of the evolution operator in a certain class. This uniformity allows the15
study of uniform controllability for various parameter dependent problems. We also deduce estimates16
on the cost of controllability when the final time goes to the minimal null control time.17

We illustrate how the method works on a few examples of such abstract controlled systems and18
then we deal with actual coupled systems of one dimensional parabolic partial differential equations.19
Our strategy enables us to tackle controllability issues that seem out of reach by existing techniques.20

Key words. Control theory, parabolic partial differential equations, minimal null control time,21
block moment method22

AMS subject classifications. 93B05, 93C20, 93C25, 30E05, 35K90, 35P1023

1. Introduction.24

1.1. Problem under study and state of the art.25

In this paper we study the controllability properties of the following linear control26

system27

(1.1)

{
y′(t) +Ay(t) = Bu(t),
y(0) = y0.

28

The assumptions on the operator A (see Section 1.4) will lead to applications to29

linear parabolic-type equations or coupled systems of such equations mostly in the30

one dimensional setting. In all this article the Hilbert space of control will be denoted31

by U and the operator B will be a general admissible operator.32

The question we address is the characterization of the minimal null control time33

(possibly zero or infinite) from y0 that is: for a given initial condition y0, what34

is the minimal time T0(y0) such that, for any T > T0(y0), there exists a control35

u ∈ L2(0, T ;U) such that the associated solution of (1.1) satisfies y(T ) = 0. A36

more precise definition of the minimal null control time is given in Definition 1.1 in37

Section 1.4.1.38

For a presentation of null controllability of parabolic control problems as well as39

the possible existence of a positive minimal null control time for such equations we40
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refer to [4] or [9, Section 1.1] and the references therein. Such a positive minimal41

null control time is due either to insufficient observation of eigenvectors, or to con-42

densation of eigenvalues or to the geometry of generalized eigenspaces, or even to a43

combination of all those phenomena. Let us underline that this phenomenon is com-44

pletely unrelated to the minimal control time arising from constraints on the state45

or on the control as studied for instance in [31], or to the one arising in hyperbolic46

problems due to intrinsic finite speed of propagation in the equation.47

Under the considered assumptions on A, the problem of characterizing the mini-48

mal null control time has been solved for scalar controls (dimU = 1) in [9] where the49

block moment method has been introduced in that purpose. The aim of the present50

article is to push forward the analysis of [9] to extend it to any admissible control51

operator. The new difficulties come from the interplay between spectral condensation52

phenomena and the particular geometry of the control operator.53

To present the general ideas, let us assume for simplicity that the operator A∗54

has a sequence of real and positive eigenvalues Λ and that the associated eigenvectors55

ϕλ, for λ ∈ Λ, form a complete family of the state space (the precise functional setting56

is detailed in Section 1.4). Then, the solution of system (1.1) satisfies y(T ) = 0 if and57

only if the control u ∈ L2(0, T ;U) solves the following moment problem58

(1.2)

∫ T

0

e−λt ⟨u(T − t),B∗ϕλ⟩U dt = −e−λT ⟨y0, ϕλ⟩ , ∀λ ∈ Λ.59

• Solving moment problems associated with a scalar control operator.60

In the scalar case (U = R), provided that B∗ϕλ ̸= 0, the moment problem reduces61

to62

(1.3)

∫ T

0

e−λtu(T − t)dt = −e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
, ∀λ ∈ Λ.63

This problem is usually solved by the construction of a biorthogonal family (qλ)λ∈Λ64

to the exponentials65 {
t ∈ (0, T ) 7→ e−λt ; λ ∈ Λ

}
66

in L2(0, T ;U), i.e., a family (qλ)λ∈Λ such that67 ∫ T

0

qλ(t)e
−µtdt = δλ,µ, ∀λ, µ ∈ Λ.68

From [36], the existence of such biorthogonal family is equivalent to the summability69

condition70

(1.4)
∑
λ∈Λ

1

λ
< +∞.71

Remark 1.1. This condition (which will be assumed in the present article) is the72

main restriction to apply the moment method. Indeed, due to Weyl’s law it imposes73

on many examples of partial differential equations of parabolic-type a restriction to the74

one dimensional setting. However, in some particular multi-dimensional geometries,75

the controllability problem can be transformed into a family of parameter dependent76

moment problems, each of them satisfying such assumption (see for instance [8, 3, 15]77

among others).78
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With such a biorthogonal family, a formal solution of the moment problem (1.3)79

is given by80

u(T − t) = −
∑
λ∈Λ

e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
qλ(t), t ∈ (0, T ).81

Thus if, for any y0, the series defining u converges in L2(0, T ;U) one obtains null82

controllability of system (1.1) in time T . To do so, it is crucial to prove upper bounds83

on ∥qλ∥L2(0,T ).84

Suitable bounds on such biorthogonal families were provided in the pioneering85

work of Fattorini and Russell [21] in the case where the eigenvalues of A∗ are well86

separated i.e. satisfy the classical gap condition: inf {|λ− µ| ; λ, µ ∈ Λ, λ ̸= µ} > 0.87

When the eigenvalues are allowed to condensate we refer to the work [5] for almost88

sharp estimates implying the condensation index of the sequence Λ. A discussion on89

other references providing estimates on biorthogonal families is detailed below. These90

results have provided an optimal characterization of the minimal null control time91

when the eigenvectors of A∗ form a Riesz basis of the state space (and thus do not92

condensate).93

However, as analyzed in [9], there are situations in which the eigenvectors also94

condensate and for which providing estimates on biorthogonal families is not sufficient95

to characterize the minimal null control time. In [9], it is assumed that the spectrum96

Λ can be decomposed as a union G of well separated groups of bounded cardinality.97

Then, the control u is seeked in the form98

u(T − t) =
∑
G∈G

vG(t),99

where, for any G ∈ G, the function vG ∈ L2(0, T ;U) solves the block moment problem100

(1.5)


∫ T

0

e−λtvG(t)dt = e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
, ∀λ ∈ G,∫ T

0

e−λtvG(t)dt = 0, ∀λ ̸∈ G.

101

This enables to deal with the condensation of eigenvectors: the eigenvectors (ϕλ)λ∈Λ102

are only assumed to form a complete family of the state space.103

• Solving moment problems associated with a non scalar control operator.104

When the control is not scalar there are less available results in the literature. Here105

again, these results rely on the existence of a biorthogonal family to the exponentials106

with suitable bounds. For instance, in [6], null controllability in optimal time is proved107

using a subtle decomposition of the moment problem into two families of moment108

problems. In a more systematic way, one can take advantage of the biorthogonality109

in the time variable to seek for a solution u of the moment problem (1.2) in the form110

u(T − t) = −
∑
λ∈Λ

e−λT ⟨y0, ϕλ⟩
B∗ϕλ

∥B∗ϕλ∥2U
.111

This strategy was introduced by Lagnese in [25] for a one dimensional wave equation112

and used in the parabolic context for instance in [17, 2, 18, 3].113

In the present article we deal with such general admissible control operators.114

As the eigenvectors will only be assumed to form a complete family, for each initial115
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condition y0, we study its null control time for system (1.1) by solving block moment116

problems of the following form117

(1.6)


∫ T

0

〈
VG(t), e

−λtB∗ϕλ
〉
U
dt =

〈
y0, e

−λTϕλ
〉
, ∀λ ∈ G,∫ T

0

〈
VG(t), e

−λtB∗ϕλ
〉
U
dt = 0, ∀λ ̸∈ G.

118

Let us recall that, for pedagogical purposes, we have restricted this first introductory119

subsection to the case of real simple eigenvalues. The general form of block moment120

problems under study in this article is detailed in Section 2.1.121

The strategy to solve such block moment problem and estimate its solution is122

presented on an example in Section 1.3. Let us already notice that the geometry of123

the finite dimensional space Span{B∗ϕλ ; λ ∈ G} is crucial.124

For instance, if this space is one dimensional, say generated by some b ∈ U , the125

strategy of Lagnese can be adapted if one seeks for VG solution of the block moment126

problem (1.6) in the form127

VG(t) = vG(t)b,128

where vG ∈ L2(0, T ;R) solves a scalar block moment problem of the same form129

as (1.5).130

If, instead, the family (B∗ϕλ)λ∈G is composed of linearly independent vectors131

then it admits a biorthogonal family in U denoted by (b∗λ)λ∈G. Then, one can for132

instance seek for VG solution of the block moment problem (1.6) in the form133

VG(t) = vG(t)

(∑
λ∈G

b∗λ

)
.134

where vG solves a scalar block moment problem of the form (1.5). An upper bound135

of the minimal control time can then be obtained thanks to an estimate of the family136

(b∗λ)λ∈G, but without guarantee of optimality.137

In the general setting, taking into account the geometry of the observations of138

eigenvectors to solve block moment problems of the form (1.6) is a more intricate139

question that we solve in this article, still under the summability condition (1.4).140

Let us mention that we not only solve block moment problems of the form (1.6)141

but we also provide estimates on their solutions to ensure that the series defining the142

control converges. These estimates will lead to an optimal characterization of the143

minimal null control time for each given problem.144

We pay particular attention to these estimates so that they do not directly depend145

on the sequence Λ but are uniform for classes of such sequences. This is an important146

step to tackle uniform controllability for parameter dependent control problems. Esti-147

mates of this kind have already proved their efficiency in various contexts such as: nu-148

merical analysis of semi-discrete control problems [2], oscillating coefficients [32], anal-149

ysis of degenerate control problems with respect to the degeneracy parameter [17, 18],150

analysis of higher dimensional controllability problems by reduction to families of one151

dimensional control problems [8, 1, 3, 15] or analysis of convergence of Robin-type152

controls to Dirichlet controls [11].153

Another important feature of the estimates we obtain is to track the dependency154

with respect to the final time T when T goes to the minimal null control time. As pre-155

sented in Remark 2.5, this allows applications in higher dimensions (with a cylindrical156

geometry) or applications to nonlinear control problems.157
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• An overview of some estimates on biorthogonal families.158

Finally, let us recall some classical results providing estimates for biorthogonal159

families to a sequence of exponentials.160

Under the classical gap condition, uniform estimates for biorthogonal families161

were already obtained in [22] and sharp short-time estimates were obtained in [8].162

In this setting, bounds with a detailed dependency with respect to parameters were163

given in [19]. In this work, the obtained bounds take into account the fact that the164

gap property between eigenvalues may be better in high frequencies. Similar results165

were also obtained in [26].166

Under a weak-gap condition of the form (1.23), that is when the eigenvalues can167

be gathered in blocks of bounded cardinality with a gap between blocks (which is168

the setting of the present article), uniform estimates on biorthogonal sequences follow169

from the uniform estimates for the resolution of block moment problems proved in [9].170

Similar estimates, but where the sharp dependency with respect to T of the different171

constants is tracked, were obtained in [24]. Using the strategy detailed in [12], the172

estimates of [9] can also be supplemented with such dependency with respect to T173

(see Theorem A.1). Let us mention that similar results were also obtained in [16] with174

stronger assumptions, namely with a weak-gap assumption on the square roots of the175

eigenvalues.176

In the absence of any gap-type condition, estimates on biorthogonal families were177

first proved in [5] involving the condensation index and then later in [3] involving a178

local measure of the gap.179

1.2. Structure of the article.180

To ease the reading, let us give here the detailed outline of this article.181

In Section 1.3 we detail, for a simple example, the obtained results as well as182

our strategy of proof. This allows to explain the contents of this article without183

introducing too many notations. Then, in Section 1.4, we detail the framework,184

assumptions and notations that will be used throughout this article.185

The main results concerning the resolution of block moment problems with a186

non scalar control are stated in Section 2.1. The application of these results to the187

characterization of the minimal null control time is stated in Section 2.2. We provide188

in Section 2.3 more explicit formulas to compute the minimal null control time. We189

also deduce from our study some estimates on the cost of controllability that are given190

in Section 2.4.191

The results concerning the resolution of block moment problems are proved in192

Section 3. The application of these results to the characterization of the minimal193

null control time and the study of the cost of null controllability are then proved in194

Section 4. More explicit formulas for the computation of the minimal null control195

time are proved in Section 5.196

Finally we apply these results to different examples. First we deal in Section 6197

with academic examples. For these examples the computations are rather simple and198

this allows to highlight the different phenomena at stake in this minimal null control199

time study. We end this article with the analysis of null controllability for systems of200

coupled linear partial differential equations of parabolic type in Section 7.201

1.3. Strategy of proof.202

To highlight the ideas we develop in this article (without drowning them in tech-203

nicalities or notations), let us present our strategy of analysis of null controllability204

on an abstract simple example.205

5
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We consider X = L2(0, 1;R)2 and ω ⊂ (0, 1) a non empty open set. For a given206

a > 0 we define207

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ≥ 1
}
,208

and take (φk)k≥1 an Hilbert basis of X such that209

inf
k≥1

∥φk∥L2(ω) > 0.210

Let ϕk,1 :=

(
φk
φk

)
and ϕk,2 :=

(
0
φk

)
. We define the operator A∗ in X by211

A∗ϕk,1 = λk,1ϕk,1, A∗ϕk,2 = λk,2ϕk,2,212

with213

D(A∗) =

∑
k≥1

ak,1ϕk,1 + ak,2ϕk,2 ;
∑
k≥1

λ2k,1a
2
k,1 + λ2k,2a

2
k,2 < +∞

 .214

The control operator B is defined by U = L2(0, 1;R) and215

B : u ∈ U 7→
(

0
1ωu

)
∈ X.216

The condition infk≥1 ∥φk∥L2(ω) > 0 yields217

(1.7) B∗ϕk,1 = B∗ϕk,2 = 1ωφk ̸= 0, ∀k ≥ 1.218

This ensures approximate controllability of system (1.1).219

We insist on the fact that the goal of this article is not to deal with this particular220

example but to develop a general methodology to analyze the null controllability of221

system (1.1). The general assumptions that will be considered in this article are222

detailed in Section 1.4.223

• Let y0 ∈ X. From Proposition 1.1 and the fact that {ϕk,1, ϕk,2 ; k ≥ 1} forms a224

complete family of X, system (1.1) is null controllable from y0 at time T if and only225

if there exists u ∈ L2(0, T ;U) such that for any k ≥ 1 and any j ∈ {1, 2},226 ∫ T

0

e−λk,jt ⟨u(T − t),B∗ϕk,j⟩U dt = −e−λk,jT ⟨y0, ϕk,j⟩X .227

Following the idea developed in [9], we seek for a control u of the form228

(1.8) u(t) = −
∑
k≥1

vk(T − t)229

where, for each k ≥ 1, vk ∈ L2(0, T ;U) solves the block moment problem230

(1.9)


∫ T

0

e−λk,jt ⟨vk(t),B∗ϕk,j⟩U dt = e−λk,jT ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2},∫ T

0

e−λk′,jt ⟨vk(t),B∗ϕk′,j⟩U dt = 0, ∀k′ ̸= k, ∀j ∈ {1, 2}.
231

6
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• To solve (1.9), for a fixed k, we consider the following auxiliary block moment232

problem in the space U233

(1.10)


∫ T

0

e−λk,jtvk(t)dt = Ωk,j , ∀j ∈ {1, 2},∫ T

0

e−λk′,jtvk(t)dt = 0, ∀k′ ̸= k, ∀j ∈ {1, 2},
234

where Ωk,j ∈ U have to be precised. If we impose that Ωk,1 and Ωk,2 satisfy the235

constraints236

(1.11) ⟨Ωk,j ,B∗ϕk,j⟩U = e−λk,jT ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2},237

we obtain that the solutions of (1.10) also solve (1.9). The existence of Ωk,1 and238

Ωk,2 satisfying the constraints (1.11) is ensured by the approximate controllabil-239

ity condition (1.7); however there exist infinitely many choices. A crucial point240

is that, by orthogonal projection, there exists Ωk,1 and Ωk,2 in the space Uk =241

Span{B∗ϕk,1,B∗ϕk,2} satisfying the constraints (1.11).242

Then, for any Ωk,1, Ωk,2 ∈ Uk, since the space Uk is of finite dimension, applying243

the scalar results of [9] component by component leads to the existence of vk ∈244

L2(0, T ;U) satisfying (1.10). It also gives the following estimate245

(1.12) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1F (Ωk,1,Ωk,2),246

with247

F : (Ωk,1,Ωk,2) ∈ U2 7→ ∥Ωk,1∥2U +

∥∥∥∥Ωk,2 − Ωk,1
λk,2 − λk,1

∥∥∥∥2
U

.248

Using (1.12) and minimizing the function F under the constraints (1.11) we obtain249

that there exists vk ∈ L2(0, T ;U) solution of the block moment problem (1.9) such250

that251

(1.13) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1 inf {F (Ωk,1,Ωk,2) ; Ωk,1,Ωk,2 satisfy (1.11)} .252

The corresponding general statements of the resolution of block moment problems253

are detailed in Section 2.1 (see Theorem 2.2) and proved in Section 3. Actually using254

a refined version of the results in [9] (see Theorem A.1) we obtain sharper results255

including dependency with respect to T .256

• Now that we can solve the block moment problems (1.9), a way to characterize the257

minimal null control time is to estimate for which values of T the series (1.8) defining258

the control u converges in L2(0, T ;U).259

To achieve this goal, we isolate in the estimate (1.13) the dependency with respect260

to T . Notice that the function F does not depend on T but that the constraints (1.11)261

do.262

For any k ≥ 1 and any Ωk,1, Ωk,2 ∈ Uk we set263

Ω̃k,j := eλk,jTΩk,j , ∀j ∈ {1, 2}.264

Then, there is equivalence between the constraints (1.11) and the new constraints265

(1.14)
〈
Ω̃k,j ,B∗ϕk,j

〉
U
= ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2}.266
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Now these constraints are independent of the variable T . From the mean value theo-267

rem we obtain268

F (Ωk,1,Ωk,2) =
∥∥∥e−λk,1T Ω̃k,1∥∥∥2

U
+

∥∥∥∥∥e−λk,2T Ω̃k,2 − e−λk,1T Ω̃k,1
λk,2 − λk,1

∥∥∥∥∥
2

U

.269

≤ e−2λk,1T
∥∥∥Ω̃k,1∥∥∥2

U
+ 2e−2λk,2T

∥∥∥∥∥ Ω̃k,2 − Ω̃k,1
λk,2 − λk,1

∥∥∥∥∥
2

U

270

+ 2

(
e−λk,2T − e−λk,1T

λk,2 − λk,1

)2 ∥∥∥Ω̃k,1∥∥∥2
U

271

≤ 2(1 + T 2)e−2λk,1TF (Ω̃k,1, Ω̃k,2).272273

The general statement of this estimate is given in Lemma 4.1.274

Plugging this estimate into (1.12) and optimizing the function F under the con-275

straints (1.14) yields276

(1.15) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1e−2λk,1TCk(y0)277

where Ck(y0) is the quantity, independent of T , given by278

279

(1.16) Ck(y0) := inf

{∥∥∥Ω̃1

∥∥∥2
U
+

∥∥∥∥∥ Ω̃2 − Ω̃1

λk,2 − λk,1

∥∥∥∥∥
2

U

; Ω̃1, Ω̃2 ∈ Uk satisfy280

〈
Ω̃j ,B∗ϕk,j

〉
U
= ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2}

}
.281

282

Estimate (1.15) proves that for any time T > 0 such that283

T > lim sup
k→+∞

ln Ck(y0)
2λk,1

284

the series (1.8) defining the control u converges in L2(0, T ;U). Thus, null controlla-285

bility of (1.1) from y0 holds for such T .286

We also prove that the obtained estimate (1.15) is sufficiently sharp so that it287

characterizes the minimal null control time from y0 as288

(1.17) T0(y0) = lim sup
k→+∞

ln Ck(y0)
2λk,1

.289

The corresponding general statements regarding the minimal null control time290

together with bounds on the cost of controllability are detailed in Section 2.1 (see291

Theorem 2.3) and proved in Section 4.292

• At this stage we have characterized the minimal null control time as stated in (1.17).293

However to be able to estimate the actual value of T0(y0) one should be able to294

estimate the quantity Ck(y0) as defined in (1.16). This formula is not very explicit295

and it does not get better in the general setting.296

However, we notice that (1.16) is a finite dimensional optimization problem that297

we explicitly solve in terms of the eigenelements of A∗ and their observations through298

B∗.299

8
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Indeed the minimization problem (1.16) has a unique solution characterized by300

the existence of multipliers m1, m2 ∈ R such that for any H1, H2 ∈ Uk we have301

(1.18)〈
H1, Ω̃1

〉
U
+

〈
Ω̃2 − Ω̃1

λk,2 − λk,1
,
H2 −H1

λk,2 − λk,1

〉
U

= m1 ⟨H1,B∗ϕk,1⟩U +m2 ⟨H2,B∗ϕk,2⟩U .302

Setting H1 = H2 = H for any H ∈ Uk implies303

Ω̃1 = m1B∗ϕk,1 +m2B∗ϕk,2.304

Setting H1 = 0 and H2 = (λk,2 − λk,1)H for any H ∈ Uk implies305

Ω̃2 = m1B∗ϕk,1 +m2B∗ϕk,2 +m2(λk,2 − λk,1)
2B∗ϕk,2.306

Getting back to the constraints (1.14) we obtain307

(1.19)

(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
=M

(
m1

m2

)
,308

where the 2× 2 matrix M is defined by309

M = GramU (B∗ϕk,1,B∗ϕk,2) + GramU (0, (λk,2 − λk,1)B∗ϕk,2) .310

Setting H1 = Ω̃1 and H2 = Ω̃2 in (1.18) and using (1.19) impliy311

Ck(y0) =
∥∥∥Ω̃1

∥∥∥2
U
+

∥∥∥∥∥ Ω̃2 − Ω̃1

λk,2 − λk,1

∥∥∥∥∥
2

U

=

〈(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
,

(
m1

m2

)〉
312

=

〈(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
,M−1

(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)〉
.313

314

Thus, after computations, for the particular example we are considering here, the315

obtained formula reads316

Ck(y0) =
1

∥φk∥2L2(ω)

〈
y0,

(
φk
φk

)〉2

X

+
e2ak

2

∥φk∥2L2(ω)

〈
y0,

(
φk
0

)〉2

X

.317

Then, from (1.17), it comes that the minimal null control time from X of this example318

is given by319

T0(X) = a.320

Notice, for instance, that this expression also gives that for a given y0 if the set321 {
k ∈ N∗ ;

〈
y0,

(
φk
0

)〉
X

̸= 0

}
322

is finite, then null controllability from y0 holds in any positive time, i.e. T0(y0) = 0.323

We obtain different explicit formula depending on the configuration for the multi-324

plicity of the eigenvalues of the considered block. The general statements of an explicit325

solution of the corresponding optimization problem are detailed in Section 2.3 (see326

Theorem 2.6 and Theorem 2.8) and proved in Section 5.327
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1.4. Framework, spectral assumptions and notations.328

To state the main results of this article, we now detail the functional setting and329

assumptions we use.330

1.4.1. Functional setting.331

The functional setting for the study of system (1.1) is the same as in [9]. For the332

sake of completeness, let us briefly detail it. Unless explicitly stated, all the spaces333

are assumed to be complex vector spaces.334

We consider X an Hilbert space, whose inner product and norm are denoted335

by ⟨•, •⟩X and ∥•∥X respectively. The space X is identified to its anti-dual through336

the Riesz theorem. Let (A, D(A)) be an unbounded operator in X such that −A337

generates a C0−semigroup in X. Its adjoint in X is denoted by (A∗, D(A∗)). Up to338

a suitable translation, we can assume that 0 is in the resolvent set of A.339

We denote by X1 (resp. X∗
1 ) the Hilbert space D(A) (resp. D(A∗)) equipped340

with the norm ∥x∥1 := ∥Ax∥X (resp. ∥x∥1∗ := ∥A∗x∥X) and we define X−1 as the341

completion of X with respect to the norm342

∥y∥−1 := sup
z∈X∗

1

⟨y, z⟩X
∥z∥1∗

.343

Notice that X−1 is isometrical to the topological anti-dual of X∗
1 using X as a pivot344

space (see for instance [38, Proposition 2.10.2]). The corresponding duality bracket345

will be denoted by ⟨•, •⟩−1,1∗ and satisfies346

⟨y, cz⟩−1,1∗ = c ⟨y, z⟩−1,1∗ , ∀y ∈ X−1,∀z ∈ X∗
1 ,∀c ∈ C.347

The control space U is an Hilbert space (that we will identify to its anti-dual). Its inner348

product and norm are denoted by ⟨•, •⟩U and ∥•∥U respectively. Let B : U → X−1 be349

a linear continuous control operator and denote by B∗ : X∗
1 → U its adjoint in the350

duality described above.351

Let (X∗
⋄ , ∥.∥⋄∗) be an Hilbert space such that X∗

1 ⊂ X∗
⋄ ⊂ X with dense and352

continuous embeddings. We assume that X∗
⋄ is stable by the semigroup generated by353

−A∗. We also define X−⋄ as the subspace of X−1 defined by354

X−⋄ :=

{
y ∈ X−1 ; ∥y∥−⋄ := sup

z∈X∗
1

⟨y, z⟩−1,1∗

∥z∥⋄∗
< +∞

}
,355

which is also isometrical to the anti-dual of X∗
⋄ with X as a pivot space. The cor-356

responding duality bracket will be denoted by ⟨•, •⟩−⋄,⋄. Thus, we end up with the357

following five functional spaces358

X∗
1 ⊂ X∗

⋄ ⊂ X ⊂ X−⋄ ⊂ X−1.359

We say that the control operator B is an admissible control operator for (1.1) with360

respect to the space X−⋄ if for any T > 0 there exists CT > 0 such that361

(1.20)

∫ T

0

∥∥∥B∗e−(T−t)A∗
z
∥∥∥2
U
dt ≤ CT ∥z∥2⋄∗ , ∀z ∈ X∗

1 .362

Notice that if (1.20) holds for some T > 0 it holds for any T > 0. The admissibility363

condition (1.20) implies that, by density, we can give a meaning to the map364 (
t 7→ B∗e−(T−t)A∗

z
)
∈ L2(0, T ;U),365
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for any z ∈ X∗
⋄ . Then, we end up with the following well-posedness result (see [9,366

Proposition 1.2]).367

proposition 1.1. Assume that (1.20) holds. Then, for any T > 0, any y0 ∈ X−⋄,368

and any u ∈ L2(0, T ;U), there exists a unique y ∈ C0([0, T ];X−⋄) solution to (1.1)369

in the sense that it satisfies for any t ∈ [0, T ] and any zt ∈ X∗
⋄ ,370

⟨y(t), zt⟩−⋄,⋄ −
〈
y0, e

−tA∗
zt

〉
−⋄,⋄

=

∫ t

0

〈
u(s),B∗e−(t−s)A∗

zt

〉
U
ds.371

Moreover there exists CT > 0 such that372

sup
t∈[0,T ]

∥y(t)∥−⋄ ≤ CT
(
∥y0∥−⋄ + ∥u∥L2(0,T ;U)

)
.373

Remark 1.2. By analogy with the semigroup notation, when u = 0, we set for374

any t ∈ [0, T ], e−tAy0 := y(t). This extends the semigroup e−•A defined on X to X−⋄375

and implies that for any z ∈ X−⋄,376

(1.21)
〈
e−TAz, ϕ

〉
−⋄,⋄ =

〈
z, e−TA∗

ϕ
〉
−⋄,⋄

, ∀ϕ ∈ X∗
⋄ .377

With this notion of solution at hand, we finally define the minimal null control378

time from a subspace of initial conditions Y0.379

Definition 1.1. Let Y0 be a closed subspace of X−⋄ and let T > 0. The sys-380

tem (1.1) is said to be null controllable from Y0 at time T if for any y0 ∈ Y0, there381

exists a control u ∈ L2(0, T ;U) such that the associated solution of (1.1) satisfies382

y(T ) = 0.383

The minimal null control time T0(Y0) ∈ [0,+∞] is defined by384

• for any T > T0(Y0), system (1.1) is null controllable from Y0 at time T ;385

• for any T < T0(Y0), system (1.1) is not null controllable from Y0 at time T .386

To simplify the notations, for any y0 ∈ X−⋄, we define T0(y0) := T0(Span{y0}).387

1.4.2. Spectral assumptions.388

In all this article we assume that the operators A and B satisfy the assumptions389

of Section 1.4.1. Moreover to solve the control problem we will need some additional390

spectral assumptions.391

⋆ Behavior of eigenvalues.392

We assume that the spectrum ofA∗, denoted by Λ, is only composed of (countably393

many) eigenvalues. Moreover, we assume that the eigenvalues lie in a suitable sector394

of the complex plane, i.e., there exists τ > 0 such that395

(1.22) Λ ⊂ Sτ396

where397

Sτ := {z ∈ C ; ℜz > 0 and |ℑz| < (sinh τ)ℜz} .398

Remark 1.3. In [9], the assumption on Λ was stronger. Namely, in that article399

it was assumed that Λ ⊂ (1,+∞). The fact that minΛ ≥ 1 was only used in the400

lower bound on the solution of scalar block moment problems (see estimate (A.3)).401

The extension to complex eigenvalues satisfying (1.22) was done in [12] and is stated402

in Appendix A.403

If necessary, one can replace the operator A by A + σ without modifying the404

controllability properties. Then, in the different estimates, the behavior with respect405

to σ can be carefully tracked if needed.406
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As in the case of a scalar control (see [9]) we assume that this spectrum satisfies407

a weak-gap condition. Namely, there exists p ∈ N∗ and ϱ > 0 such that408

(1.23) ♯
(
Λ ∩D(µ, ϱ/2)

)
≤ p, ∀µ ∈ C,409

where D(µ, ϱ/2) denotes the open disk in the complex plane with center µ and radius410

ϱ/2. This means that the eigenvalues are allowed to condensate by groups but the411

cardinality of these groups should be bounded. To precise this, let us recall the notion412

of groupings used in [9, Definition 1.6, Proposition 7.1] and extended to the complex413

setting in [12, Proposition V.5.26].414

proposition 1.2. Let p ∈ N∗ and ϱ > 0. Let Λ ⊂ C be such that the weak-gap415

condition (1.23) holds. Then, there exists a countable family G of disjoint subsets of416

Λ satisfying417

(1.24) Λ =
⋃
G∈G

G418

and each G ∈ G satisfies419

(1.25) diamG ≤ ϱ,420

421

(1.26) ♯G ≤ p,422

and423

(1.27) dist (ConvG,Λ\G) ≥ ϱ

2× 4p−1
.424

Let us mention that the results do not depend on the particular construction done425

in [12, Proposition V.5.26] and remain valid for any grouping G satisfying (1.24)-426

(1.27).427

Concerning the asymptotic behavior of the spectrum we will use the counting428

function associated to Λ defined by429

NΛ : r > 0 7→ ♯ {λ ∈ Λ ; |λ| ≤ r} .430

We assume that there exists κ > 0 and θ ∈ (0, 1) such that431

(1.28) NΛ(r) ≤ κrθ, ∀r > 0432

and433

(1.29) |NΛ(r)−NΛ(s)| ≤ κ×
(
1 + |r − s|θ

)
, ∀r, s > 0.434

Notice that this condition is slightly stronger than the classical summability condi-435

tion (1.4) used for instance in [22, 5, 9] and many other works.436

Remark 1.4. Let us underline that if we do not assume (1.29) to hold all the437

results of the present article still hold with a slight change in the estimates. To lighten438

the writing we only detail this change for Theorem A.1 concerning the resolution of439

block moment problems with a scalar control (see Remark A.1). However, as proved440

in Section 7, the assumption (1.29) holds for many examples.441
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Notice also that (1.28), with r = inf |Λ|, implies the following lower bound on the442

bottom of the spectrum443

inf |Λ| ≥ κ−θ.444

Our goal is not only to study the controllability properties of our system but also to445

obtain estimates that are uniform in a way to be precised. To do so, we define the446

following class of sequences: let p ∈ N∗, ϱ, τ, κ > 0, θ ∈ (0, 1) and consider the class447

(1.30) Lw(p, ϱ, τ, θ, κ) := {Λ ⊂ Sτ ; Λ satisfies (1.23), (1.28) and (1.29)} .448

⋆ Multiplicity of eigenvalues.449

In our study we allow both algebraic and geometric multiplicities for the eigenval-450

ues. We assume that these multiplicities are finite and that the algebraic multiplicity451

is globally bounded. More precisely, we assume that452

(1.31) γλ := dimKer(A∗ − λ) < +∞, ∀λ ∈ Λ,453

and that there exists η ∈ N∗ such that454

(1.32) Ker(A∗ − λ)η = Ker(A∗ − λ)η+1, ∀λ ∈ Λ.455

For any λ ∈ Λ we denote by αλ the smallest integer such that456

Ker(A∗ − λ)αλ = Ker(A∗ − λ)αλ+1
457

and set458

Eλ := Ker(A∗ − λ)αλ .459

⋆ (Generalized) eigenvectors.460

To study null-controllability, we assume that the Fattorini-Hautus criterion is461

satisfied462

(1.33) Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ Λ.463

It is a necessary condition for approximate controllability. Note that, under additional464

assumptions on A and B it is also a sufficient condition for approximate controllability465

(see for instance [20, 34]). However, when studying null controllability of system (1.1)466

for initial conditions in a closed strict subspace Y0 of X−⋄ the condition (1.33) can be467

too strong, see for instance Sections 7.1.2 and 7.1.3.468

We assume that the family of generalized eigenvectors of A∗469

Φ = {ϕ ∈ Eλ ; λ ∈ Λ} =
⋃
λ∈Λ

Eλ470

is complete in X∗
⋄ i.e. for any y ∈ X−⋄,471

(1.34)
(
⟨y, ϕ⟩−⋄,⋄ = 0, ∀ϕ ∈ Φ

)
=⇒ y = 0.472

In the following, to simplify the writing, we gather these assumptions and say473

that the operators A and B satisfy (H) if there exists p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1)474

such that475

(H)


A and B satisfy the assumptions of Section 1.4.1;

Λ = Sp(A∗) belongs to Lw(p, ϱ, τ, θ, κ) and satisfies (1.31) and (1.32) ;

the associated (generalized) eigenvectors satisfy (1.33) and (1.34).

476
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1.4.3. Notation.477

We give here some notation that will be used throughout this article.478

• For any a, b ∈ R, we define the following subsets of N:479

Ja, bK := [a, b] ∩ N, Ja, bJ:= [a, b) ∩ N.480

• In all the present paper, ⟨•, •⟩ denotes the usual inner product in finite di-481

mension i.e.482

⟨f, g⟩ = tfg.483

• For any t ∈ R we denote by et the exponential function484

et : C → C
z 7→ e−tz.

485

• We shall denote by Cν1,...,νl > 0 a constant possibly varying from one line to486

another but depending only on the parameters ν1, . . . , νl.487

• For any non empty subset Γ ⊂ Λ, we set488

(1.35) rΓ := inf
λ∈Γ

ℜλ.489

Notice that assumptions (1.22) and (1.23) imply that rΓ > 0 for any Γ ⊂ Λ.490

• For any multi-index α ∈ Nn, we denote its length by |α| =
∑n
j=1 αj and its491

maximum by |α|∞ = maxj∈J1,nK αj .492

For α, µ ∈ Nn, we say that µ ≤ α if and only if µj ≤ αj for any j ∈ J1, nK.493

• In all in this article the notation f [· · · ] stands for (generalized) divided dif-494

ferences of a set of values (xj , fj). Let us recall that, for pairwise distinct495

x1, . . . , xn ∈ C and f1, . . . , fn in any vector space, the divided differences are496

defined by497

f [xj ] = fj , f [x1, . . . , xj ] =
f [x2, . . . , xj ]− f [x1, . . . , xj−1]

xj − x1
.498

The two results that will be the most used in this article concerning divided499

differences are the Leibniz formula500

(gf)[x1, . . . , xj ] =

j∑
k=1

g[x1, . . . , xk]f [xk, . . . , xj ],501

and Jensen inequality stating that, when fj = f(xj) for an holomorphic502

function f , we have503

|f [x1, . . . , xj ]| ≤
∣∣f (j−1)(z)

∣∣
(j − 1)!

,504

with z ∈ Conv{x1, . . . , xj}. For more detailed statements and other useful505

properties as well as their generalizations when x1, . . . , xn are not assumed to506

be pairwise distinct we refer the reader to [12, Appendix A.2] This general-507

ization is used in the present article whenever there are algebraically multiple508

eigenvalues.509

• For any closed subspace Y of X−⋄ we denote by PY the orthogonal projection510

in X−⋄ onto Y . We denote by P ∗
Y ∈ L(X∗

⋄ ) its adjoint in the duality X−⋄,511

X∗
⋄ .512
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2. Main results.513

We state in this section the main results of this article concerning the resolution514

of block moment problems and the application to the characterization of the minimal515

null control time.516

2.1. Resolution of block moment problems.517

⋆ Definition of block moment problems.518

Using the notion of solution given in Proposition 1.1 and the assumption (1.34),519

null controllability from y0 in time T reduces to the resolution of the following problem:520

find u ∈ L2(0, T ;U) such that521

(2.1)

∫ T

0

〈
u(t),B∗e−(T−t)A∗

ϕ
〉
U
dt = −

〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

, ∀ϕ ∈ Eλ, ∀λ ∈ Λ.522

Following the strategy initiated in [9] for scalar controls, we decompose this problem523

into block moment problems. Hence we look for a control of the form524

(2.2) u = −
∑
G∈G

vG(T − •)525

where G is a grouping (as stated in Proposition 1.2) and, for every G ∈ G, vG ∈526

L2(0, T ;U) solves the moment problem in the group G i.e.527 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

, ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.3a)528 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = 0, ∀ϕ ∈ Eλ, ∀λ ∈ Λ\G.(2.3b)529

530

In fact it is sufficient to solve the following block moment problem531 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.4a)532 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ(2.4b)533

534

where e−TAy0 is defined in (1.21).535

Indeed, for any ϕ ∈ Eλ, from [9, (1.22)], it comes that536

(2.5) e−tA
∗
ϕ = e−λt

∑
r≥0

(−t)r

r!
(A∗ − λ)rϕ =

∑
r≥0

et

[
λ(r+1)

]
(A∗ − λ)rϕ,537

where the sums are finite (and contains at most the first αλ terms). Thus, every538

solution of (2.4) solves (2.3). The orthogonality condition (2.4b) is more restrictive539

than (2.3b) but leads to negligible terms in the estimates.540

⋆ Resolution of block moment problems.541

In our setting, the block moment problem (2.4) is proved to be solvable for any542

T > 0. The resolution will follow from the scalar study done in [9] and refined in [12]543

(see Theorem A.1).544

Due to (2.2), the main issue to prove null controllability of (1.1) is thus to sum545

those contributions to obtain a solution of (2.1). This is justified thanks to a precise546

estimate of the cost of the resolution of (2.4) for each group G which is the quantity547

inf
{
∥vG∥L2(0,T ;U) ; vG solution of (2.4)

}
.548
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To state this result, we introduce some additional notation.549

To solve the moment problem (2.4) we propose to lift it into a ‘vectorial block550

moment problem’ of the following form (see (3.1))551 
∫ T

0

vG(t)
(−t)l

l!
e−λtdt = Ωl

λ
, ∀λ ∈ G, ∀l ∈ J0, αλJ,∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,

552

where Ωl
λ

belongs to U . Following (2.5), to recover a solution of (2.4), we need553

to impose some constraints on the right-hand side that are given in the following554

definition.555

Definition 2.1. For any λ ∈ Λ and any z ∈ X−⋄, we set556
557

(2.6) O(λ, z) =

{
(Ω0, . . . ,Ωαλ−1) ∈ Uαλ ;558

αλ−1∑
l=0

〈
Ωl,B∗(A∗ − λ)lϕ

〉
U
= ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ

}
.559

560

For a given group G, we set561

(2.7) O(G, z) =
∏
λ∈G

O(λ, z) ⊂ U |α|
562

where α is the multi-index of the algebraic multiplicities of the eigenvalues.563

Consider any sequence of multi-indices (µl)l∈J0,|α|K such that564

(2.8)


µl−1 ≤ µl, ∀l ∈ J1, |α|K,∣∣µl∣∣ = l, ∀l ∈ J0, |α|K,
µ|α| = α.

565

To measure the cost associated to the group G = {λ1, . . . , λg} let us define the fol-566

lowing functional567

(2.9) F : Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α| 7→

|α|∑
l=1

∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥2
U

568

with the convention569

Ω
[
λj

(l+1)
]
= Ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.570

The use of such functional to measure the cost comes from the analysis conducted for571

scalar controls in [9] (see Proposition 3.3). It appears in the following lower bound572

for solutions of block moment problems.573

proposition 2.1. Assume that the operators A and B satisfy the assumption (H)574

(see Section 1.4.2). Let T ∈ (0,+∞), and G ⊂ Λ be a group satisfying (1.26).575

There exists Cp,η,rΛ > 0 such that, for any z ∈ X−⋄, any vG ∈ L2(0, T ;U) solving576 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G577
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satisfies578

(2.10) ∥vG∥2L2(0,T ;U) ≥ Cp,η,rΛC(G, z)579

where580

(2.11) C(G, z) := inf {F (Ω) ; Ω ∈ O(G, z)}581

with F defined in (2.9) and O(G, z) defined in Definition 2.1.582

The first main result of this article concerns the resolution of block moment583

problems of the form (2.4). It roughly states that, up to terms that turns out to be584

negligible, the lower bound obtained in Proposition 2.1 is optimal.585

theorem 2.2. Assume that the operators A and B satisfy the assumption (H)586

(see Section 1.4.2). Let T ∈ (0,+∞), and G ⊂ Λ be a group satisfying (1.25)–(1.27).587

For any z ∈ X−⋄, there exists vG ∈ L2(0, T ;U) solution of588 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.12a)589 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,(2.12b)590

591

satisfying the following estimate592

(2.13) ∥vG∥2L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp (rGT ) exp

(
CrθG

)
C(G, z).593

In this estimate, C(G, z) is defined in (2.11) and rG is defined in (1.35). The constant594

C > 0 appearing in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.595

Before giving the application of this resolution of block moment problems to the596

null controllability of our initial system (1.1), let us give some comments.597

• As it was the case in [9], the considered setting allows for a wide variety of598

applications. In (1.34) the generalized eigenvectors are only assumed to form599

a complete family (and not a Riesz basis as in many previous works) which600

is the minimal assumption to use a moment method-like strategy. The weak601

gap condition (1.23) is also well adapted to study systems of coupled one602

dimensional parabolic equations (see Section 7).603

• The main restriction is the assumption (1.28). As detailed in Section 1.1,604

this assumption is common to most of the results based on a moment-like605

method.606

Though restrictive, let us underline that the moment method is, to the best607

of our knowledge, the most suitable method to capture very sensitive features608

such as a minimal null control time for parabolic control problems without609

constraints.610

• The main novelty of this theorem is to ensure solvability of block moment611

problems coming from control problems with control operators that are only612

assumed to be admissible. In particular, the space U can be of infinite di-613

mension. Results concerning block moment problems with more general right-614

hand sides, that is not necessarily coming from a controllability problem, are615

stated in Appendix C616
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• The estimate (2.13) does not explicitly depend on the sequence of eigenval-617

ues Λ but rather on some parameters such as the weak-gap parameters and618

the asymptotic of the counting function. As presented in Section 1.1, the619

uniformity of such bounds can be used to deal with parameter dependent620

problems.621

• Let us also underline that the obtained estimate (2.13) tracks the depen-622

dency of the constants with respect to the controllability time T . This will623

be crucial to estimate the cost of controllability in Proposition 2.9. We re-624

fer to Remark 2.5 for possible applications of such estimates of the cost of625

controllability.626

• Though quite general and useful for the theoretical characterization of the627

minimal null control time, the obtained estimate (2.13) still requires to be able628

to evaluate quantities of the form C(G, z), which can be intricate. We provide629

in Section 2.3 some explicit formulas that makes this estimation possible in630

many actual examples.631

2.2. Determination of the minimal null control time.632

The resolution of block moment problems stated in Theorem 2.2 allows to obtain633

the following characterization of the minimal null control time of our abstract control634

problem from a given initial condition.635

theorem 2.3. Assume that the operators A and B satisfy the assumption (H)636

(see Section 1.4.2) and let G be an associated grouping as stated in Proposition 1.2.637

Then, for any y0 ∈ X−⋄, the minimal null control time of (1.1) from y0 is given by638

(2.14) T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

639

where C(G, y0) is defined in (2.11).640

In this statement we have used the notation ln+ s = max(0, ln s), for any s ≥ 0.641

If one considers a space of initial conditions (instead of a single initial condition),642

the characterization of the minimal null control time is given in the following corollary.643

Corollary 2.4. Let Y0 be a closed subspace of X−⋄. Then, under the assump-644

tions of Theorem 2.3, the minimal null control time from Y0 is given by645

T0(Y0) = lim sup
G∈G

ln+ C(G, Y0)
2rG

646

with647

C(G, Y0) := sup
y0∈Y0

∥y0∥−⋄=1

C(G, y0).648

2.3. More explicit formulas.649

Assume that the operators A and B satisfy the assumption (H). Let G ⊂ Λ be650

such that ♯G ≤ p and diamG ≤ ϱ. We have seen in Theorem 2.3 that the key quantity651

to compute the minimal null control time from y0 is652

C(G, y0) = inf {F (Ω) ; Ω ∈ O(G, y0)} .653

where the function F is defined in (2.9) and the constraints O(G, y0) are defined654

in (2.7). Let us give more explicit formulas to compute such costs.655
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Notice that, for any z ∈ X−⋄, the quantity C(G, z) can be expressed as a finite656

dimensional constrained problem. Indeed, for a given group G we consider the finite657

dimensional subspace658

(2.15) UG = B∗ Span {ϕ ∈ Eλ ; λ ∈ G}659

and PUG the orthogonal projection in U onto UG. Then, for any Ω ∈ O(G, z) it660

comes that PUGΩ ∈ O(G, z) and F (PUGΩ) ≤ F (Ω). Thus, the optimization problem661

defining C(G, z) reduces to662

C(G, z) = inf
{
F (Ω) ; Ω ∈ O(G, z) ∩ U |α|

G

}
,663

which is a finite dimensional optimization problem. From [9, Proposition 7.15], the664

function F is coercive which implies that the infimum is actually attained:665

(2.16) C(G, z) = min
{
F (Ω) ; Ω ∈ O(G, z) ∩ U |α|

G

}
.666

In this section, solving the optimization problem (2.16), we provide more explicit667

formulas for this cost for some particular configurations for the multiplicities of the668

eigenvalues in the group G (and only in that particular group).669

⋆ A group G of geometrically simple eigenvalues.670

First, assume that the eigenvalues in G = {λ1, . . . , λg} are all geometrically simple671

i.e. γλ = 1 for every λ ∈ G where γλ is defined in (1.31).672

For any j ∈ J1, gK we denote by ϕ0j an eigenvector of A∗ associated to the eigen-673

value λj and by (ϕlj)l∈J0,αjJ an associated Jordan chain i.e.674

(A∗ − λj)ϕ
l
j = ϕl−1

j , ∀l ∈ J1, αjJ.675

To simplify the writing, we set676

blj := B∗ϕlj ∈ U, ∀l ∈ J0, αjJ, ∀j ∈ J1, gK.677

Recall that the sequence of multi-index (µl)l∈J0,|α|K satisfy (2.8) and let678

(2.17) M :=

|α|∑
l=1

Γlµ679

with680

Γlµ := GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b

[
λ
(µl−µl−1)
•

]
, . . . , b

[
λ
(µ|α|−µl−1)
•

]681

where for every u1, . . . , un ∈ U , GramU (u1, . . . , un) denotes the Gram matrix whose682

entry on the i-th row and j-th column is ⟨uj , ui⟩U . To explicit the cost C(G, y0), we683

will use the inverse of this matrix. Its invertibility is guaranteed by the following684

proposition which is proved in Section 5.2.685

proposition 2.5. Under condition (1.33), the matrix M defined in (2.17) is in-686

vertible.687
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The matrix M plays a crucial role in the computation of the cost C(G, y0). Let us688

give some comments. It is a sum of Gram matrices whose construction is summarized689

in Figure 1 on an example with G = {λ1, λ2} with α1 = 3 and α2 = 2. Each of these690

matrices is of size |α| which is the number of eigenvalues (counted with their algebraic691

multiplicities) that belong to the group G. Thus, on actual examples (see Section 7),692

the size of these matrices is usually reasonably small.693

b01

b01

b01

b02

b02

b11

b11

b[λ1, λ2]

b12

b21

b[λ
(2)
1 , λ2]

b[λ1, λ
(2)
2 ]

b[λ
(3)
1 , λ2]

b[λ
(2)
1 , λ

(2)
2 ]

b[λ
(3)
1 , λ

(2)
2 ]

0

0

0

0

0

0

0

0

0

0

Gram matrix Γ1
µ

Gram matrix Γ2
µ

Gram matrix Γ3
µ

Gram matrix Γ4
µ

Gram matrix Γ5
µ

Figure 1. Construction of the Gram matrices Γl
µ in the case of a group G = {λ1, λ2} with

multiplicities α = (3, 2) and the sequence of multi-indices µ =
(
(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2)

)
Then, we obtain the following formula for the cost of a group of geometrically694

simple eigenvalues.695

theorem 2.6. Assume that the operators A and B satisfy the assumption (H)696

(see Section 1.4.2). Let G = {λ1, . . . , λg} ⊂ Λ be such that ♯G ≤ p and diamG ≤ ϱ697

and assume that γλ = 1 for every λ ∈ G. Then, for any y0 ∈ X−⋄, we have698

C(G, y0) =
〈
M−1ξ, ξ

〉
, where ξ =



〈
y0, ϕ

[
λ
(µ1)
•

]〉
−⋄,⋄

...〈
y0, ϕ

[
λ
(µ|α|)
•

]〉
−⋄,⋄

 ∈ C|α|
699

and M is defined in (2.17).700

Moreover, if Y0 is a closed subspace of X−⋄,701

(2.18) C(G, Y0) = ρ
(
GramX∗

⋄
(ψ1, . . . , ψ|α|)M

−1
)

702

where ψj := P ∗
Y0
ϕ

[
λ
(µj)
•

]
and, for any matrix M, the notation ρ(M) denotes the703
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spectral radius of the matrix M.704

Remark 2.1. Notice that we do not choose any particular eigenvector or Jordan705

chain. To compute explicitly the cost C(G, y0) on actual examples, we will often choose706

them to satisfy707

∥b0j∥U = 1,
〈
b0j , b

l
j

〉
U
= 0, ∀l ∈ J1, αjJ,708

to simplify the Gram matrices. Obviously, as the quantity C(G, y0) is independent of709

this choice, we can choose any other specific Jordan chains or eigenvectors that are710

more suitable to each problem.711

Remark 2.2. In the case where the eigenvalues of the considered group G are712

also algebraically simple, then the expression of M given in (2.17) reduces to713

(2.19) M =

g∑
l=1

Γl with Γl = GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b[λl], . . . , b[λl, . . . , λg]

714

and the expression of ξ reduces to715

ξ =

 ⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λ1, . . . , λg]⟩−⋄,⋄

 .716

⋆ A group G of semi-simple eigenvalues.717

We now assume that all the eigenvalues in G are semi-simple i.e. for any λ ∈ G718

we have αλ = 1 where αλ is defined in (1.32).719

For any j ∈ J1, gK, we denote by (ϕj,i)i∈J1,γjK a basis of Ker(A∗−λj). To simplify720

the writing, we set721

bj,i := B∗ϕj,i, ∀j ∈ J1, gK, ∀i ∈ J1, γjK722

and γG := γ1 + · · ·+ γg.723

For any i ∈ J1, gK, we set δi1 := 1 and724

(2.20) δij :=

j−1∏
k=1

(
λi − λk

)
, ∀j ∈ J2, gK.725

Notice that δij = 0 as soon as j > i.726

Let727

(2.21) M =

g∑
l=1

Γl with Γl = GramU

(
δ1l b1,1, . . . , δ

1
l b1,γ1 , . . . , δ

g
l bg,1, . . . , δ

g
l bg,γg

)
.728

Here again, to explicit the cost C(G, y0) we will use the inverse of this matrix. Its729

invertibility is guaranteed by the following proposition which is proved in Section 5.3.730

proposition 2.7. Under condition (1.33), the matrix M defined in (2.21) is in-731

vertible.732
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Notice that the square matrix Γl is of size γG and can be seen as a block matrix where733

the block (i, j) with γi rows and γj columns is734 
〈
δjl bj,1, δ

i
lbi,1

〉
U

· · ·
〈
δjl bj,γj , δ

i
lbi,1

〉
U

...
...〈

δjl bj,1, δ
i
lbi,γi

〉
U

· · ·
〈
δjl bj,γj , δ

i
lbi,γi

〉
U

 .735

Thus, the block (i, j) of Γl is identically 0 for i, j ∈ J1, lJ.736

Then, we obtain the following formula for the cost of a group made of semi-simple737

eigenvalues.738

theorem 2.8. Assume that the operators A and B satisfy the assumption (H)739

(see Section 1.4.2). Let G = {λ1, . . . , λg} ⊂ Λ be such that ♯G ≤ p and diamG ≤ ϱ740

and assume that αλ = 1 for every λ ∈ G. Then, for any y0 ∈ X−⋄, we have741

C(G, y0) =
〈
M−1ξ, ξ

〉
742

where743

ξ =



⟨y0, ϕ1,1⟩−⋄,⋄
...

⟨y0, ϕ1,γ1⟩−⋄,⋄
...

⟨y0, ϕg,1⟩−⋄,⋄
...〈

y0, ϕg,γg
〉
−⋄,⋄


744

and M is defined in (2.21).745

Moreover, if Y0 is a closed subspace of X−⋄,746

(2.22) C(G, Y0) = ρ
(
GramX∗

⋄
(ψ1,1, . . . , ψ1,γ1 , . . . , ψg,1, . . . , ψg,γg )M

−1
)

747

where ψj,i := P ∗
Y0
ϕj,i and, for any matrix M, the notation ρ(M) denotes its spectral748

radius.749

Remark 2.3. When the eigenvalues of the group G are geometrically and alge-750

braically simple, Theorem 2.8 gives a characterization of the cost of the block C(G, y0)751

which is different from the one coming from Theorem 2.6 and detailed in Remark 2.2.752

A direct proof of this equivalence (stated in Proposition D.3) using algebraic manipu-753

lations is given in Appendix D.754

⋆ Dealing simultaneously with geometric and algebraic multiplicity.755

Combining Theorems 2.6 and 2.8, we can deal with operators A∗ which have756

both groups of geometrically simple eigenvalues and groups of semi-simple eigenval-757

ues. However, for technical reasons, in the case where both algebraic and geometric758

multiplicities need to be taken into account into a group G we do obtain a general759

formula for the cost of this group C(G, y0). Nevertheless, if this situation occurs in760

actual examples, computing this cost is a finite dimensional constrained optimization761

problem which can be solved ‘by hand ’. We present in Section 5.4 an example of such762

resolution for a group G that does not satisfies the assumptions of Theorem 2.6 nor763

of Theorem 2.8.764
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2.4. Estimate of the cost of null controllability.765

When system (1.1) is null controllable, we obtain the following bound on the cost766

of controllability.767

proposition 2.9. Assume that the operators A and B satisfy the assumption (H)768

(see Section 1.4.2) and let G be an associated grouping a as stated in Proposition 1.2.769

Let y0 ∈ X−⋄ and let T > T0(y0). There exists a control u ∈ L2(0, T ;U) such770

that the associated solution of (1.1) initiated from y0 satisfies y(T ) = 0 and771

∥u∥2L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
θ

1−θ

)
(1+T )2η

∑
G∈G

e−
T−T0(y0)

2 rGe−2rGT0(y0)C(G, Y0).772

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,773

ϱ, η, θ and κ.774

Though quite general the above formula is not very explicit. More importantly,775

it is proved in [29, Theorem 1.1] that, with a suitable choice of A and B satisfying776

our assumptions, any blow-up of the cost of controllability can occur. We give below777

a setting (inspired from [29, Theorem 1.2]) in which this upper bound on the cost of778

controllability is simpler and can have some applications (see Remark 2.5).779

Corollary 2.10. Assume that the operators A and B satisfy the assumption (H)780

(see Section 1.4.2) and let G be an associated grouping as stated in Proposition 1.2.781

Let β > 0. For any y0 ∈ X−⋄ satisfying,782

(2.23) C(G, y0) ≤ βe2rGT0(y0) ∥y0∥2−⋄ , ∀G ∈ G,783

for any T > T0(y0) close enough to T0(y0), there exists a control u ∈ L2(0, T ;U) such784

that the associated solution of (1.1) satisfies y(T ) = 0 and785

∥u∥L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
θ

1−θ

)
∥y0∥−⋄ ,786

where the constant C > 0 only depends on the parameters β, τ , p, ϱ, η, θ and κ.787

Remark 2.4. In the setting of Corollary 2.10, replacing the assumption (2.23)788

by789

C(G, y0) ≤ βeβr
σ
Ge2rGT0(y0) ∥y0∥2−⋄ , ∀G ∈ G,790

with σ ∈ (0, 1) leads to the following estimate791

∥u∥L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
max(θ,σ)

1−max(θ,σ)

)
∥y0∥−⋄ .792

Remark 2.5. Giving the best possible estimate on the cost of small time null793

controllability is a question that has drawn a lot of interest in the past years.794

In classical cases, for instance for heat-like equations, null controllability holds795

in any positive time and the cost of controllability in small time behaves like exp
(
C
T

)
796

(see for instance [37]). There are two mains applications of such estimate.797

• Controllability in cylindrical domains.798

It is proved in [8] that null controllability of parabolic problems in cylindrical799

geometries (with operators compatible with this geometry) with a boundary800

control located on the top of the cylinder can be proved thanks to null con-801

trollability of the associated problem in the transverse variable together with802
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suitable estimates of the cost of controllability. Their proof relies on an adap-803

tation of the classical strategy of Lebeau and Robbiano [28] and thus uses804

an estimate of the cost of controllability in small time of the form exp
(
C
T

)
.805

These ideas were already present in [10] and later generalized in an abstract806

setting in [1].807

• Nonlinear control problems.808

The source term method has been introduced in [30] to prove controllability809

of a nonlinear fluid-structure system (see also [7, Section 2] for a general810

presentation of this strategy). Roughly speaking it amounts to prove null con-811

trollability with a source term in suitable weighted spaces and then use a fixed812

point argument. The null controllability with a source term is here proved by813

an iterative process which strongly uses that the cost of controllability of the814

linearized system behaves like exp
(
C
T

)
.815

Notice that from the upper bound given in Corollary 2.10, the cost of controllability816

in small time can explode faster than exp
(
C
T

)
. Yet, as studied in [33] and in [35,817

Chapter 4], the arguments of the two previous applications can be adapted with an818

explosion of the cost of the form exp

(
C

T
θ

1−θ

)
with θ ∈ (0, 1).819

However, these two applications uses a decomposition of the time interval [0, T ]820

into an infinite number of sub-intervals (which explains the use of the asymptotic of821

the cost of controllability when the time goes to zero). Thus their extension in the822

case of a minimal null control time is an open problem.823

3. Resolution of block moment problems.824

In this section we prove Theorem 2.2 that is we solve the block moment prob-825

lem (2.12). To do so, we first consider a vectorial block moment problem (see (3.1)826

below) which is proved to be equivalent to the block moment problem (2.12) in Propo-827

sition 3.1. This equivalence strongly relies on the constraints (2.6). Then we prove828

the lower bound for solutions of block moment problems stated in Proposition 2.1.829

Finally, in Section 3.2, we solve the vectorial block moment problem (3.1) which830

will conclude the proof of Theorem 2.2.831

3.1. An auxiliary equivalent vectorial block moment problem.832

Let Λ ⊂ Sτ , G = {λ1, . . . , λg} ⊂ Λ, η ∈ N∗ and α = (α1, . . . , αg) ∈ Ng with833

|α|∞ ≤ η. For any834

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α|,835

we consider the following auxiliary vectorial block moment problem : find vG ∈836

L2(0, T ;U) such that837 ∫ T

0

vG(t)
(−t)l

l!
e−λjtdt = Ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(3.1a)838 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(3.1b)839

840

This block moment problem is said to be vectorial : the right-hand side Ω belongs841

to U |α| and its solution vG(t) belongs to the control space U for almost every t. Its842

resolution with (almost) sharp estimates is given in Proposition 3.3.843
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Through (2.5), when the right-hand side Ω of (3.1) satisfy the constraints (2.7),844

solving this vectorial block moment problem provides a solution of the original block845

moment problem (2.12). More precisely we have the following proposition846

proposition 3.1. Let T > 0 and z ∈ X−⋄. The following two statements are847

equivalent:848

i. there exists Ω ∈ O(G, z) such that the function vG ∈ L2(0, T ;U) solves (3.1);849

ii. the function vG ∈ L2(0, T ;U) solves (2.12).850

Proof. Assume first that there exists Ω ∈ O(G, z) and let v ∈ L2(0, T ;U) be such851

that (3.1) holds.852

Then, using (2.5), for any j ∈ J1, gK and any ϕ ∈ Eλj we have853

∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt =

∫ T

0

〈
v(t), e−λjt

αj−1∑
l=0

(−t)l

l!
B∗(A∗ − λj)

lϕ

〉
U

dt854

=

αj−1∑
l=0

〈∫ T

0

v(t)
(−t)l

l!
e−λjtdt,B∗(A∗ − λj)

lϕ

〉
U

855

=

αj−1∑
l=0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
.856

857

Since
(
Ω0
j , . . . ,Ω

αj−1
j

)
∈ O(λj , z) (see (2.6)) , this leads to858

∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀j ∈ J1, gK,∀ϕ ∈ Eλj ,859

which proves that v solves (2.12).860

Assume now that v ∈ L2(0, T ;U) solves (2.12). Setting861

Ωlj :=

∫ T

0

v(t)
(−t)l

l!
e−λjtdt862

we obtain that v solves (3.1). As in the previous step, the identity (2.5) implies that863

Ω ∈ O(G, z).864

Using this vectorial block moment problem allows to prove the lower bound stated865

in Proposition 2.1.866

Proof (of Proposition 2.1). Let vG ∈ L2(0, T ;U) be any solution of (2.12a). Let867

Ωlj :=

∫ T

0

vG(t)
(−t)l

l!
e−λjtdt =

∫ T

0

vG(t)et

[
λj

(l+1)
]
dt, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.868

As in the proof of Proposition 3.1, the use of (2.5) implies that869

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ O(G, z).870

Thus,871

(3.2) C(G, z) ≤ F (Ω) =

|α|∑
l=1

∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥2
U

.872
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Notice that873

Ω

[
λ
(µl)

•

]
=

∫ T

0

vG(t)et

[
λ
(µl)

•

]
dt, ∀l ∈ J0, |α|K.874

Using Jensen inequality [9, Proposition 6.1] yields,875 ∣∣∣∣et [λ(µl)

•

]∣∣∣∣ = ∣∣∣et [λ(µl)•

]∣∣∣ ≤ tl−1e−rGt

(l − 1)!
.876

Together with Cauchy-Schwarz inequality this implies877 ∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥
U

≤
(∫ +∞

0

tl−1e−rGt

(l − 1)!
dt

) 1
2

∥vG∥L2(0,T ;U).878

Then, as rG ≥ rΛ and |α| ≤ pη, estimate (3.2) ends the proof of Theorem 2.2.879

3.2. Solving the original moment problem.880

In view of Proposition 3.1, to solve (2.12), we prove that there exists at least one881

Ω satisfying the constraints (2.6).882

proposition 3.2. Let λ ∈ Λ and z ∈ X−⋄. Then, under assumption (1.33), we883

have884

O(λ, z) ̸= ∅.885

Proof. Let T > 0. The finite dimensional space Eλ is stable by the semi-886

group e−•A∗
(see for instance (2.5)). Using the approximate controllability assump-887

tion (1.33) we have that888

ϕ ∈ Eλ 7→
∥∥∥B∗e−•A∗

ϕ
∥∥∥
L2(0,T,U)

889

is a norm on Eλ. Then, the equivalence of norms in finite dimension implies that the890

following HUM-type functional891

J : ϕ ∈ Eλ 7→ 1

2

∥∥∥B∗e−•A∗
ϕ
∥∥∥2
L2(0,T,U)

−ℜ⟨z, ϕ⟩−⋄,⋄892

is coercive. Let ϕ̃ ∈ Eλ be such that893

J
(
ϕ̃
)
= inf
ϕ∈Eλ

J(ϕ)894

and v := B∗e−•A∗
ϕ̃. The optimality condition gives (paying attention to the fact that895

Eλ is a complex vector space)896

(3.3)

∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ.897

Finally, we set Ω :=
(
Ω0, . . . ,Ωαλ−1

)
with898

Ωl :=

∫ T

0

v(t)
(−t)l

l!
e−λtdt, ∀l ∈ J0, αλJ.899

Using (3.3) and following the computations of Proposition 3.1 we obtain that Ω ∈900

O(λ, z).901
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We now turn to the resolution of the vectorial block moment problem (3.1).902

proposition 3.3. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that903

Λ ∈ Lw(p, ϱ, τ, θ, κ).904

Let G = {λ1, . . . , λg} ⊂ Λ be a group satisfying (1.25)–(1.27). Let T ∈ (0,+∞) and905

η ∈ N∗. For any multi-index α ∈ Ng with |α|∞ ≤ η and any906

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α|,907

there exists vG ∈ L2(0, T ;U) solution of (3.1) such that908

∥vG∥2L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp (rGT ) exp

(
CrθG

)
F (Ω),909

where F is defined in (2.9) and rG is defined in (1.35). The constant C > 0 appearing910

in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.911

Proof. Let (ej)j∈J1,dK be an orthonormal basis of the finite dimensional subspace912

of U given by913

Span
{
Ωlj ; j ∈ J1, gK, l ∈ J0, αjJ

}
.914

Then, for any j ∈ J1, gK and l ∈ J0, αjJ, there exists
(
ai

[
λj

(l+1)
])

i∈J1,dK
∈ C|α| such915

that the decomposition of Ωlj reads916

Ωlj =

d∑
i=1

ai

[
λj

(l+1)
]
ei.917

From Theorem A.1, for any i ∈ J1, dK, there exists vi ∈ L2(0, T ;C) such that918 
∫ T

0

vi(t)
(−t)l

l!
e−λjtdt = ai

[
λj

(l+1)
]
, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,∫ T

0

vi(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,

919

and920

∥vi∥2L2(0,T ;C) ≤ CeCT
− θ

1−θ
eCr

θ
G max
µ∈Ng
µ≤α

∣∣∣ai [λ1(µ1)
, . . . , λg

(µg)
]∣∣∣2 .921

Setting922

v :=

d∑
i=1

viei,923
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we get that v solves (3.1) and using [9, Proposition 7.15]924

∥v∥2L2(0,T ;U) =

d∑
i=1

∥vi∥2L2(0,T ;C)925

≤ CeCT
− θ

1−θ
erGT eCr

θ
G

d∑
i=1

max
µ∈Ng
µ≤α

∣∣∣ai [λ1(µ1)
, . . . , λg

(µg)
]∣∣∣2926

≤ Cp,ϱ,ηCe
CT

− θ
1−θ

erGT eCr
θ
G

|α|∑
p=1

(
d∑
i=1

∣∣∣ai [λ(µp)

•

]∣∣∣2)927

= CeCT
− θ

1−θ
erGT eCr

θ
G

|α|∑
p=1

∥∥∥Ω [λ(µp)

•

]∥∥∥2 .928

929

This ends the proof of Proposition 3.3.930

We now have all the ingredients to prove Theorem 2.2.931

Proof (of Theorem 2.2). From Proposition 3.2, we have O(G, z) ̸= ∅. Recall932

that, from (2.16), the optimization problem defining C(G, z) can be reduced to a933

finite dimensional optimization problem for which the infimum is attained. Thus, let934

Ω ∈ O(G, z) be such that935

F (Ω) = C(G, z).936

Let vG ∈ L2(0, T ;U) be the solution of (3.1) given by Proposition 3.3 with Ω as right-937

hand side. As Ω ∈ O(G, z), from Proposition 3.1 we deduce that vG solves (2.12).938

The upper bound (2.13) on ∥vG∥L2(0,T ;U) is given by Proposition 3.3.939

4. Application to the determination of the minimal null control time.940

This section is dedicated to the consequences of Theorem 2.2 on the null control-941

lability properties of system (1.1).942

From Theorem 2.2, the resolution of block moment problems (2.4) associated with943

null controllability of (1.1) will involve the quantity C(G, e−TAy0). To formulate the944

minimal null control time we isolate the dependency with respect to the variable T945

leading to quantities involving C(G, y0). The comparison between these two costs is946

detailed in Section 4.1.947

Then, this leads to the formulation of the minimal null control time stated in948

Theorem 2.3. We then prove the estimates on the cost of null controllability stated949

in Proposition 2.9 and Corollary 2.10. This is detailed in Section 4.2.950

4.1. Relating the different costs.951

Let us prove that the cost C(G, e−TAz) appearing in Theorem 2.2 roughly behaves952

like e−2rGTC(G, z). More precisely, we have the following estimates.953

Lemma 4.1. Assume that the operators A and B satisfy the assumption (H) (see954

Section 1.4.2). There exists Cp,ϱ,η > 0 such that for any G ⊂ Λ with ♯G ≤ p and955

diamG ≤ ϱ, for any T > 0 and any z ∈ X−⋄,956

(4.1) C(G, e−TAz) ≤ Cp,ϱ,η(1 + T )2|α|e−2rGTC(G, z)957

and958

(4.2) e−2rGTC(G, z) ≤ Cp,ϱ,η(1 + T )2|α|e2ϱTC(G, e−TAz).959
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Proof. Recall that from (1.21) we have960 〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

=
〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ X∗

⋄ .961

We set G = {λ1, . . . , λg}.962

• We start with the proof of (4.1).963

From (2.16), let Ω̃ ∈ O(G, z) be such that F (Ω̃) = C(G, z). We define Ω by964

Ωlj := (eT Ω̃)
[
λj

(l+1)
]
, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,965

with the convention966

Ω̃
[
λj

(l+1)
]
= Ω̃lj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.967

Let us prove that Ω ∈ O(G, e−TAz). For any j ∈ J1, gK and any ϕ ∈ Eλj , using [9,968

Definition 7.12] we obtain969

∑
l≥0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
=
∑
l≥0

l∑
r=0

eT

[
λj

(r+1)
] 〈

Ω̃l−rj ,B∗(A∗ − λj)
lϕ
〉
U

970

=
∑
r≥0

eT

[
λj

(r+1)
]∑
l≥r

〈
Ω̃l−rj ,B∗(A∗ − λj)

lϕ
〉
U

971

=
∑
r≥0

eT

[
λj

(r+1)
]∑
l≥0

〈
Ω̃lj ,B∗(A∗ − λj)

l+rϕ
〉
U
.972

973

Since Ω̃ ∈ O(G, z) and eT

[
λj

(r+1)
]
= eT

[
λ
(r+1)
j

]
for any r ≥ 0, using (2.5) this974

yields975 ∑
l≥0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
=
∑
r≥0

eT

[
λ
(r+1)
j

]
⟨z, ((A∗ − λj)

rϕ)⟩−⋄,⋄976

=
〈
z, e−TA∗

ϕ
〉
−⋄,⋄

=
〈
e−TAz, ϕ

〉
−⋄,⋄ .(4.3)977

978

This proves the claim.979

Applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9, Propo-980

sition 6.1] we obtain,981 ∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥
U

=

∥∥∥∥∥
l∑

q=1

eT

[
λ
(µl−µq−1)

•

]
Ω̃
[
λ
(µq)

•

]∥∥∥∥∥982

≤ Cp,ϱ,η(1 + T )|α|e−rGT

(
l∑

q=1

∥∥∥Ω̃ [λ(µq)

•

]∥∥∥2)
1
2

.983

984

Thus,985

F (Ω) ≤ Cp,ϱ,η(1 + T )2|α|e−2rGTF (Ω̃) = Cp,ϱ,η(1 + T )2|α|e−2rGTC(G, z).986

As Ω ∈ O(G, e−TAz), this proves (4.1).987
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• The proof of (4.2) uses the same ingredients.988

From (2.16), let Ω ∈ O(G, e−TAz) be such that F (Ω) = C(G, e−TAz). For any989

j ∈ J1, gK and any l ∈ J0, αjJ, let990

Ω̃lj := (e−TΩ)
[
λj

(l+1)
]

991

where992

Ω
[
λj

(l+1)
]
:= Ωlj .993

As previously, applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9,994

Proposition 6.1], since λj satisfies ℜλj ≤ rG + ϱ for any j ∈ J1, gK, we obtain995

∥∥∥∥Ω̃ [λ(µl)

•

]∥∥∥∥
U

≤ Cp,ϱ,η(1 + T )2|α|e(rG+ϱ)T

(
l∑

q=1

∥∥∥Ω [λ(µq)

•

]∥∥∥2)
1
2

.996

The same computations as in (4.3) give that Ω ∈ O(G, z). Thus997

C(G, z) ≤ F (Ω̃) ≤ Cp,ϱ,η(1 + T )2|α|e2(rG+ϱ)TF (Ω)998

= Cp,ϱ,η(1 + T )2|α|e2(rG+ϱ)TC(G, e−TAz)9991000

and (4.2) is proved.1001

4.2. The minimal null control time.1002

This section is dedicated to the proof of Theorem 2.3 and Corollary 2.4 concerning1003

the minimal null control time. Proposition 2.9 and Corollary 2.10 concerning the1004

cost of null controllability will follow from the estimates obtained in the proof of1005

Theorem 2.3. This is discussed at the end of the current section.1006

Proof (of Theorem 2.3).1007

• We start with the proof of null controllability in time T > T0(y0).1008

We set ε = T − T0(y0) > 0. Let G ∈ G and let vG ∈ L2(0, ε;U) be the solution1009

of the block moment problem (2.12) in time ε associated with z = e−TAy0 given by1010

Theorem 2.2 i.e.1011 ∫ ε

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,1012 ∫ ε

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.1013

1014

We still denote by vG ∈ L2(0, T ;U) the extension of vG by 0. Thus, vG satisfies1015 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,1016 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.1017

1018

From (2.5), this implies that vG solves (2.3). Thus, the only point left is to prove that1019

the series (2.2) defining the control u converges in L2(0, T ;U).1020

From Theorem 2.2 we have that1021

∥vG∥2L2(0,T ;U) = ∥vG∥2L2(0,ε;U) ≤ CeCε
− θ

1−θ
eεrGeCr

θ
GC(G, e−TAy0).1022
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Studying the maximum of the function x ∈ [0,+∞) 7→ Cxθ − ε
2x it comes that1023

eCr
θ
G ≤ eCε

− θ
1−θ

e
ε
2 rG1024

where in the right-hand side the constant C > 0 has changed but still depend on the1025

same parameters. Thus,1026

∥vG∥2L2(0,T ;U) ≤ CeCε
− θ

1−θ
e

3
2 εrGC(G, e−TAy0).1027

Using (4.1) we obtain1028

∥vG∥2L2(0,T ;U) ≤ CeCε
− θ

1−θ
(1 + T )2|α|e−

ε
2 rGe−2rG(T−ε) C(G, y0).1029

Recalling that ε = T − T0(y0) this gives1030

(4.4)

∥vG∥2L2(0,T ;U) ≤ C exp

 C(
T − T0(y0)

) θ
1−θ

 (1+T )2|α|e−
T−T0(y0)

2 rGe−2rGT0(y0)C(G, y0).1031

Recall that in (2.14) we have defined T0(y0) by1032

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1033

Thus, when rG is sufficiently large, we have1034

e−2rGT0(y0) C(G, y0) ≤ exp

(
T − T0(y0)

4
rG

)
.1035

Together with (4.4) this implies, for rG sufficiently large,1036

∥vG∥2L2(0,T ;U) ≤ C exp

 C(
T − T0(y0)

) θ
1−θ

 (1 + T )2|α| exp

(
−T − T0(y0)

4
rG

)
1037

and proves that the series1038

(4.5) u =
∑
G∈G

vG(T − •)1039

converges in L2(0, T ;U). This proves null controllability of (1.1) from y0 in any time1040

T > T0(y0).1041

• We now end the proof of Theorem 2.3 by proving that null controllability does not1042

hold in time T < T0(y0). The proof mainly relies on the optimality of the resolution1043

of the block moment problems given in Proposition 2.1 (see (2.10)).1044

Let T > 0. Assume that problem (1.1) is null controllable from y0 in time T .1045

Thus there exists u ∈ L2(0, T ;U) such that y(T ) = 0 and1046

∥u∥L2(0,T ;U) ≤ CT ∥y0∥−⋄ .1047

Let v := −u(T − •). Then, for any G ∈ G, v satisfies (2.12a) with z = e−TAy0.1048

From (2.10), this implies1049

(4.6) C2
T ∥y0∥2−⋄ ≥ ∥u∥2L2(0,T ;U) = ∥v∥2L2(0,T ;U) ≥ Cp,η,rΛC(G, e−TAy0).1050
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Applying (4.2) we obtain1051

C(G, y0) ≤ CT,p,ϱ,ηe
2rGTC(G, e−TAy0).1052

Together with (4.6) this implies1053

(4.7) C(G, y0) ≤ CT,p,ϱ,η,rΛ ∥y0∥2−⋄ e
2rGT .1054

Getting back to the definition of T0(y0) given in (2.14), this implies that T ≥ T0(y0)1055

and ends the proof of Theorem 2.3.1056

Remark 4.1. It is worth noticing that the control vG constructed is only active on1057

the time interval (0, T −T0(y0)). Thus, whenever T0(y0) > 0, the series (4.5) defining1058

the control u proves that it is possible to control y0 to 0 in any time T > T0(y0) with1059

a control that is identically vanishing on the time interval
(
0, T0(y0)

)
.1060

We now turn to the proof of Corollary 2.4.1061

Proof (of Corollary 2.4). By definition, we have T0(Y0) = supy0∈Y0
T0(y0). Using1062

the definition of C(G, Y0) and Theorem 2.3, it directly comes that1063

T0(Y0) ≤ lim sup
G∈G

ln+ C(G, Y0)
2rG

.1064

We now focus on the converse inequality. Let T > 0 such that1065

T < lim sup
G∈G

ln+ C(G, Y0)
2rG

1066

and let us prove that T ≤ T0(Y0).1067

There exists ε > 0 and a sequence of groups (Gk)k∈N ∈ GN such that for any1068

k ∈ N∗, there exists y0,k ∈ Y0 with ∥y0,k∥−⋄ = 1 satisfying1069

(4.8) T + ε <
ln C(Gk, y0,k)

2rGk
.1070

By contradiction, assume that for any y0 ∈ Y0, we have T > T0(y0). Thus,1071

from (4.7), there exists CT,p,ϱ,η,rΛ > 0 such that for any k ∈ N∗1072

ln C(Gk, y0,k)
2rGk

≤ lnCT,p,ϱ,η,rΛ
2rGk

+ T.1073

Taking k sufficiently large, this is in contradiction with (4.8).1074

We end this section with the proof of Proposition 2.9 and Corollary 2.10 concern-1075

ing the cost of null controllability.1076

A careful inspection of the proof of null controllability in time T > T0(y0) detailed1077

in Section 4.2 allows to give a bound on the cost of controllability.1078

Proof (of Proposition 2.9 and Corollary 2.10). The proof of Proposition 2.9 fol-1079

lows directly from (2.2) and (4.4).1080

The proof of Corollary 2.10 then follows directly from Proposition 2.9, assump-1081

tion (2.23) and the estimate1082 ∑
G∈G

e−rGx ≤ Cθ,κ
xθ

, ∀x > 0,1083

proved in [12, Proposition A.5.32].1084
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5. Computation of the cost of a block.1085

In this section we prove more explicit formulas to estimate the cost C(G, y0)1086

of the resolution of a block moment problem depending on the assumptions on the1087

eigenvalues in the group G. More precisely, we prove here Theorems 2.6 and 2.8.1088

For pedagogical purpose, we start in Section 5.1 with Theorem 2.6 for algebraically1089

(and geometrically) simple eigenvalues i.e. when αλ = γλ = 1 for any λ ∈ G. Then,1090

in Section 5.2, we prove the general statement of Theorem 2.6 that is when all the1091

eigenvalues in the group are geometrically simple i.e. γλ = 1 for any λ ∈ G.1092

The formula for the cost C(G, y0) when all the eigenvalues in the group G are1093

semi-simple (i.e. αλ = 1 for any λ ∈ G) stated in Theorem 2.8 is then proved in1094

Section 5.3. The extension to spaces of initial conditions (2.18) and (2.22) does not1095

depend on the matrix M and follows directly from Lemma B.1. Thus, their proofs1096

are not detailed here.1097

When both algebraic and geometric multiplicities appear in the same group we1098

do not get a general formula but describe the procedure on an example in Section 5.4.1099

Recall that from (2.16), computing C(G, y0) is a finite dimensional optimization1100

problem given by1101

C(G, y0) = min
{
F (Ω) ; Ω ∈ O(G, y0) ∩ U |α|

G

}
1102

where the function F is defined in (2.9), the constraints associated with O(G, y0) are1103

defined in (2.7) and UG is defined in (2.15).1104

5.1. The case of simple eigenvalues.1105

In all this section, we consider the simpler case where αλ = γλ = 1 for every1106

λ ∈ G. Thus, in the rest of this section, we drop the superscript 0 associated to1107

eigenvectors.1108

We start with the proof of the invertibility of the matrix M stated in Proposi-1109

tion 2.5.1110

Proof. Recall that, as αλ = γλ = 1, the positive semi-definite matrixM is defined1111

in (2.19). Let τ ∈ Cg be such that ⟨Mτ, τ⟩ = 0. Then, for each l ∈ J1, gK, we have1112 〈
Γlτ, τ

〉
= 0.1113

We prove that τ = 0. By contradiction let1114

l = max{j ∈ J1, gK ; τj ̸= 0}.1115

Then from (2.19) this leads to
〈
Γlτ, τ

〉
= ∥b[λl]∥2U |τl|2. Using (1.33) implies τl = 0.1116

This is in contradiction with the definition of l which proves the invertibility of M .1117

We now prove Theorem 2.6.1118

Proof. First of all, notice that the function F to minimize reduces to1119

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥21120

and, as γλ = αλ = 1, the constraints defining the set O(λj , y0) reduce to1121

⟨Ωj , bj⟩U = ⟨y0, ϕj⟩−⋄,⋄ .1122
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Thus, the minimization problem reduces to1123

1124

(5.1) C(G, y0) = min
{
F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG such that1125

⟨Ωj , bj⟩U = ⟨y0, ϕj⟩−⋄,⋄ , ∀j ∈ J1, gK
}
.1126

1127

For the sake of generality, let us consider for this proof any ω1, . . . , ωg ∈ C and the1128

more general constraints1129

(5.2) ⟨Ωj , bj⟩U = ωj , ∀j ∈ J1, gK.1130

Using the formalism of divided differences, this is equivalent to the family of con-1131

straints1132

(5.3) ⟨Ω, b⟩U [λ1, . . . , λj ] = ω[λ1, . . . , λj ], ∀j ∈ J1, gK.1133

We consider the constrained complex minimization problem1134

min {F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG such that (5.3) holds} .1135

It has a unique solution, which is characterised by the existence of multipliers (mj)j∈J1,gK ⊂1136

C such that1137

(5.4)

g∑
j=1

〈
H[λ1, . . . , λj ],Ω[λ1, . . . , λj ]

〉
U
=

g∑
j=1

mj ⟨H, b⟩U [λ1, . . . , λj ],1138

for any H1, . . . ,Hg ∈ UG.1139

Then, for a given q ∈ J1, gK, using Leibniz formula [12, Proposition A.2.11], the1140

constraints (5.3) can be rewritten as1141

(5.5) ω[λ1, . . . , λq] = ⟨Ω, b⟩U [λ1, . . . , λq] =

q∑
j=1

〈
Ω[λ1, . . . , λj ], b[λj , . . . , λq]

〉
U

1142

To relate (5.5) and (5.4), we look for H1, . . . ,Hg ∈ UG such that, for a given q ∈ J1, gK1143

we have1144

H[λ1, . . . , λj ] =

{
b[λj , . . . , λq], for j ≤ q,

0, for j > q.
1145

This can be done by setting H1 = b[λ1, . . . , λq] and, from the interpolation formula [9,1146

Proposition 7.6], by defining Hj by the formula1147

Hj =

j∑
i=1

(
j−1∏
k=1

(λi − λk)

)
H[λ1, . . . , λi], ∀j ∈ J2, gK.1148

Then, from (5.5) we obtain1149

ω[λ1, . . . , λq] =

g∑
j=1

〈
Ω[λ1, . . . , λj ], H[λ1, . . . , λj ]

〉
U
.1150
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Now relation (5.4) leads, after conjugation, to1151

ω[λ1, . . . , λq] =

g∑
j=1

mj ⟨H, b⟩U [λ1, . . . , λj ].1152

The application of Leibniz formula [12, Proposition A.2.11] yields1153

ω[λ1, . . . , λq] =

g∑
j=1

mj

(
j∑
l=1

〈
H[λ1, . . . , λl], b[λl, . . . , λj ]

〉
U

)
1154

=

g∑
j=1

mj

min(j,q)∑
l=1

⟨b[λl, . . . , λq], b[λl, . . . , λj ]⟩U

 .1155

1156

Conjugating this relation leads to1157

ω[λ1, . . . , λq] =

g∑
j=1

mj

min(j,q)∑
l=1

⟨b[λl, . . . , λj ], b[λl, . . . , λq]⟩U

1158

=

g∑
l=1

g∑
j=1

mjΓ
l
q,j = (Mm)q,1159

1160

where Γl and M are defined in (2.19).1161

Let1162

ξ :=

 ω[λ1]
...

ω[λ1, . . . , λg]

 ∈ Cg.1163

We have just proved that m = M−1ξ. Getting back to (5.4) with H = Ω together1164

with the constraints (5.3), we obtain1165

F (Ω) =

g∑
j=1

mj ⟨Ω, b⟩U [λ1, . . . , λj ] =
〈
M−1ξ, ξ

〉
.1166

With the specific choice, ωj = ⟨y0, ϕj⟩−⋄,⋄, this ends the proof of Theorem 2.6 with1167

the extra assumption that αλ = 1 for all λ ∈ G. Indeed, by anti-linearity we have1168

ω[λ1, . . . , λj ] = ⟨y0, ϕ[λ1, . . . , λj ]⟩−⋄,⋄ , ∀j ∈ J1, gK.1169

Remark 5.1. As mentioned in Remark 2.1, estimate (5.1) implies that the cost1170

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any eigenvectors:1171

there is no normalization condition.1172

Remark 5.2. Rewriting the constraints in the form (5.3) is not mandatory but,1173

as the function to minimize involves divided differences, it leads to more exploitable1174

formulas and will ease the writing when dealing with algebraic multiplicity of eigen-1175

values. Dealing directly with (5.2) would lead to the expression (D.9) for the cost of1176

the block G as it will appear in the proof of Theorem 2.8.1177
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5.2. The case of geometrically simple eigenvalues.1178

The proof of Proposition 2.5 and Theorem 2.6 under the sole assumption γλ = 11179

for any λ ∈ G follows closely the proof done in Section 5.1. The main difference is the1180

use of generalized divided differences (see [9, Section 7.3]) instead of classical divided1181

differences as detailed below.1182

Proof (of Proposition 2.5). Due to (2.8), for any l ∈ J1, |α|K the multi-index µl −1183

µl−1 is composed of only one 1 and g − 1 zeros. Thus,1184

b
[
λ
(µl−µl−1)
•

]
= b0j1185

for a certain j ∈ J1, gK. From (1.33) it comes that1186

b
[
λ
(µl−µl−1)
•

]
̸= 0, ∀l ∈ J1, |α|K.1187

The rest of the proof follows as in Section 5.1.1188

Proof (of Theorem 2.6). As γλ = 1, the constraints defining the set O(λj , y0)1189

reduce to1190

l∑
r=0

〈
Ωrj , b

l−r
j

〉
U
=

l∑
r=0

〈
Ωrj ,B∗(A∗ − λj)

rϕlj
〉
U

1191

=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀l ∈ J0, αjJ.1192

1193

By definition of ⟨Ω, b⟩U
[
λj

(l+1)
]
, this is equivalent to1194

⟨Ω, b⟩U
[
λj

(l+1)
]
=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀l ∈ J0, αjJ.1195

Thus,1196
1197

(5.6) C(G, y0) = min
{
F (Ω) ; Ω = (Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g ) ∈ U

|α|
G1198

such that ⟨Ω, b⟩U
[
λj

(l+1)
]
=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ

}
.1199

1200

For the sake of generality, let us consider for this proof any1201 (
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|

1202

and the more general constraints1203

⟨Ω, b⟩U
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1204

From (2.8), this is equivalent to the family of constraints1205

⟨Ω, b⟩U
[
λ•

(µp)
]
= ω

[
λ•

(µp)
]
, ∀p ∈ J1, |α|K,1206

and we proceed as in Section 5.1. The only difference is the use of generalized divided1207

differences. For instance, the equation (5.4) now reads1208

|α|∑
l=1

〈
H[λ•

(µl)
],Ω[λ•

(µl)
]

〉
U

=

|α|∑
l=1

ml ⟨H, b⟩U [λ•
(µl)

], ∀H = (H l
j) ∈ U

|α|
G .1209

The rest of the proof remains unchanged.1210
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Remark 5.3. As mentioned in Remark 2.1, estimate (5.6) implies that the cost1211

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any eigenvectors1212

and any associated Jordan chains.1213

5.3. The case of semi-simple eigenvalues.1214

We start with the proof of Proposition 2.7.1215

Proof (of Proposition 2.7). Recall that the positive semi-definite matrix M is de-1216

fined in (2.21). Let τ ∈ CγG be such that ⟨Mτ, τ⟩ = 0. Then, for any l ∈ J1, gK,1217 〈
Γlτ, τ

〉
= 0. We prove that τ = 0. By contradiction let1218

l̃ = max{j ∈ J1, γGK ; τj ̸= 0}1219

and l ∈ J1, gK be such that1220

γ1 + · · ·+ γl−1 < l̃ ≤ γ1 + · · ·+ γl1221

with the convention that l = 1 when l̃ ≤ γ1. We denote by σ ∈ Cγl the lth block of τ1222

i.e.1223

σ =

τγ1+···+γl−1+1

...
τγ1+···+γl

 .1224

From (2.20) we have δil = 0 when i < l. Thus all the blocks (i, j) of Γl are equal to 01225

when i, j ∈ J1, lJ. This leads to1226 〈
Γlτ, τ

〉
=
∣∣δll∣∣2 ⟨GramU (bl,1, . . . , bl,γl)σ, σ⟩ .1227

As the eigenvalues λ1, . . . , λg are distinct it comes that δll ̸= 0 (see (2.20)) which1228

implies1229

⟨GramU (bl,1, . . . , bl,γl)σ, σ⟩ = 0.1230

From (1.33), we have that bl,1, . . . , bl,γl are linearly independent. This proves the1231

invertibility of GramU (bl,1, . . . , bl,γl) and gives σ = 0. This is in contradiction with1232

the definition of l̃ which proves the invertibility of M .1233

We now turn to the proof of Theorem 2.8.1234

Proof (of Theorem 2.8). First of all, notice that the function F to minimize re-1235

duces to1236

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥21237

and, as αλ = 1, the constraints defining the set O(λj , y0) reduce to1238

⟨Ωj ,B∗ϕ⟩U = ⟨y0, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Ker(A∗ − λj).1239

To simplify the writing, let us consider the linear maps1240

Bj :=

 ⟨•,B∗ϕj,1⟩U
...〈

•,B∗ϕj,γj
〉
U

 ∈ L(U,Cγj ).1241
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Then the constraints defining O(λj , y0) can be rewritten as the equality1242

(5.7) BjΩj =

 ⟨y0, ϕj,1⟩−⋄,⋄
...〈

y0, ϕj,γj
〉
−⋄,⋄

 .1243

Thus,1244

1245

(5.8) C(G, y0) = min
{
F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG1246

such that (5.7) holds for any j ∈ J1, gK
}
.1247

1248

For the sake of generality, let us consider for this proof, for any j ∈ J1, gK, any ωj ∈ Cγj1249

and the more general constraints1250

(5.9) BjΩj = ωj , ∀j ∈ J1, gK.1251

As the ωj ’s have different sizes we avoid in this proof the use of divided differences1252

to rewrite the constraints. This is why we end up with the formula (2.21) rather than1253

an adaptation of (2.19) (see also the discussion in Remark 5.2).1254

Arguing as before, the solution of our optimisation problem satisfies1255

(5.10)

g∑
j=1

〈
H[λ1, . . . , λj ],Ω[λ1, . . . , λj ]

〉
U
=

g∑
j=1

⟨BjHj ,mj⟩ , ∀H1, . . . ,Hg ∈ UG,1256

for some mj ∈ Cγj , j = 1, . . . , g.1257

Recall that in (2.20) we defined the numbers1258

δij =
∏

k∈J1,jJ

(
λi − λk

)
, ∀j ∈ J2, gK.1259

Then, from the interpolation formula [9, Proposition 7.6], we obtain that1260

(5.11) Ωi =

i∑
l=1

δilΩ[λ1, . . . , λl].1261

For any H ∈ UG and i ∈ J1, gK, let us design H(i)
1 , . . . ,H

(i)
g ∈ UG such that1262

(5.12) H(i)[λ1, . . . , λl] = δilH, ∀l ∈ J1, iK.1263

To do so, we set H
(i)
1 = H then, using the interpolation formula [9, Proposition 7.6],1264

we define recursively1265

H
(i)
j =

j∑
l=1

δjlH
(i)[λ1, . . . , λl] =

(
j∑
l=1

δilδ
j
l

)
H = a

(i)
j H1266

with1267

(5.13) a
(i)
j :=

g∑
l=1

δilδ
j
l =

min(i,j)∑
l=1

δilδ
j
l .1268
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This ensures (5.12). Plugging this set of values H
(i)
j , j = 1, . . . , g in (5.10) and taking1269

into account (5.11), leads to1270

g∑
j=1

a
(i)
j ⟨BjH,mj⟩ =

g∑
j=1

〈
BjH

(i)
j ,mj

〉
1271

=

g∑
j=1

δij
〈
H,Ω[λ1, . . . , λj ]

〉
U

1272

=

〈
H,

g∑
j=1

δijΩ[λ1, . . . , λj ]

〉
U

1273

= ⟨H,Ωi⟩U .12741275

This being true for any H ∈ UG, we end up with1276

(5.14) Ωi =

g∑
j=1

a
(i)
j B∗

jmj .1277

Together with (5.9), using (5.13), we obtain that1278

ωi =

g∑
j=1

a
(i)
j BiB

∗
jmj1279

=

g∑
l=1

g∑
j=1

(
δilBi

)(
δjlBj

)∗
mj1280

= (Mm)i12811282

where M is defined in (2.21) and (Mm)i ∈ Cγi denotes the ith block of Mm ∈ CγG .1283

Finally, if we set1284

ξ :=

ω1

...
ωg

 ∈ CγG ,1285

we have proved that the multiplier is given by m = M−1ξ. Applying (5.10) with1286

Hj = Ωj and using the constraints (5.7) leads to1287

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥2 =
〈
M−1ξ, ξ

〉
,1288

which proves the claim.1289

Remark 5.4. As mentioned in Remark 2.1, estimate (5.8) implies that the cost1290

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any basis of1291

eigenvectors.1292

5.4. Dealing simultaneously with algebraic and geometric multiplici-1293

ties.1294

The proof of Theorem 2.6 strongly relies on the use of divided differences to rewrite1295

the constraints whereas the proof of Theorem 2.8 is based on the vectorial writing1296
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of the constraints through the operators Bj ∈ L(U ;Cγj ). As the target spaces of1297

these operators do not have the same dimension, one cannot directly compute divided1298

differences. Thus, the setting we developed to compute the cost of a given block does1299

not lead to a general formula when both kind of multiplicities need to be taken into1300

account in the same group. However, for actual problems, the computation of this1301

cost is a finite dimensional constrained optimization problem which can be explicitly1302

solved.1303

Let us give an example of such a group that does not fit into Theorem 2.6 nor1304

into Theorem 2.8 but for which we manage to compute the cost by hand. To simplify1305

a little the presentation, we give this example in the case of real Hilbert spaces and1306

real eigenvalues.1307

We consider a group G = {λ1, λ2} of two distinct eigenvalues such that γλ1
=1308

αλ1
= 2 and γλ2

= αλ2
= 1. Let (ϕ01,1, ϕ

0
1,2) be a basis of Ker(A∗ − λ1) and ϕ02,1 be1309

an eigenvector of A∗ associated to the eigenvalue λ2. Assume that the generalized1310

eigenvector ϕ11,1 is such that1311

(A∗ − λ1)ϕ
1
1,1 = ϕ01,1,1312

and that {ϕ01,1, ϕ11,1, ϕ01,2} forms a basis of Ker(A∗ − λ1)
2.1313

For this group, in the same spirit as in Theorems 2.6 and 2.8, we obtain the1314

following result.1315

proposition 5.1. For any y0 ∈ X−⋄, we have1316

C(G, y0) =
〈
M−1ξ, ξ

〉
where ξ =


〈
y0, ϕ

0
1,1

〉
−⋄,⋄〈

y0, ϕ
0
1,2

〉
−⋄,⋄〈

y0, ϕ
1
1,1

〉
−⋄,⋄〈

y0, ϕ
0
2,1

〉
−⋄,⋄

1317

and M is the invertible matrix defined by1318

M = GramU

(
b01,1, b

0
1,2, b

1
1,1, b

0
2,1

)
1319

+ GramU

(
0, 0, b01,1, δb

0
2,1

)
1320

+ GramU

(
0, 0, 0, δ2b02,1

)
13211322

with δ = λ2 − λ1.1323

Proof. Let1324 (
ω0
1,1, ω

0
1,2, ω

1
1,1, ω

0
2,1

)t ∈ R4.1325

As in the proofs of Theorems 2.6 and 2.8, the goal is to compute the minimum of the1326

function1327

F :
(
Ω0

1,Ω
1
1,Ω

0
2

)
∈ U3

G 7→ ∥Ω0
1∥2 + ∥Ω1

1∥2 + ∥Ω[λ(2)1 , λ2]∥2,1328

under the 4 constraints1329 〈
Ω0
j , b

0
j,i

〉
U
= ω0

j,i, ∀i ∈ J1, γjK, ∀j ∈ J1, 2K,1330 〈
Ω0

1, b
1
1,1

〉
U
+
〈
Ω1

1, b
0
1,1

〉
U
= ω1

1,1.1331
1332

Then, the Lagrange multipliers m0
1,1,m

0
1,2,m

1
1,1 and m0

2,1 satisfy the equations1333
1334

(5.15)
〈
Ω0

1, H
0
1

〉
U
+
〈
Ω1

1, H
1
1

〉
U
+
〈
Ω[λ

(2)
1 , λ2], H[λ

(2)
1 , λ2]

〉
U
= m0

1,1

〈
H0

1 , b
0
1,1

〉
U

1335

+m0
1,2

〈
H0

1 , b
0
1,2

〉
U
+m1

1,1

(〈
H0

1 , b
1
1,1

〉
U
+
〈
H1

1 , b
0
1,1

〉
U

)
+m0

2,1

〈
H0

2 , b
0
2,1

〉
U
,1336

1337
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for every H0
1 , H

1
1 , H

0
2 ∈ UG. Considering successively1338

H0
1 = b01,1, H1

1 = 0, H0
2 = b01,1,1339

1340

H0
1 = b01,2, H1

1 = 0, H0
2 = b01,2,1341

1342

H0
1 = b11,1, H1

1 = b01,1, H0
2 = b11,1 + (λ2 − λ1)b

0
1,1,1343

and1344

H0
1 = b02,1, H1

1 = (λ2 − λ1)b
0
2,1, H0

2 =
(
1 + (λ2 − λ1)

2 + (λ2 − λ1)
4
)
b02,1,1345

and plugging it into (5.15), we obtain that


ω0
1,1

ω0
1,2

ω1
1,1

ω0
2,1

 = M


m0

1,1

m0
1,2

m1
1,1

m0
2,1

 . Then, the same1346

argument as in the proofs of Theorems 2.6 and 2.8 ends the proof.1347

6. Application to the study of null controllability of academic exam-1348

ples.1349

In this section we provide examples to illustrate how to use the formulas obtained1350

in Theorems 2.3, 2.6 and 2.8 in order to compute the minimal null control time.1351

We start with academic examples for which computations are simpler. Then, in1352

Section 7, we study coupled systems of actual partial differential equations of parabolic1353

type.1354

6.1. Setting and notations.1355

Let A be the unbounded Sturm-Liouville operator defined in L2(0, 1;R) by1356

(6.1) D(A) = H2(0, 1;R) ∩H1
0 (0, 1;R), A = −∂x

(
γ∂x •

)
+ c•,1357

with c ∈ L∞(0, 1;R) satisfying c ≥ 0 and γ ∈ C1([0, 1];R) satisfying inf
[0,1]

γ > 0.1358

The operator A admits an increasing sequence of eigenvalues denoted by (νk)k∈N∗ .1359

The associated normalized eigenvectors (φk)k∈N∗ form an Hilbert basis of L2(0, 1;R).1360

Remark 6.1. The assumption c ≥ 0 ensures that for any k ≥ 1, the eigenvalues1361

satisfies νk > 0. From Remark 1.3, the controllability results proved in the present1362

article still hold when the function c is bounded from below.1363

To lighten the notations, for any I ⊂ (0, 1) we set ∥ • ∥I = ∥ • ∥L2(I).1364

Let f : Sp(A) → R be a bounded function. Associated to this function we consider1365

the operator f(A) defined on D(A) by the spectral theorem by1366

(6.2) f(A) =
∑
k≥1

f(νk) ⟨•, φk⟩L2(0,1;R) φk.1367
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6.2. Spectral properties of Sturm-Liouville operators.1368

Let A be the Sturm-Liouville operator defined in (6.1). All the examples studied1369

in this article are based on this operator. We recall here some spectral properties that1370

will be used in our study.1371

From [2, Theorem 1.1 and Remark 2.1], there exist ϱ > 0 and C > 0 such that1372

(6.3) ϱ < νk+1 − νk, ∀k ≥ 1,1373

1374

(6.4)
1

C

√
νk ≤ |φ′

k(x)| ≤ C
√
νk, ∀x ∈ {0, 1}, ∀k ≥ 1,1375

and, for any non-empty open set ω ⊂ (0, 1),1376

(6.5) inf
k≥1

∥φk∥ω > 0.1377

Moreover, using [12, Theorem IV.1.3], the associated counting function satisfies1378

(6.6) N(νk)k(r) ≤ C
√
r, ∀r > 0,1379

and1380

(6.7)
∣∣N(νk)k(r)−N(νk)k(s)

∣∣ ≤ C
(
1 +

√
|r − s|

)
, ∀r, s > 0.1381

We also recall the classical Lebeau-Robbiano spectral inequality1382

(6.8)

∥∥∥∥∥∥
∑
k≤K

akφk

∥∥∥∥∥∥
Ω

≤ CeC
√
νK

∥∥∥∥∥∥
∑
k≤K

akφk

∥∥∥∥∥∥
ω

, ∀K ≥ 1,∀(ak)k ⊂ R.1383

Indeed, as detailed for instance in [12, Theorem IV.2.19], the proof of this spectral1384

inequality given in [27] directly extends to the low regularity coefficients considered1385

here.1386

6.3. Perturbation of a 2x2 Jordan block.1387

Let ω ⊂ (0, 1) be a non-empty open set and U = L2(Ω). Let A be the Sturm-1388

Liouville operator defined in (6.1) and f(A) be the operator defined in (6.2) with1389

f : Sp(A) → R satisfying1390

|f(νk)| <
ϱ

2
, ∀k ≥ 1.1391

We consider the operator A on X = L2(0, 1;R)2 defined by1392

(6.9) A =

(
A I
0 A+ f(A)

)
, D(A) = D(A)×D(A),1393

and1394

(6.10) B : u ∈ U 7→
(

0
1ωu

)
.1395

Then,1396

B∗ :

(
φ1

φ2

)
∈ X 7→ 1ωφ2.1397

It is easy to see that (−A, D(A)) generates a C0-semigroup on X and that B : U → X1398

is bounded. Thus we consider for this example that X∗
⋄ = X = X−⋄.1399
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proposition 6.1. Let us consider the control system (1.1) with A and B given1400

by (6.9)-(6.10). Then, null-controllability from X−⋄ holds in any time i.e. T0(X−⋄) =1401

0.1402

Proof. The spectrum of (A∗, D(A)) is given by1403

Λ = {νk ; k ≥ 1} ∪ {νk + f(νk) ; k ≥ 1}.1404

Recall that (νk)k≥1 satisfies (6.3), (6.6) and (6.7). From [12, Lemma V.4.20] it comes1405

that there exists κ > 0 such that Λ ∈ Lw
(
2, ϱ2 ,

1
2 , κ
)
.1406

An associated grouping is given by1407 {
Gk := {λk,1 := νk, λk,2 := νk + f(νk)}, if f(νk) ̸= 0,

Gk := {λk,1 := νk}, if f(νk) = 0.
1408

If f(νk) ̸= 0 the eigenvalues λk,1 and λk,2 are simple and we consider the associated1409

eigenvectors1410

ϕ0k,1 =

(
−f(νk)

1

)
φk, ϕ0k,2 =

(
0
1

)
φk.1411

If f(νk) = 0 the eigenvalue λk,1 is algebraically double and we consider the associated1412

Jordan chain1413

ϕ0k,1 =

(
0
1

)
φk, ϕ1k,1 =

(
1
0

)
φk.1414

From (6.5) it comes that (1.33) and (1.34) are satisfied. Thus, from Theorem 2.3, we1415

obtain that for any y0 ∈ X−⋄,1416

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

.1417

Let us now conclude by estimating C(Gk, y0).1418

• Consider first that f(νk) ̸= 0. Then, ϕ[λk,1, λk,2] =

(
1
0

)
φk and1419

b[λk,1, λk,2] = B∗ϕ[λk,1, λk,2] =
1ωφk − 1ωφk

f(νk)
= 0.1420

From Theorem 2.6 it comes that1421

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1422

with1423

M = Gram(b[λk,1], b[λk,1, λk,2]) + Gram(0, b[λk,2]) =

(
∥φk∥2ω 0

0 ∥φk∥2ω

)
1424
1425

and1426

ξ =

(
⟨y0, ϕ[λk,1]⟩−⋄,⋄

⟨y0, ϕ[λk,1, λk,2]⟩−⋄,⋄

)
=


〈
y0,

(
−f(νk)

1

)
φk

〉
−⋄,⋄〈

y0,

(
1
0

)
φk

〉
−⋄,⋄

 .1427

Thus,1428

C(Gk, y0) =
〈
y0,

(
−f(νk)

1

)
φk

∥φk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
φk

∥φk∥ω

〉2

−⋄,⋄
.1429
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• Consider now that f(νk) = 0. Then, b[λ
(2)
k,1] = 0. From Theorem 2.6 it comes1430

that1431

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1432

with1433

Mk = Gram(b[λk,1], b[λ
(2)
k,1]) + Gram(0, b[λk,1]) =

(
∥φk∥2ω 0

0 ∥φk∥2ω

)
.1434

1435

and1436

ξ =

( ⟨y0, ϕ[λk,1]⟩−⋄,⋄〈
y0, ϕ[λ

(2)
k,1]
〉
−⋄,⋄

)
=


〈
y0,

(
0
1

)
φk

〉
−⋄,⋄〈

y0,

(
1
0

)
φk

〉
−⋄,⋄

 .1437

As previously,1438

C(Gk, y0) =
〈
y0,

(
0
1

)
φk

∥φk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
φk

∥φk∥ω

〉2

−⋄,⋄
.1439

Gathering both cases and using estimate (6.5) we obtain, for any y0 ∈ X−⋄,1440

C(Gk, y0) ≤ C ∥y0∥2−⋄ , ∀k ≥ 1.1441

Thus,1442

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

= 0.
1443

6.4. Competition between different perturbations.1444

Let ω1, ω2 ⊂ (0, 1) be two open sets with ω1 ̸= ∅ and U = L2(Ω)2. Let B1, B2 ∈1445

R3. To simplify the computations, we assume that1446

Bi =

 0
Bi,2
Bi,3

 .1447

Let α, β > 0 with α ̸= β and f, g : Sp(A) → R be defined by1448

f(νk) =
ϱ

2
e−ανk , g(νk) =

ϱ

2
e−βνk .1449

As previously, we consider the associated operators f(A) and g(A) defined by the1450

spectral theorem and we define the evolution operator A on X = L2(0, 1;R)3 by1451

(6.11) A =

A I 0
0 A+ f(A) 0
0 0 A+ g(A)

 , D(A) = D(A)3,1452

and the control operator by1453

(6.12) B :

(
u1
u2

)
∈ U 7→ 1ω1

u1B1 + 1ω2
u2B2.1454
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Then, the observation operator reads1455

B∗ :

φ1

φ2

φ3

 ∈ X 7→
(
1ω1

(B1,2φ2 +B1,3φ3)
1ω2

(B2,2φ2 +B2,3φ3)

)
.1456

1457

proposition 6.2. Let us consider the control system (1.1) with A and B given1458

by (6.11)-(6.12).1459

i. If ω2 = ∅, we assume that1460

(6.13) B1,2B1,3 ̸= 0.1461

Then,1462

T0(X−⋄) = β +min{α, β}.1463

ii. If ω2 ̸= ∅, we assume that1464

(6.14)
(
B2

1,2 +B2
2,2

) (
B2

1,3 +B2
2,3

)
̸= 0.1465

(a) If B1 and B2 are linearly independent, then,1466

T0(X−⋄) = 0.1467

(b) If B1 and B2 are not linearly independent, then,1468

T0(X−⋄) = β +min{α, β}.1469

Proof. It is easy to see that (−A, D(A)) generates a C0-semigroup on X and that1470

B : U → X is bounded. Thus we consider for this example that X∗
⋄ = X = X−⋄ and1471

Y0 = X−⋄.1472

The spectrum of (A∗, D(A)) is given by Λ =
⋃
k≥1Gk where1473

Gk := {λk,1 := νk, λk,2 := νk + f(νk), λk,3 := νk + g(νk)}.1474

Again, since (νk)k≥1 satisfies (6.3), (6.6) and (6.7), the application of [12, Lemma1475

V.4.20] yields the existence of κ > 0 such that Λ ∈ Lw
(
3, ϱ2 ,

1
2 , κ
)
. The sequence1476

(Gk)k≥1 is an associated grouping.1477

The eigenvalues are simple and the corresponding eigenvectors are given by1478

ϕ0k,1 =

−f(νk)
1
0

φk, ϕ0k,2 =

0
1
0

φk, ϕ0k,3 =

0
0
1

φk.1479

Thus, the assumption (1.34) hold. Moreover,1480

(6.15) b1 = b2 =

(
1ω1

φkB1,2

1ω2
φkB2,2

)
, b3 =

(
1ω1

φkB1,3

1ω2
φkB2,3

)
1481

From (6.5) and (6.13) or (6.14) (depending on the assumption on ω2) it comes1482

that (1.33) is satisfied. Thus, from Theorem 2.3, it comes that for any y0 ∈ X−⋄,1483

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

.1484
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Let us now estimate C(Gk, y0). From Theorem 2.6 it comes that1485

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1486

with1487

M =Gram
(
b[λk,1], b[λk,1, λk,2], b[λk,1, λk,2, λk,3]

)
1488

+Gram
(
0, b[λk,2], b[λk,2, λk,3]

)
+Gram

(
0, 0, b[λk,3]

)
14891490

and1491

ξ =

 ⟨y0, ϕ[λk,1]⟩−⋄,⋄
⟨y0, ϕ[λk,1, λk,2]⟩−⋄,⋄

⟨y0, ϕ[λk,1, λk,2, λk,3]⟩−⋄,⋄

 .1492

Explicit computations yield1493

ϕ[λk,1] =

−f(νk)
1
0

φk, ϕ[λk,1, λk,2] =

1
0
0

φk,1494

and1495

ϕ[λk,1, λk,2, λk,3] =
1

g(νk)
(
g(νk)− f(νk)

)
f(νk)− g(νk)

−1
1

φk.1496

i. Assume that ω2 = ∅.1497

After the change of variables1498

z = diag

(
1

B1,2
,

1

B1,2
,

1

B1,3

)
y,1499

the system under study reads1500 
∂tz +

A I 0
0 A+ f(A) 0
0 0 A+ g(A)

 z = 1ω1
u1(t, x)

0
1
1

 ,

z(t, 0) = z(t, 1) = 0.

1501

This leads to1502

b[λk,1] = b[λk,2] = b[λk,3] = 1ω1φk.1503

Thus, M = ∥φk∥2ω1
I3 and1504

1505

C(Gk, y0) =

〈
y0,

−f(νk)
1
0

 φk
∥φk∥ω1

〉2

−⋄,⋄

+

〈
y0,

1
0
0

 φk
∥φk∥ω1

〉2

−⋄,⋄

1506

+

(
1

g(νk)
(
g(νk)− f(νk)

))2〈
y0,

f(νk)− g(νk)
−1
1

 φk
∥φk∥ω1

〉2

−⋄,⋄

.1507

1508

From (6.5), we obtain for any y0 ∈ X−⋄,1509

C(Gk, y0) ≤ C ∥y0∥2−⋄

1 +

(
1

g(νk)
(
g(νk)− f(νk)

))2
 .1510
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This leads to1511

T0(X−⋄) ≤ lim sup
k→+∞

− ln+
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

.1512

Conversely, with the particular choice1513

y0 =
∑
k≥1

1

νk

0
0
1

φk,1514

we have1515

C(Gk, y0) =
1

ν2k∥φk∥2ω1

(
1

g(νk)
(
g(νk)− f(νk)

))2

.1516

Thus, from (6.5), we obtain1517

T0(X−⋄) ≥ T0(y0) = lim sup
k→+∞

− ln
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

1518

which gives1519

T0(X−⋄) = lim sup
k→+∞

− ln
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

.1520

Then, the same computations as [9, Section 5.1.3] yield1521

T0(X−⋄) = β +min{α, β}.1522

ii. We now consider the case ω2 ̸= ∅.1523

(a) Assume that B1 and B2 are linearly independent. If necessary, we con-1524

sider smaller control sets so that ω1 ∩ ω2 = ∅. As we will prove that1525

T0(X−⋄) = 0, this is not a restrictive assumption.1526

To ease the reading we drop the index k in what follows. As pre-1527

viously, the vector ξ is not bounded. Let us consider the dilatation1528

Dϵ = diag(1, 1, ϵ) with1529

ϵ = g(ν)
(
g(ν)− f(ν)

)
1530

and ξ̃ = Dϵξ. Then, from Section D.1, it comes that1531

C(G, y0) =
〈
M̃−1ξ̃, ξ̃

〉
1532

with1533

M̃ =Gram
(
b[λ1], b[λ1, λ2], ϵb[λ1, λ2, λ3]

)
1534

+Gram
(
0, b[λ2], ϵb[λ2, λ3]

)
+Gram

(
0, 0, ϵb[λ3]

)
.15351536

As
∥∥∥ξ̃∥∥∥ is bounded, we simply give a lower bound on the smallest eigen-1537

value of M̃ . Using (6.15), it comes that1538

b[λ1, λ2] = 0, b[λ2, λ3] =
b3 − b1

g(ν)− f(ν)
, b[λ1, λ2, λ3] =

1

ϵ
(b3 − b1).1539
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Thus,1540

M̃ =Gram
(
b1, 0, b3 − b1

)
+Gram

(
0, b1, g(ν)(b3 − b1)

)
1541

+Gram
(
0, 0, ϵb3

)
.15421543

This gives that, for any τ ∈ R3, we have1544
1545

(6.16)
〈
M̃τ, τ

〉
= ∥τ1b1 + τ3(b3 − b1)∥2U + ∥τ2b1 + g(ν)τ3(b3 − b1)∥2U1546

+ ϵ2 ∥τ3b3∥2U .15471548

To obtain a lower bound on this quantity we use the following lemma.1549

Lemma 6.3. There exists C > 0 (independent of k) such that for any1550

θ1, θ3 ∈ R,1551

∥θ1b1 + θ3b3∥2U ≥ C
(
θ21 + θ23

)
.1552

Proof. As ω1 ∩ ω2 = ∅,1553

∥θ1b1 + θ3b3∥2U =(B1,2θ1 +B1,3θ3)
2 ∥φk∥2ω1

1554

+ (B2,2θ1 +B2,3θ3)
2 ∥φk∥2ω2

.15551556

Using (6.5) it comes that1557

∥θ1b1 + θ3b3∥2U ≥ C
(
(B1,2θ1 +B1,3θ3)

2
+ (B2,2θ1 +B2,3θ3)

2
)

1558

=

∥∥∥∥(B1,2 B1,3

B2,2 B2,3

)(
θ1
θ3

)∥∥∥∥2 .1559
1560

Since B1 and B2 are linearly independent, this ends the proof.1561

Applying this lemma twice to (6.16) yield1562 〈
M̃τ, τ

〉
≥ C

(
(τ1 − τ3)

2 + τ23 + (τ2 − g(ν)τ3)
2 + g(ν)2τ23 + ϵ2τ23

)
1563

≥ C
(
(τ1 − τ3)

2 + τ23 + (τ2 − g(ν)τ3)
2
)
.15641565

Taking into account that 0 < g(ν) < 1
2 for ν large enough, the study of1566

this quadratic form in R3 leads to1567 〈
M̃τ, τ

〉
≥ C

(
τ21 + τ22 + τ23

)
.1568

Thus the smallest eigenvalue of M̃ is bounded from below. This leads to1569

the boundedness of
〈
M̃−1ξ̃, ξ̃

〉
which concludes the proof of case ii (a).1570

(b) Assume now that B1 and B2 are not linearly independent. Then, there1571

exist x1, x2 ∈ R such that1572 {
x1B1,2 + x2B1,3 = 0

x1B2,2 + x2B2,3 = 0.
1573

Up to a change of normalization of the eigenvectors (independent of k)1574

we obtain1575

b1 = b2 = b3 =

(
1ω1

φkx1B1,2

1ω2
φkx1B2,2

)
1576

and this amounts to case i.1577
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7. Analysis of controllability for systems of partial differential equa-1578

tions.1579

We now turn to the analysis of null controllability of actual partial differential1580

equations. We consider here coupled systems of two linear one dimensional parabolic1581

equations.1582

7.1. Coupled heat equations with different diffusion coefficients.1583

In this application, we consider the Sturm-Liouville operator A defined in (6.1)1584

and we define in X = L2(0, 1;R)2 the operator1585

A =

(
A I
0 dA

)
, D(A) = D(A)2,1586

with d > 0. We will assume d ̸= 1, since the case d = 1 is much simpler and already1587

studied in the literature: see the computations of Section 6.3 in the case f = 0 or, for1588

instance, [23] for a more general study based on Carleman estimates.1589

We will consider two cases : the case where two boundary controls are applied to1590

the system, and the case where we consider the same distributed control in the two1591

equations of the system.1592

7.1.1. Spectrum of A∗. Let Λ1 := Sp(A) = {νk ; k ≥ 1} and Λ2 := dΛ1.1593

The spectrum of A∗ is given by Λ = Λ1 ∪ Λ2 which belongs to Lw
(
2, ϱ, 12 , κ

)
for1594

some ϱ, κ > 0 (see [12, Lemma V.4.20]).1595

For any λ ∈ Λ, there are two non mutually exclusive cases:1596

• If λ = νk ∈ Λ1, then we can associate an eigenvector given by1597

ϕλ,1 =

(
1
εk

)
φk,1598

with εk = 1
νk(1−d) . Note that εk tends to zero when k goes to infinity.1599

• If λ = dνl ∈ Λ2, then we can associate an eigenvector given by1600

ϕλ,2 =

(
0
1

)
φl.1601

It clearly appears that the elements in Λ1 ∩ Λ2 (if this set is not empty) are ge-1602

ometrically double eigenvalues of A∗, since in that case ϕλ,1 and ϕλ,2 are linearly1603

independent.1604

Note that (1.34) holds for the choices of X∗
⋄ that we will make in the sequel, since1605

(φk)k≥1 is an Hilbert basis of L2(0, 1;R).1606

7.1.2. Two boundary controls. In this section, we study the following bound-1607

ary control system1608

(7.1)

{
∂ty +Ay = 0, t ∈ (0, T ),

y(t, 0) = B0u0(t), y(t, 1) = B1u1(t), t ∈ (0, T ),
1609

with1610

(7.2) B0 =

(
1
1

)
and B1 =

(
0
1

)
.1611

49

This manuscript is for review purposes only.



The control operator B is defined in a weak sense as in [38]. The expression of its1612

adjoint is given by1613

B∗ :

(
f
g

)
∈ X∗

1 7→

−B∗
0

(
f ′(0)
g′(0)

)
B∗

1

(
f ′(1)
g′(1)

)
 =

(
−(f ′(0) + g′(0))

g′(1)

)
.1614

Considering X∗
⋄ = H1

0 (0, 1;R)2, we obtain that B is admissible with respect to X−⋄ =1615

H−1(0, 1;R)2.1616

proposition 7.1. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0, 1;R)21617

of finite codimension such that1618

• for any y0 ̸∈ Y0, system (7.1) is not approximately controllable;1619

• for any y0 ∈ Y0, system (7.1) is null controllable in any time T > 0.1620

Remark 7.1. The situation with a single control is quite different. Indeed, con-1621

sidering B0 =

(
0
1

)
and B1 = 0, it is proved in [5] that, when A is the Dirichlet1622

Laplace operator, approximate controllability holds if and only
√
d ̸∈ Q and in this1623

case that1624

T0(X−⋄) = lim sup
λ→∞
λ∈Λ

ln+

(
1

dist
(
λ,Λ\{λ}

))
λ

.1625

With this formula the authors prove that, for any τ ∈ [0,+∞], there exists a diffusion1626

ratio d > 0 such that the minimal null control time of system (7.1) satisfies T0(X−⋄) =1627

τ .1628

Remark 7.2. From the definition of Y0 in the following proof, we directly obtain1629

that in the case where A is the Dirichlet Laplace operator on the interval (0, 1), then1630

Y0 = H−1(0, 1;R)2.1631

Remark 7.3. The particular choice of B0 and B1 is done to simplify the com-1632

putations. Notice that with this choice, it is not possible to steer to zero the second1633

equation and then control the first equation. This would be the case with the simpler1634

choice1635

B0 =

(
0
1

)
and B1 =

(
1
0

)
.1636

Proof. Let us compute the observations associated to the eigenvectors of A∗.1637

For any k ≥ 1, we define sk ∈ R be such that φ′
k(1) = skφ

′
k(0). From (6.4), there1638

exists C > 0 such that1639

(7.3)
1

C
≤ |sk| ≤ C, ∀k ≥ 1.1640

• For any λ = νk ∈ Λ1, we have1641

(7.4) B∗ϕλ,1 = −φ′
k(0)

(
1 + εk
−skεk

)
.1642

• For any λ = dνl ∈ Λ2, we have1643

(7.5) B∗ϕλ,2 = −φ′
l(0)

(
1

−sl

)
.1644
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Due to (6.4) and (7.3), it comes that (1.33) holds for any simple eigenvalue λ ∈1645

(Λ1 \ Λ2) ∪ (Λ2 \ Λ1).1646

However, for a geometrically double eigenvalue λ ∈ Λ1 ∩ Λ2, there can be non-1647

observable modes. Indeed, let k and l such that λ = νk = dνl. Then, the condition1648

Ker(A∗ − λ) ∩KerB∗ ̸= {0}1649

is equivalent to the fact that B∗ϕλ,1 and B∗ϕλ,2 given by (7.4)-(7.5) are linearly1650

independent, which is itself equivalent to the condition1651

(7.6) skεk = sl(1 + εk).1652

Due to the asymptotics εk −→
k→+∞

0 it turns out that the set1653

Θ := {λ = νk = dνl ∈ Λ1 ∩ Λ2 ; (7.6) holds} ,1654

is finite.1655

For any λ ∈ Θ, we can find ψλ ∈ Span(ϕλ,1, ϕλ2
) such that B∗ψλ = 0 and ψλ ̸= 0,1656

that is a non observable mode.1657

Finally, we introduce the set1658

Y0 :=
{
y0 ∈ X−⋄ ; ⟨y0, ψλ⟩−⋄,⋄ = 0, ∀λ ∈ Θ

}
1659

which is, by construction, of finite codimension. For y0 ∈ Y0, the associated moment1660

problem reduces to the one where the geometrically double eigenvalues λ ∈ Θ are now1661

considered as simple eigenvalues with associated eigenvector ϕλ,2, since the moment1662

equation is automatically satisfied for the other eigenvector ψλ.1663

We consider now a grouping G as given by Proposition 1.2, with p = 2 and ϱ > 01664

small enough such that for i ∈ {1, 2} we have1665

(7.7) |λ− µ| > ϱ, ∀λ, µ ∈ Λi, λ ̸= µ.1666

Hence, Theorem 2.3 gives the formula1667

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1668

We will prove in the sequel, analyzing the different possible blocks, that1669

(7.8) sup
G∈G

C(G, y0) < +∞,1670

which will let us conclude the claim, that is T0(y0) = 0.1671

• Blocks of a simple eigenvalue.1672

We immediately obtain

C(G, y0) =



∣∣∣⟨y0, ϕλ,1⟩−⋄,⋄

∣∣∣2
((1 + εk)2 + s2kε

2
k) |φ′

k(0)|2
, if λ = νk,∣∣∣⟨y0, ϕλ,2⟩−⋄,⋄

∣∣∣2
(1 + s2l ) |φ′

l(0)|2
, if λ = dνl.
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Using again (6.4) the estimate (7.3) and the fact that (εk)k goes to 0 as k goes1673

to infinity, we observe that the blocks consisting of a single simple eigenvalue1674

do not contribute to the minimal time: the quantity C(G, y0) is bounded1675

independently of G.1676

Moreover, by the discussion above, the blocks consisting of a single double1677

eigenvalue belonging to Θ do not contribute either.1678

• Blocks of two simple eigenvalues: G = {λ1 := νk} ∪ {λ2 := dνl}.1679

From Theorem 2.8 we obtain1680

C(G, y0) =
〈
M−1ξ, ξ

〉
1681

with1682

M = Gram
(
b[λ1], b[λ2]

)
+Gram

(
0, (λ2 − λ1)b[λ2]

)
1683

and1684

ξ =

(
⟨y0, ϕλ1,1⟩−⋄,⋄
⟨y0, ϕλ2,2⟩−⋄,⋄

)
.1685

To ease the reading, we use the following change of normalization for the1686

eigenvectors1687

ϕ̃λ1 :=
ϕλ1,1

−φ′
k(0)

, ϕ̃λ2 :=
ϕλ2,2

−φ′
l(0)

,1688

and we denote by M̃ and ξ̃ the associated quantities. Notice that, due to (6.4),1689

the quantity
∥∥∥ξ̃∥∥∥ is bounded. Thus, to estimate C(G, y0) we give a lower bound1690

on the smallest eigenvalue of M̃ . We have1691

M̃ = Gram
(
b̃[λ1], b̃[λ2]

)
+Gram

(
0, (λ2 − λ1)b̃[λ2]

)
1692

=

(
ϵ2ks

2
k + (1 + εk)

2
1 + εk + εksksl

1 + εk + εksksl 1 + s2l

)
︸ ︷︷ ︸

=Γ1

+

(
0 0
0 (λ2 − λ1)

2(1 + s2l )

)
.1693

1694

For any τ ∈ R2,
〈
M̃τ, τ

〉
≥
〈
Γ1τ, τ

〉
. Then,1695

min Sp(Γ1) ≥ det(Γ1)

tr(Γ1)
=

((1 + εk)sl − εksk)
2

1 + (1 + ϵk)2 + ε2ks
2
k + s2l

1696

From (7.3), it comes that, for k large enough, min Sp(Γ1) is bounded from1697

below by a positive constant independent of G.1698

• Blocks made of a geometrically double eigenvalue which does not belong to1699

Θ:1700

Consider G = {λ} with λ = νk = dνl ∈ Λ1 ∩ Λ2. With the same notations as1701

previously, Theorem 2.8 implies that1702

C(G, y0) =
〈
M̃−1ξ̃, ξ̃

〉
1703

where1704

ξ̃ =


〈
y0,

ϕλ,1
−φ′

k(0)

〉
−⋄,⋄〈

y0,
ϕλ,2

−φ′
l(0)

〉
−⋄,⋄

1705
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and1706

M̃ = Gram

(
B∗ϕλ,1
−φ′

k(0)
,
B∗ϕλ,2
−φ′

l(0)

)
= Γ1.1707

1708

Notice that since λ ̸∈ Θ, we have det(Γ1) = ((1 + εk)sl − εksk)
2 > 0.1709

Thus, the study of the previous item proves that, for λ large enough, min Sp(Γ1)1710

is bounded from below by a positive constant independent of λ.1711

Gathering all cases, we deduce (7.8) and the proof is complete.1712

7.1.3. Simultaneous distributed control. Let us now consider the following1713

control problem1714

(7.9)

∂ty +Ay = 1ω

(
1
1

)
u(t, x), t ∈ (0, T ),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ).

1715

In that case, the observation operator B∗ is given by1716

B∗ :

(
f
g

)
∈ X∗

1 7→ 1ω(f + g),1717

and is clearly admissible with respect to the pivot space X. Our result concerning1718

this example is very similar to Proposition 7.1 and reads as follows.1719

proposition 7.2. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0, 1;R)21720

of codimension less or equal than 1 such that1721

• for any y0 ̸∈ Y0, system (7.9) is not approximately controllable;1722

• for any y0 ∈ Y0, system (7.9) is null controllable in any time T > 0.1723

Remark 7.4. During the proof it will appear that there exists a countable set1724

D ⊂ (1,+∞) such that for any d ̸∈ D ∪ {1}, we have Y0 = H−1(0, 1;R)2, which1725

means that our system is null-controllable at any time T > 0 for any initial data. In1726

particular, it is noticeable that this property holds for any d < 1, that is in the case1727

where the diffusion coefficient is lower in the second equation (the one which does not1728

contain coupling terms).1729

Proof. We start by computing the observations related to the eigenelements of1730

A∗1731

• For any λ = νk ∈ Λ1, we have1732

(7.10) B∗ϕλ,1 = (1 + εk)φk1ω.1733

• For any λ = dνl ∈ Λ2, we have1734

(7.11) B∗ϕλ,2 = φl1ω.1735

If for some k we have 1 + εk = 0, then we clearly get chat (1.33) does not hold. We
can thus introduce the set

Θ := {λ = νk ; 1 + εk = 0},

which is of cardinal less or equal than 1 (by definition of the sequence (εk)k, see1736

Section 7.1.1). Note also that for d < 1, we always have εk > 0, so that Θ = ∅, see1737

Remark 7.4.1738
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We notice however that, for any λ = dνl, we have B∗ϕλ,2 ̸= 0 and that if λ =1739

νk = dνl ∈ Λ1 ∩ Λ2, with λ ̸∈ Θ, then B∗ϕλ,1 and B∗ϕλ,2 are linearly independent.1740

Let us introduce

Y0 :=
{
y0 ∈ X; s.t. ⟨y0, ϕλ,1⟩X = 0,∀λ ∈ Θ

}
.

By definition of this set, for any initial data in Y0, the moment equation (1.2) related1741

to the eigenvector ϕλ,1 for λ ∈ Θ is automatically satisfied for any control since both1742

members are equal to zero.1743

As in the proof of Proposition 7.1, we consider a grouping G as given by Propo-1744

sition 1.2, with p = 2 and ϱ > 0 small enough such that for i ∈ {1, 2} we have1745

|λ− µ| > ϱ, ∀λ, µ ∈ Λi, λ ̸= µ.1746

Hence, Theorem 2.3 gives the formula1747

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1748

Let us now evaluate the quantities C(G, y0) for every possible block.1749

• Blocks made of a simple eigenvalue that does not belong to Θ.1750

We immediately obtain

C(G, y0) =


∣∣⟨y0, ϕλ,1⟩X ∣∣2
(1 + εk)2∥φk∥2ω

, if λ = νk,∣∣⟨y0, ϕλ,2⟩X ∣∣2
∥φl∥2ω

, if λ = dνl,

which is a bounded quantity thanks to (6.5) and the fact that (εk)k tends to1751

zero at infinity.1752

• Blocks made of two eigenvalues: G = {λ1 := νk} ∪ {λ2 := dνl}. Note that1753

the proof below works exactly the same in the case where λ1 ̸= λ2, that is if1754

the two eigenvalues are simple, or in the case where λ1 = λ2, that is if there1755

is only a geometrically double eigenvalue.1756

By the discussion above, we can assume that λ1 does not belong to Θ (if1757

not, this block has to be considered as a block containing only the simple1758

eigenvalue λ2).1759

Thanks to Theorem 2.8 we have C(G, y0) ≤ ⟨M̃−1ξ, ξ⟩ where

M̃ = Gram(1ωφk,1ωφl),

ξ =

 ⟨y0, ϕλ1,1⟩X
1 + εk

⟨y0, ϕλ2,2⟩X .


By using the Lebeau-Robbiano inequality (6.8), and the fact that |λ1−λ2| ≤
ϱ, we have that

⟨M̃−1ξ, ξ⟩ ≤ C1e
C1

√
rG∥ξ∥2 ≤ C2e

C1
√
rG ∥y0∥2X ,

where C1, C2 only depends on ϱ, ω and on the operator A.1760

All in all, we have obtained that

ln+ C(G, y0) ≤ C (1 +
√
rG) .

Gathering all cases, we conclude that T0(y0) = 0.1761
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7.2. Other applications.1762

Let us consider the following control system1763

(7.12)
∂ty +

(
−∂xx + c1(x) 1

0 −∂xx + c2(x)

)
y =

(
0

1ωu(t, x)

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

1764

where c1, c2 ∈ L2(0, 1;R).1765

With the technics developed in this article, one can prove the following control-1766

lability result.1767

proposition 7.3. For any non-negative potentials c1, c2, system (7.12) is null1768

controllable in any time T > 0 from L2(0, 1;R)2.1769

The proof follows closely the computations done for the same system with a boundary1770

control in [9, Section 5.2.1]. The only difference is that the contributions of terms of1771

the form ∥B∗•∥U = ∥ • ∥ω are estimated using (6.5).1772

As the result stated in Proposition 7.3 is already known (it is for instance an1773

application of [23] with a proof based on Carleman estimates), we do not detail the1774

proof here to lighten this article.1775

With the technics developed in this article we can also analyze null controllability1776

for the following control system1777

(7.13)


∂ty +

(
A q(x)
0 A

)
y =

(
0

1ωu(t, x)

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

1778

where the coupling function q belongs to L∞(0, 1;R) and ω ⊂ (0, 1) is a non empty1779

open set. We manage to characterize the value of the minimal null-control time1780

without any other assumption on q and ω.1781

This analysis extends previous results of [14] where approximate controllability1782

was studied and those of [6] where null controllability was studied in the particular1783

case where A is the Dirichlet Laplace operator and ω is an interval disjoint of Supp q.1784

Our formalism also allows us to recover null controllability in any time when q has a1785

strict sign on a subdomain of ω as proved in [23] by means of Carleman estimates.1786

Since the analysis of this example makes use of refined spectral properties of1787

the underlying operator whose proofs are rather intricate, we will develop it in the1788

forthcoming paper [13].1789

Appendix A. Some refinements in the case of scalar controls.1790

In [9], the block moment method was introduced to solve null controllability1791

problems with scalar controls (U = R). With respect to block moment problems, the1792

main result of this paper is [9, Theorem 4.1]. In this work there were no assumptions1793

on the counting function. The spectrum Λ was only assumed to satisfy Λ ⊂ [1,+∞)1794

and1795 ∑
λ∈Λ

1

λ
< +∞.1796

Using the slightly more restrictive condition (1.28) on the asymptotics of the count-1797

ing function we allow the eigenvalues to be complex valued and we obtain sharper1798
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estimates together with the explicit dependency of the constants with respect to the1799

final time T (see Remark 2.5 for possible applications of such estimates). This im-1800

proved resolution of scalar block moment problems reads as follow and is proved in [12,1801

Theorem V.4.25].1802

theorem A.1. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1803

Λ ∈ Lw(p, ϱ, τ, θ, κ).1804

Let G = {λ1, . . . , λg} ⊂ Λ be a group satisfying (1.25)–(1.27). Let T ∈ (0,+∞) and1805

η ∈ N∗. For any multi-index α ∈ Ng with |α|∞ ≤ η and any1806

ω =
(
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|,1807

there exists vG ∈ L2(0, T ;C) satisfying1808 ∫ T

0

vG(t)
(−t)l

l!
e−λjtdt = ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(A.1a)1809 ∫ T

0

vG(t)
(−t)l

l!
e−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(A.1b)1810

1811

The solution vG satisfies the following estimate1812

(A.2) ∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
rG
T

2

)
exp

(
CrθG

)
max
µ∈Ng
µ≤α

∣∣∣ω [λ(µ)

•

]∣∣∣ ,1813

where rG is defined in (1.35) and with the convention1814

ω
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1815

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,1816

ϱ, η, θ and κ.1817

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1818

solution of (A.1a) satisfy1819

(A.3) ∥vG∥L2(0,T ;C) ≥ Cp,η,rΛ max
µ∈Ng
µ≤α

∣∣∣ω [λ(µ)

•

]∣∣∣ .1820

Remark A.1. If every assumption hold except (1.29) in the definition of the class1821

Lw(p, ϱ, τ, θ, κ), Theorem A.1 remains valid replacing θ in estimate (A.2) by any1822

θ′ ∈ (θ, 1) (see [12, Theorem V.4.25]).1823

Since every estimate on the resolution of block moment problems proved in this1824

paper follows from (A.2), this remark holds in the whole current paper. Notably it1825

applies to Theorem 2.2 and to the estimates of the cost of controllability stated in1826

Proposition 2.9 and Corollary 2.10.1827

The application of this theorem to the resolution of scalar block moment problems1828

can be found in [12, Section V.5.3]. Notice that in the estimate (A.2) the term erGT/21829

can seem to be annoying. In [12, Corollary V.5.29], it is dealt with solving scalar1830

block moment problems in small time T . The same strategy is used in the present1831

paper to prove Theorem 2.3 in Section 4.2.1832

Appendix B. An auxiliary optimization argument.1833
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Lemma B.1. Let Y be a closed subspace of X−⋄. Let g ∈ N∗ and ψ1, . . . , ψg ∈1834

P ∗
YX

∗
⋄ . For any y ∈ Y , let1835

ξy =

⟨y, ψ1⟩−⋄,⋄
...

⟨y, ψg⟩−⋄,⋄

 .1836

Then, for any positive semi-definite hermitian square matrix M ∈ Mg(C), we have1837

(B.1) sup
y∈Y

∥y∥−⋄=1

⟨Mξy, ξy⟩ = ρ(GψM)1838

with Gψ = GramX∗
⋄
(ψ1, . . . , ψg).1839

In the course of the proof we will use that there exists an isometric linear bijection
I : X−⋄ 7→ X∗

⋄ such that

⟨y, φ⟩−⋄,⋄ = (Iy, φ)⋄∗ , ∀y ∈ X−⋄,∀φ ∈ X∗
⋄ .

Note that it satisfies

(Iy, φ)⋄∗ =
(
y, I−1φ

)
−⋄ , ∀y ∈ X−⋄,∀φ ∈ X∗

⋄ .

Proof. Let S be the value of the supremum in the left-hand side of (B.1). By
assumption on the (ψi)i, we first observe that the supremum can be taken on the
whole space X−⋄ instead of Y without changing its value. Then, for any 1 ≤ i ≤ g,
we have

⟨y, ψi⟩−⋄,⋄ =
(
y, I−1ψi

)
−⋄ ,

and therefore the value of S does not change if we take the supremum over the set

Ψ̃ = Span(ψ̃1, . . . , ψ̃g) ⊂ X−⋄,

with1840

(B.2) ψ̃i = I−1ψi.1841

We write any element y ∈ Ψ̃ as follows y =
∑g
i=1 xiψ̃i, with x = (xj)j∈J1,gK ∈ Cg

so that we can compute(
y, ψ̃i

)
−⋄

=

g∑
j=1

xj

(
ψ̃j , ψ̃i

)
−⋄

= (Gψ̃x)i, ∀i ∈ J1, gK,

(y, y)−⋄ =

g∑
i=1

g∑
j=1

x̄ixj

(
ψ̃j , ψ̃i

)
−⋄

=
〈
Gψ̃x, x

〉
,

where Gψ̃ is the Gram matrix in X−⋄ of the family {ψ̃1, ..., ψ̃g}. Using that I is an
isometry from X−⋄ onto X∗

⋄ it actually appears that

Gψ̃ = Gψ.

Finally, we have proved that

ξy = Gψx, and ∥y∥2−⋄ = ⟨Gψx, x⟩ .

The supremum we are looking for thus reads

S = sup
x∈Cg

⟨Gψx,x⟩=1

⟨MGψx,Gψx⟩ .
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• By compactness, we know that this supremum is actually achieved at some
point x0 ∈ Cg, that is

⟨MGψx0,Gψx0⟩ = S, and ⟨Gψx0, x0⟩ = 1.

The Lagrange multiplier theorem gives that there exists λ ∈ C such that1842

(B.3) ⟨MGψx0,Gψh⟩ = λ ⟨Gψx0, h⟩ , ∀h ∈ Cg.1843

Taking h = x0 in this equation, we get

⟨MGψx0,Gψx0⟩ = λ ⟨Gψx0, x0⟩ = λ,

and thus λ = S, in particular λ is a non negative real number.1844

From (B.3), we deduce
GψMGψx0 = λGψx0.

and since Gψx0 ̸= 0 (we recall that ⟨Gψx0, x0⟩ = 1), we conclude that λ is an
eigenvalue of GψM and therefore

S = λ ≤ ρ(GψM).

We have thus proved that
S ≤ ρ(GψM).

• If ρ(GψM) = 0, the claim is proved. If not, we set

λ = ρ(GψM) = ρ(MGψ) = ρ
(
G

1
2

ψMG
1
2

ψ

)
,

which is a positive number which is an eigenvalue of the three matrices above.
In particular, there exists x0 ∈ Cg \ {0} such that

MGψx0 = λx0.

Taking the inner product with Gψx0 we obtain

⟨MGψx0,Gψx0⟩ = λ ⟨x0,Gψx0⟩ ,

and since ⟨x0,Gψx0⟩ =
∥∥∥G 1

2

ψx0

∥∥∥2 cannot be equal to zero, we deduce that

λ ≤ S,

and the proof is complete.1845

Appendix C. Solving general block moment problems.1846

As this paper is oriented towards control theory we do not deal with the most1847

general block moment problems. Indeed, in Theorem 2.2, the considered block mo-1848

ment problems have a specific right-hand side which is a linear form. This formalism1849

is chosen in order to avoid exhibiting a particular basis of the generalized eigenspaces.1850

The price to pay is this restriction on the considered right-hand sides. However the1851

proofs detailed in Sections 3 and 5 directly lead to the following more general results.1852

The study with a group composed of geometrically simple eigenvalues (see Sec-1853

tions 5.1 and 5.2) leads to the following theorem.1854
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theorem C.1. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1855

Λ ∈ Lw(p, ϱ, τ, θ, κ).1856

Recall that this class of sequences is defined in (1.30). Let G = {λ1, . . . , λg} ⊂ Λ be1857

a group satisfying (1.25)–(1.27). Let T ∈ (0,+∞) and η ∈ N∗. For any multi-index1858

α ∈ Ng with |α|∞ ≤ η, any1859

ω =
(
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|,1860

and any b ∈ U |α| with1861

b0j ̸= 0, ∀j ∈ J1, gK,1862

there exists vG ∈ L2(0, T ;U) satisfying1863 ∫ T

0

〈
vG(t), (etb)

[
λj

(l+1)
]〉

U
dt = ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(C.1a)1864 ∫ T

0

vG(t)t
le−λt dt = 0, ∀λ ∈ Λ \G,∀l ∈ J0, ηJ.(C.1b)1865

1866

The solution vG satisfies the following estimate1867

∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
rG
T

2

)
exp

(
CrθG

) 〈
M−1ξ, ξ

〉
,1868

where1869

ξ :=


ω

[
λ
(µ1)

•

]
...

ω

[
λ

(
µ|α|
)

•

]
 ,1870

the sequence (µp)p∈J0,|α|K is defined in (2.8), the associated matrix M is defined1871

in (2.17), rG is defined in (1.35) and with the convention1872

ω
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1873

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,1874

ϱ, η, θ and κ.1875

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1876

solution of (C.1a) satisfy1877

∥vG∥L2(0,T ;U) ≥ Cp,η,rΛ
〈
M−1ξ, ξ

〉
.1878

Remark C.1. As detailed in Remark 2.2, when the eigenvalues in G are also1879

algebraically simple, i.e. αλ = γλ = 1 for any λ ∈ G, the expression of ξ reduces to1880

ξ :=

 ω
[
λ1
]

...

ω
[
λ1, . . . , λg

]
 ,1881

and the expression of M reduces to the one given in (2.19).1882

59

This manuscript is for review purposes only.



The study with a group composed of semi-simple eigenvalues (see Section 5.3)1883

leads to the following theorem.1884

theorem C.2. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1885

Λ ∈ Lw(p, ϱ, τ, θ, κ).1886

Recall that this class of sequences is defined in (1.30). Let G = {λ1, . . . , λg} ⊂ Λ be a1887

group satisfying (1.25)–(1.27). Let γ1, . . . , γg ∈ N∗ and γG = γ1+ · · ·+γg. Let η ∈ N∗1888

and T ∈ (0,+∞).1889

For any
(
ωj,i
)
j∈J1,gK,i∈J1,γjK

∈ CγG and any
(
bj,i
)
j∈J1,gK,i∈J1,γjK

∈ UγG such1890

that bj,1, . . . , bj,γj are linearly independent for every j ∈ J1, gK, there exists vG ∈1891

L2(0, T ;U) satisfying1892 ∫ T

0

〈
vG(t), e

−λjtbj,i

〉
U
dt = ωj,i, ∀j ∈ J1, gK, ∀i ∈ J1, γjK,(C.2a)1893 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(C.2b)1894

1895

The solution vG satisfies the following estimate1896

∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
rG
T

2

)
exp

(
CrθG

) 〈
M−1ξ, ξ

〉
,1897

where ξ ∈ CγG is defined by blocks with1898

ξj :=

ωj,1...
ωj,g

 ,1899

the associated matrix M is defined in (2.21) and rG is defined in (1.35). The constant1900

C > 0 appearing in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.1901

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1902

solution of (C.2a) satisfy1903

∥vG∥L2(0,T ;U) ≥ Cp,η,rΛ
〈
M−1ξ, ξ

〉
.1904

Appendix D. Post-processing formulas.1905

The minimal null control time given in Theorem 2.3, together with the compu-1906

tation of the contribution of each group given in Theorems 2.6 and 2.8, allow to1907

answer the question of minimal null control time for a wide variety of one dimensional1908

parabolic control problems. However, for a given problem, the precise estimate of the1909

quantity of interest
〈
M−1ξ, ξ

〉
can remain a tricky question.1910

There is no normalization condition on the eigenvectors and no uniqueness of1911

the considered Jordan chains. Thus, it happens that there are choices for which the1912

quantity of interest
〈
M−1ξ, ξ

〉
is easier to compute (see for instance Remark 2.1). We1913

gather here some results that are used in Sections 6 and 7 to estimate such quantities.1914

We will make an intensive use of the following reformulation. Let n ∈ N∗ and let1915

T,M ∈ GLn(C). For any ξ ∈ Cn, let ξ̃ := Tξ. Then,1916

(D.1)
〈
M−1ξ, ξ

〉
=
〈
M−1T−1ξ̃, T−1ξ̃

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1917
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where1918

(D.2) M̃ := TMT ∗.1919

As the matrixM is a sum of Gram matrices we will also use the following lemma.1920

Lemma D.1. Let X be an Hilbert space. Let n ∈ N∗ and e = (e1, . . . , en) ∈ Xn.1921

Let T ∈ Mn(C). Then,1922

TGramX(e1, . . . , en)T
∗ = GramX

(
(Te)1, . . . , (Te)n

)
1923

where, for any i ∈ J1, nK, (Te)i is defined by1924

(Te)i :=

n∑
j=1

Ti,jej .1925

Proof. For any ω ∈ Cn, it comes that1926

⟨TGramX(e1, . . . , en)T
∗ω, ω⟩ = ⟨GramX(e1, . . . , en) (T

∗ω) , (T ∗ω)⟩(D.3)1927

=

∥∥∥∥∥
n∑
i=1

(T ∗ω)iei

∥∥∥∥∥
2

(D.4)1928

=

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

Tj,iωjei

∥∥∥∥∥∥
2

(D.5)1929

=

∥∥∥∥∥∥
n∑
j=1

ωj(Te)j

∥∥∥∥∥∥
2

(D.6)1930

=
〈
GramX

(
(Te)1, . . . , (Te)n

)
ω, ω

〉
.(D.7)19311932

Depending on the phenomenon at stake on actual examples, with a suitable choice of1933

ξ̃ (i.e. of T ), the quantity
〈
M̃−1ξ̃, ξ̃

〉
can be easier to estimate than

〈
M−1ξ, ξ

〉
.1934

D.1. Dilatations.1935

Notice that1936 〈
M̃−1ξ̃, ξ̃

〉
≤ ∥M̃−1∥ ∥ξ̃∥2.1937

When the minimal null control time can be estimated with rough estimates (this can1938

only characterize the minimal time when T0 = 0), it can simplify the computations1939

to have a bounded ∥ξ̃∥. To do so, it is convenient to consider dilatations of ξ.1940

Let X be an Hilbert space. Let n ∈ N∗ and e1, . . . , en ∈ X. Let ξ ∈ Cn and1941

β ∈ Cn with non-zero entries. Let1942

T = Dβ := diag(β) ∈ GLn(C), and ξ̃ = Tξ.1943

Then, from Lemma D.1, it comes that1944

TGramX(e1, . . . , en)T
∗ = GramX

(
β1e1, . . . , βnen

)
.1945
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D.2. Invariance by scale change.1946

In our assumptions there is no normalization condition on the eigenvectors (see1947

Remark 2.1). This allows to have simpler expressions for these eigenvectors. Actually,1948

the computation of
〈
M−1ξ, ξ

〉
can be done with a different scale change on every1949

generalized eigenvector as detailed in the following proposition.1950

proposition D.2. Let M and ξ be as defined in Theorem 2.6. Let β ∈ C|α| be1951

such that β0
j ̸= 0 for all j ∈ J1, gK. Set1952

ξ̃ =


〈
y0, (βϕ)

[
λ(µ

1)
]〉

−⋄,⋄
...〈

y0, (βϕ)
[
λ(µ

|α|)
]〉

−⋄,⋄
.

1953

Then,1954 〈
M−1ξ, ξ

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1955

where1956

(D.8) M̃ :=

|α|∑
l=1

GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, (βb)
[
λ(µ

l−µl−1)
]
, . . . , (βb)

[
λ(µ

|αk|−µl−1)
] .1957

Proof. From Leibniz formula [9, Proposition 7.13], it comes that for any p ∈1958

J1, |α|K,1959

(βϕ)
[
λ(µ

p)
]
=

|µp|∑
q=1

β
[
λ(µ

p−µq−1)
]
ϕ
[
λ(µ

q)
]
.1960

Thus, ξ̃ = Tξ where T is the following lower triangular matrix1961

T =
(
1q≤pβ

[
λ(µp−µq−1)

])
p,q∈J1,|α|K

.1962

The diagonal entries of this lower triangular matrix are β0
j and thus T ∈ GL|α|(C).1963

From (D.2), the associated matrix is1964

M̃ :=

|α|∑
l=1

TGramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b
[
λ(µ

l−µl−1)
]
, . . . , b

[
λ(µ

|α|−µl−1)
]T ∗.1965

Let l ∈ J1, |α|K and1966

e1 = · · · = el−1 = 0,1967

ep = b
[
λ(µ

p−µl−1)
]
, ∀p ∈ Jl, |α|K.1968

1969

Then, for any p ∈ J1, |α|K,1970

(Te)p =

|α|∑
q=1

1q≤pβ
[
λ(µ

p−µq−1)
]
eq.1971
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Thus, (Te)1 = · · · = (Te)l−1 = 0 and, for any p ∈ Jl, |α|K,1972

(Te)p =

|α|∑
q=1

1q≤pβ
[
λ(µ

p−µq−1)
]
eq =

p∑
q=l

β
[
λ(µ

p−µq−1)
]
b
[
λ(µ

q−µl−1)
]
.1973

Then, using again Leibniz formula [9, Proposition 7.13], we obtain1974

(Te)p = (βb)
[
λ(µ

p−µl−1)
]
.1975

Finally, applying (D.1) and Lemma D.1 ends the proof of Proposition D.2.1976

Remark D.1. As there is no normalization condition on the eigenvectors a sim-1977

ilar statement automatically holds with M and ξ defined in Theorem 2.8.1978

D.3. An equivalent formula for simple eigenvalues.1979

In this section, we consider the case of a group of simple eigenvalues i.e. αλ =1980

γλ = 1 for every λ ∈ G. In that case, the cost of the group G can be computed either1981

using the formula of Theorem 2.6 for geometrically simple eigenvalues or the formula1982

of Theorem 2.8 for semi-simple eigenvalues. Even though these theorems imply that1983

those two formulas coincide (as they are both the cost of the group) we give a direct1984

proof of this statement.1985

proposition D.3. LetM and ξ be the matrix and the vector given in Theorem 2.61986

i.e.1987

M :=

g∑
l=1

GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b[λl], . . . , b[λl, . . . , λg]

1988

and1989

ξ =

 ⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λ1, . . . , λg]⟩−⋄,⋄

 .1990

Let M̃ and ξ̃ be the matrix and the vector given in Theorem 2.8 i.e.1991

(D.9) M̃ :=

g∑
l=1

GramU

(
δ1l b[λ1], . . . , δ

g
l b[λg]

)
and ξ̃ :=

⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λg]⟩−⋄,⋄

 .1992

Then,1993 〈
M−1ξ, ξ

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1994

Proof. The usual interpolation formula [9, Proposition 7.6] gives1995

(D.10) ϕ[λi] =

i∑
j=1

(
j−1∏
k=1

(λi − λk)

)
ϕ[λ1, . . . , λj ].1996
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Recall that the notation δij has been introduced in (2.20). With these notations,1997

ξ̃ = Tξ where T is the following lower triangular matrix1998

T =
(
δij

)
i,j∈J1,gK

∈ GLg(C).1999

From (D.2), we define2000

M̂ :=

g∑
l=1

TGramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b [λl] , . . . , b [λl, . . . , λg]

T ∗,2001

so that we have
〈
M−1ξ, ξ

〉
=
〈
M̂−1ξ̃, ξ̃

〉
. We will now prove that M̂ = M̃ .2002

Let l ∈ J1, gK and2003

e1 = · · · = el−1 = 0,2004

ej = b[λl, . . . , λj ], ∀j ∈ Jl, gK.20052006

Then, (Te)1 = · · · = (Te)l−1 = 0 and for i ∈ Jl, gK, using again the interpolation2007

property [9, Proposition 7.6], we obtain2008

(Te)i =

g∑
j=l

δijb[λl, . . . , λj ]2009

=

i∑
j=l

δijb[λl, . . . , λj ]2010

= δil

i∑
j=l

(
j−1∏
k=l

(λi − λk)

)
b[λl, . . . , λj ]2011

= δilb[λi].20122013

Recalling that δ1l = · · · = δl−1
l = 0, we thus obtain2014

(Te)i = δilb[λi], ∀i ∈ J1, gK.2015

Finally, from Lemma D.1, we deduce that M̂ = M̃ which ends the proof of Proposi-2016

tion D.3.2017
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versité, 2020, https://www.theses.fr/2020AIXM0133.2120

[36] L. Schwartz, Étude des sommes d’exponentielles réelles, NUMDAM, Publications de l’Institut2121
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