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ANALYSIS OF NON SCALAR CONTROL PROBLEMS FOR
PARABOLIC SYSTEMS BY THE BLOCK MOMENT METHOD

FRANCK BOYER* AND MORGAN MORANCEY'

Abstract. This article deals with abstract linear time invariant controlled systems. In [Annales
Henri Lebesgue, 3 (2020), pp. 717-793], with A. Benabdallah, we introduced the block moment
method for scalar control operators. The principal aim of this method is to answer the question of
computing the minimal time needed to drive an initial condition (or a space of initial conditions) to
zero. The purpose of the present article is to push forward the analysis to deal with any admissible
control operator. The considered setting leads to applications to one dimensional parabolic-type
equations or coupled systems of such equations.

With such admissible control operator, the characterization of the minimal null control time
is obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in
the control space) followed by a constrained optimization procedure of the cost of this resolution.
This leads to essentially sharp estimates on the resolution of the block moment problems which are
uniform with respect to the spectrum of the evolution operator in a certain class. This uniformity
allow the study of uniform controllability for various parameter dependent problems. We also deduce
estimates on the cost of controllability when the final time goes to the minimal null control time.

We provide applications on abstract controlled system to illustrate how the method works and
then deal with actual coupled systems of one dimensional parabolic partial differential equations.
Our strategy enables us to gather previous results obtained by different methods but to also tackle
controllability issues that seem out of reach by existing techniques.

Key words. Control theory, parabolic partial differential equations, minimal null control time,
block moment method

AMS subject classifications. 93B05, 93C20, 93C25, 30E05, 35K90, 35P10
1. Introduction.

1.1. Problem under study and state of the art.
In this paper we study the controllability properties of the following linear control
system

y'(t) + Ay(t) = Bu(t),

1.1
(1) y(0) = vo.
The assumptions on the operator A (see Section 1.3) will lead to applications to
linear parabolic-type equations or coupled systems of such equations mostly in the
one dimensional setting. In all this article the Hilbert space of control will be denoted
by U and the operator B will be a general admissible operator.

The question we address is the characterization of the minimal null control time
(possibly zero or infinite) from yo that is: for a given initial condition yg, what
is the minimal time Tp(yo) such that, for any T > Ty(yo), there exists a control
u € L?(0,T;U) such that the associated solution of (1.1) satisfies y(7') = 0.

For a presentation of null controllability of parabolic control problems as well as
the possible existence of a positive minimal null control time for such equations we
refer to [4] or [10, Section 1.1] and the references therein. Such a positive minimal null
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control time is due either to insufficient observation of eigenvectors, or to condensation
of eigenvalues or to the geometry of generalized eigenspaces, or even to a combination
of all those phenomena.

Under the considered assumptions on A, the problem of characterizing the mini-
mal null control time has been solved for scalar controls (dim U = 1) in [10] where the
block moment method has been introduced in that purpose. The aim of the present
article is to push forward the analysis of [10] to extend it to any admissible control
operator.

To present the general ideas, let us assume for simplicity that the operator A* has
a sequence of positive eigenvalues A and that the associated eigenvectors ¢y for A € A
form a complete family of the state space (the precise functional setting is detailed in
Section 1.3). Then, the solution of system (1.1) satisfies y(T') = 0 if and only if the
control u € L?(0,T;U) solves the following moment problem

T
(1.2) /O M —1), B ¢\)pdt = = (yo, 0n),  YAEA.

* In the scalar case (dimU = 1), provided that B*¢) # 0, this moment problem
reduces to

T
(1.3) / e Muy(T —t)dt = —e= <y0, B‘fA > ., YAeA
0 O

This problem is usually solved by the construction of a biorthogonal family (gx)xea
to the exponentials
{te (0,T)—e™M; XeA}

in L2(0,T;U), i.e., a family (gx)xea such that

T
/ o (t)e Mt = 6y, VA, p €A
0

From [35], the existence of such biorthogonal family is equivalent to the summability
condition

(1.4) > % < +oo0.

REMARK 1.1. This condition (which will be assumed in the present article) is the
main restriction to apply the moment method. Indeed, due to Weyl’s law it imposes
on many examples of partial differential equations of parabolic-type a restriction to the
one dimensional setting. However, in some particular multi-dimensional geometries,
the controllability problem can be transformed into a family of parameter dependent
moment problems, each of them satisfying such assumption (see for instance [9, 3, 18]
among others).

With such a biorthogonal family, a formal solution of the moment problem (1.3)

is given by
w(T —t) = — Z e A <y0, TA >qA(t), te (0,7).
XEA Béx
Thus if, for any yo, the series defining u converges in L?(0,7;U) one obtains null
controllability of system (1.1) in time T". To do so, it is crucial to prove upper bounds

on [lgxllz2(0,7)-

This manuscript is for review purposes only.



79
80
81
82
83
84
85
86

87

94

112

Suitable bounds on such biorthogonal families were provided in the pioneering
work of Fattorini and Russell [23] in the case where the eigenvalues of A* are well
separated i.e. satisfy the classical gap condition: inf {|A — pu|; A, p € A, A #£ p} > 0.
When the eigenvalues are allowed to condensate we refer to the work [5] for almost
sharp estimates implying the condensation index of the sequence A. A discussion on
other references providing estimates on biorthogonal families is detailed below. These
results have provided an optimal characterization of the minimal null control time
when the eigenvectors of A* form a Riesz basis of the state space (and thus do not
condensate).

However, as analyzed in [10], there are situations in which the eigenvectors also
condensate and for which providing estimates on biorthogonal families is not sufficient
to characterize the minimal null control time. In [10], it is assumed that the spec-
trum A can be decomposed as a union of well separated groups (G)r>1 of bounded
cardinality. Then, the control u is seeked in the form

u(T —1t) = ka(t)7

k>1

where, for any k > 1, the function vy € L?(0,7T;U) solves the block moment problem

T
My (t)dt = e M o VA
/0 € 'Uk( ) e Yo, B*(ﬁk ) € Gkv

T
/ e Muy(t)dt =0, Y\ & Gy
0

(1.5)

This enables to deal with the condensation of eigenvectors: the eigenvectors (¢x)xea
are only assumed to form a complete family of the state space.

* When the control is not scalar there are less available results in the literature.
Here again, these results rely on the existence of a biorthogonal family to the expo-
nentials with suitable bounds. For instance, in [7], null controllability in optimal time
is proved using a subtle decomposition of the moment problem into two families of
moment problems. In a more systematic way, one can take advantage of the biorthog-
onality in the time variable to seck for a solution w of the moment problem (1.2) in
the form

W —t) = = 37 T (g, 6y) — A

—
AEA |B*oall;r

This strategy was introduced by Lagnese in [28] for a one dimensional wave equation
and used in the parabolic context for instance in [19, 2, 20, 3].

In the present article we deal with such general admissible control operators.
As the eigenvectors will only be assumed to form a complete family, for each initial
condition g, we study its null control time for system (1.1) by solving block moment
problems of the following form

T
/ <Vk:(t)a e_AtB*¢A>U dt = <ZUO, e_)\T¢>\> ; VA e Gk)
(1.6) 0

T
/ (Vi(t), e MB*¢r),, dt =0, VYA & Gy.
0
3
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Let us recall that, for pedagogical purposes, we have restricted this first introductory
subsection to the case of simple eigenvalues. The general form of block moment
problems under study in this article is detailed in Section 1.4.

The strategy to solve such block moment problems and estimate its solution is
presented on an example in Section 1.2 together with the structure of the article. Let
us already notice that the geometry of the finite dimensional space Span{B*¢y ; A €
Gy} is crucial.

For instance, if this space is one dimensional, say generated by some b € U, the
strategy of Lagnese can be adapted if one seeks for Vj solution of the block moment
problem (1.6) in the form

Vk (t) = Uk (t)b7

where v;, € L2(0, T; R) solves a scalar block moment problem of the same form as (1.5).
If, instead, the family (B*¢x)rcq, is composed of linearly independent vectors

then it admits a biorthogonal family in U denoted by (b})aec,. Then, one can for

instance seek for V}, solution of the block moment problem (1.6) in the form

Vie(t) = vk (1) <Z bi) :

AEGE

where vy, solves a scalar block moment problem of the form (1.5).

In the general setting, taking into account the geometry of the observations of
eigenvectors to solve block moment problems of the form (1.6) is a more intricate
question that we solve in this article, still under the summability condition (1.4).

Finally, let us mention that we not only solve block moment problems of the
form (1.6) but we also provide estimates on their solutions to ensure that the series
defining the control converges. These estimates will provide an optimal characteriza-
tion of the minimal null control time for each given problem.

We add also an extra care on these estimates so that they do not directly depend
on the sequence A but are uniform for classes of such sequences. It is an important step
to tackle uniform controllability for parameter dependent control problems. Estimates
of this kind have already proved their efficiency in various contexts such as: numerical
analysis of semi-discrete control problems [2], oscillating coefficients [32], analysis
of degenerate control problems with respect to the degeneracy parameter [19, 20],
analysis of higher dimensional controllability problems by reduction of families of one
dimensional control problems [9, 1, 3, 18] or analysis of convergence of Robin-type
controls to Dirichlet controls [12].

Another important feature of the estimates we obtain is to track the dependency
with respect to the final time T when T goes to the minimal null control time. As pre-
sented in Remark 1.7, this allows applications in higher dimensions (with a cylindrical
geometry) or applications to nonlinear control problems.

Finally, let us recall some classical results providing estimates for biorthogonal
families to a sequence of exponentials. Under the classical gap condition, uniform
estimates for biorthogonal families were already obtained in [24] and sharp short-time
estimates were obtained in [9]. In this setting, bounds with a detailed dependency
with respect to parameters were given in [21]. In this work, the obtained bounds take
into account the fact that the gap property between eigenvalues may be better in high
frequencies.

Under a weak-gap condition of the form (1.21), that is when the eigenvalues
can be gathered in blocks of bounded cardinality with a gap between blocks (which

4
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is the setting of the present article), uniform estimates on biorthogonal sequences
follow from the uniform estimates for the resolution of block moment problems proved
in [10]. These estimates on biorthogonal family are improved with the dependency
with respect to T in [26]. Let us mention that the estimates of [10] can also be
supplemented with such dependency (see Theorem A.1) but only when the considered
eigenvalues are assumed to be real (unlike the setting studied in [26]).

In the absence of any gap-type condition, estimates on biorthogonal families are
proved in [5, 3].

1.2. Structure of the article and strategy of proof.

To highlight the ideas we develop in this article (without drowning them in tech-
nicalities or notations), let us present our strategy of analysis of null controllability
on an abstract simple example.

We consider X = L2(0,1;R)? and w C (0,1) a non empty open set. For a given
a > 0 we define

A= {)\k,l = k‘z, )\k72 = k‘2 + e—ak2 ) k Z 1},
and take (¢x)r>1 an Hilbert basis of X such that

Igfl ekl z2(w) > 0.

Let ¢p 1 := (£k> and ¢p 2 1= (£ ) We define the operator A* in X by
k k

A b1 = e 10k 1, A br0 = Mg 20k 2,
with
D(A") = Z k1 Pk + Ok 20k 2 ; Z A 1h1 + AR 20} 2 < +00
k>1 k1

The control operator B is defined by U = L?(0, 1;R) and
0
B:ueUw— ( > € X.
1,u

The condition infg>1 [[¢r||2(w) > 0 yields
(1.7) B*¢r1 =B pr2 #0, Yk > 1.

This ensures approximate controllability of system (1.1).

We insist on the fact that the goal of this article is not to deal with this particular
example but to develop a general methodology to analyze the null controllability of
system (1.1).

o Let yo € X. From Proposition 1.1 and the fact that {¢ 1, ¢r,2; k > 1} forms a
complete family of X, system (1.1) is null controllable from yg at time T if and only
if there exists u € L?(0,T;U) such that for any k > 1 and any j € {1,2},

T
/ e Mt (W(T — 1), B ¢, j)y dt = —e 97T (yo, i) 5 -
0
5
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Following the idea developed in [10], we seek for a control u of the form
(1.8) u(t) ==Y op(T - 1)
k>1

where, for each k > 1, v; solves the block moment problem

T
/ e Mt (g (1), B ) dt = e M9 T (yo, b ), Vi € {1,2},
(1.9) 0

T
/ Mt (0 (1), B b )y dE =0, VK £k, Vi € {1,2).
0

e To solve (1.9), for a fixed k, we consider the following auxiliary block moment
problem in the space U

T
/ e_kk’jt’l)k(t)dt = Qk’j, Vj S {].7 2}7
(1.10) 0

T
/ e Wity ()dt =0, VK £k, Vj € {1,2},
0

where Q4 ; € U have to be precised. If we impose that Q1 and €y o satisfy the
constraints

(1.11) (g, B i)y =€ 7T (yo, drej) x » Vj e {1,2},

we obtain that the solutions of (1.10) also solve (1.9). The existence of Q1 and Qo
satisfying the constraints (1.11) is ensured by (1.7), however there exist infinitely
many choices.

For any Q. 1, Q2 € U, applying the results of [10] component by component in
the finite dimensional subspace of U defined by Span{Q 1, 2} leads to the existence
of v, € L*(0,T;U) satisfying (1.10). It also gives the following estimate

(1.12) okl 320,10y < Crc€ 1 F(Q 1, Qe 2),
with 2
Qg2 — Qg1
Fi (@1, Q2) €U o Qe + |||
(1, Qe 2) € €%, 11 + H Moz — Mea |l

Using (1.12) and optimizing the function F' under the constraints (1.11) we obtain
that there exists vy € L2(0,T;U) solution of the block moment problem (1.9) such
that

(1.13)  wklZ2070) < Cree™t inf {F (1, Q2) 5 Q1,2 satisfy (1.11)}.

The corresponding general statements of the resolution of block moment problems
are detailed in Section 1.4 (see Theorem 1.2) and proved in Section 2.

e Now that we can solve the block moment problems (1.9), a way to characterize the
minimal null control time is to estimate for which values of T' the series (1.8) defining
the control u converges in L?(0,T;U).

To achieve this goal, we isolate in the estimate (1.13) the dependency with respect
to T. Notice that the function F' does not depend on T but that the constraints (1.11)
does.
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For any k > 1 and any Qp 1, Q2 € U we set
Qk’j = ekk’jTQk’j, Vj e {172}
Then, there is equivalence between the constraints (1.11) and the new constraints
(1.14) (0 Bora), = o drs)x . Vie{L2)

Now these constraints are independent of the variable T'. From the mean value theo-
rem we obtain

- ~ 2
- 2 e~ 2T () — e MaT()
_ k2 —€ k,1
F(Q1,Q2) = He ’\k'lTQk,1H +
U Ak2 — Ak
U
2 s — O |
_ ~ _ k2 — k1
< 2T HQ“H 4 2e 22T
U A2 — Ak
e~ Mk2T _ o= Ak T 2 - 2
+2 [
A2 — Ak U

<2(1+ T2)e_2”*1TF(ﬁk717 §vzk,2)~

The general statement of this estimate is given in Lemma 3.1.
Plugging this estimate into (1.12) and optimizing the function F' under the con-
straints (1.14) yields

(1.15) okl 220,70y < Cr e 1”217 Cp(yo)
where
. =12 Qo — O b
(1.16) Cilyo) = 1nf{ ]|, + e (4.B60s), = w0 drs)x

Vi e {1, 2}}.
Estimate (1.15) proves that for any time 7" such that

|
T > lim sup M
kotoo 21

the series (1.8) defining the control u converges in L?(0,7;U). Thus, null controlla-
bility of (1.1) from yo holds for such T

We also prove that the obtained estimate (1.15) is sufficiently sharp so that it

characterizes the minimal null control time from gy as

1
(1.17) To(yo) = lim sup -CE0).
kotoo  2Ak1

The corresponding general statements regarding the minimal null control time

together with bounds on the cost of controllability are detailed in Section 1.4 (see
Theorem 1.3) and proved in Section 3.
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o At this stage we have characterized the minimal null control time as stated in (1.17).
However to be able to estimate the actual value of Ty(yp) one should be able to
estimate the quantity Cg(yo) as defined in (1.16). This formula is not very explicit
and it does not get better in the general setting.

To do so, we remark that (1.16) is a finite dimensional optimization problem that
we can explicitly solve in terms of eigenelements of A* and their observations through
B*.

We obtain different results depending on the assumptions on the multiplicity
of the eigenvalues of the considered blocks. The general statements of an explicit
solution of the corresponding optimization problem are detailed in Section 1.5 (see
Theorems 1.8 and 1.10) and proved in Section 4.

For the particular example we are considering here, the obtained formula reads

2 2ak? 2
1 0 e Pk
Celyo) = 75— <yo, ( >> +r—m <2/07 ( >> :
Ikl 2.y vr) [ x  leelFa ) 0)/x

Then, the minimal null control time from X of this example is given by
TO (X) = a.

Notice, for instance, that this expression also gives that for a given yq if the set

e (o (5)), 0}

is finite, then null controllability from yo holds in any positive time, i.e. Tp(yo) = 0.

e Finally, we provide various examples of application of the results developed in this
article. To highlight the ideas and phenomena we start with rather academic examples
in Section 5. We then consider systems of coupled one dimensional linear parabolic
equations with boundary or distributed controls in Section 6.

1.3. Framework, spectral assumptions and notations.
To state the main results of this article, we now detail the functional setting and
assumptions we use.

1.3.1. Functional setting.

The functional setting for the study of system (1.1) is the same as in [10]. For
the sake of completeness, let us detail it.

We consider X an Hilbert space, whose inner product and norm are denoted by
(e,0) and ||e|| y respectively. The space X is identified to its dual through the Riesz
theorem. Let (A, D(A)) be an unbounded operator in X such that —A generates a
C°—semigroup in X. Its adjoint in X is denoted by (A*, D(A*)). Up to a suitable
translation, we can assume that 0 is in the resolvent set of A.

We denote by X; (resp. X7) the Hilbert space D(A) (resp. D(A*)) equipped
with the norm ||z||, := ||Az| x (resp. ||z|;. := [|A*z||yx) and we define X_; as the
completion of X with respect to the norm

(y,2)
lyll—y := sup X
2EXY B3

8

1%
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Notice that X _; is isometrical to the topological dual of X7 using X as a pivot space
(see for instance [37, Proposition 2.10.2]); the corresponding duality bracket will be
denoted by (e, e) ; ;..

The control szice U is an Hilbert space (that we will identify to its dual). Its inner
product and norm are denoted by (e, e),, and |[e||; respectively. Let B: U — X_; be
a linear continuous control operator and denote by B* : X{ — U its adjoint in the
duality described above.

Let (X3, ||.|l,«) be an Hilbert space such that X7 C XJ C X with dense and
continuous embeddings. We assume that X is stable by the semigroup generated by
—A*. We also define X_, as the subspace of X_; defined by

(Y, 2) _q 1«
Xooi=4y€X 15 |lyll_o:= sup ———=— < 400y,
zeXY || o*

which is also isometrical to the dual of X} with X as a pivot space. The corresponding
duality bracket will be denoted by (e,s) .. Thus, we end up with the following five
functional spaces

XfCcX;cXCcX ,CX .

We say that the control operator B is an admissible control operator for (1.1) with
respect to the space X_,, if for any 7' > 0 there exists C'r > 0 such that

2
o*

T . 2
(1.18) / HB*e*T*t)A 2||,, 4t < Crllz] Vz € X7
0

Notice that if (1.18) holds for some T' > 0 it holds for any 7" > 0. The admissibility
condition (1.18) implies that, by density, we can give a meaning to the map

(t s B*e—<T—ﬂA*z) e L2(0,T;U),

for any z € XJ. Then, we end up with the following well-posedness result (see [10,
Proposition 1.2]).

PROPOSITION 1.1. Assume that (1.18) holds. Then, for anyT > 0, anyyo € X s,
and any u € L*(0,T;U), there exists a unique y € C°([0,T]; X_,) solution to (1.1)
in the sense that it satisfies for any t € [0,T] and any z: € X,

W20~ (™) = [ (u(e). B4 ) as

—0,0

Moreover there exists Cr > 0 such that

sup [ly()]|_, < Or(llyoll o + llullz20,m;0))-
t€[0,T]

REMARK 1.2. By analogy with the semigroup notation, when u = 0, we set for
any t € [0,T], e " yo := y(t). This extends the semigroup e~** defined on X to X _,
and implies that for any z € X _,,

(1.19) (e7™z,6)_, .= <Z efTA*¢> . Ve X

—0,0
9
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With this notion of solution at hand, we finally define the minimal null control
time from a subspace of initial conditions Yj.

DEFINITION 1.1. Let Yy be a closed subspace of X_, and let T > 0. The sys-
tem (1.1) is said to be null controllable from Yy at time T if for any yo € Yy, there
exists a control u € L%(0,T;U) such that the associated solution of (1.1) satisfies
y(T) =0.

The minimal null control time To(Yo) € [0, +00] is defined by

o for any T > Ty(Yy), system (1.1) is null controllable from Yy at time T';
o for any T < Ty(Yp), system (1.1) is not null controllable from Yy at time T.

To simplify the notations, for any yo € X_,, we define To(yo) := To(Span{yo}). In
the formulas given in this article, it can happen that Ty(Yy) < 0. In this case, one
should replace Ty(Yy) by 0.

1.3.2. Spectral assumptions.

In all this article we assume that the operators A and B satisfy the assumptions of
Proposition 1.1. Moreover to solve the control problem we will need some additional
spectral assumptions.

* Behavior of eigenvalues.

We assume that the spectrum of A*, denoted by A, is only composed of (countably
many) eigenvalues.

In what follows we assume that

(1.20) A € (0, +00)™.

REMARK 1.3. In [10], the assumption on A was slightly stronger. Namely, in that
article it was assumed that A € (1,400)N. This stronger assumption was only used in
the lower bound on the solution of scalar block moment problems (see estimate (A.4)).
Thus the results of the article [10] that will be used in the present article remain valid
under the assumption (1.20).

If necessary, one can replace the operator A by A + T without modifying the
controllability properties. Then, in the different estimates, the behavior with respect
to T can be carefully tracked if needed.

Most of the results of this article (but not all) also holds when the eigenvalues in
A are complex valued (yet with a dominant real part). To avoid confusion we stick
with the assumption (1.20) and we only discuss in Section 7.1 which results hold in
the complex setting and what are the necessary adjustments.

As in the case of a scalar control (see [10]) we assume that this spectrum satisfies
a weak-gap condition. Namely, there exists p € N* and g > 0 such that

(1.21) (AN [wptd) <p,  Vue 0, +o0).

This means that the eigenvalues are allowed to condensate by groups but the cardi-
nality of these groups should be bounded. To precise this, let us recall the notion of
groupings introduced in [10, Definition 1.6].

DEFINITION 1.2. Let p € N* and r,p > 0. A sequence of sets (G)x>1 C P(A)
is said to be a grouping for A with parameters p, v, o (which we denote by (Gy)x €

G(A,p,r,0)) if it is a covering of A
A= U Gk7

E>1
10
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with the additional properties that, for every k > 1,
1Gr < p, sup (Gg) < inf (Gg41), dist (Gg, Ggpa1) > 1

and
diam(Gg) < o.

As proved in [10, Proposition 7.1], the weak-gap condition (1.21) implies that

g (A,p,g,g> # Q.
p
REMARK 1.4. For convenience, in the following we label the eigenvalues of a given
group G in increasing order i.e. G = {\1,...,A\g} with A\ < A\py1 but this is not
mandatory.

Concerning the asymptotic behavior of the spectrum we will use the counting
function associated to A defined by

Nyo:r>0—=4{AeA; A<r}.

When there is no ambiguity we drop the subscript A. We assume that there exists
N >0 and a € (0,1) such that

(1.22) Na(r) < Nr¢, Vr > 0.

Notice that this condition is slightly stronger than the classical summability condi-
tion (1.4) used for instance in [24, 5, 10] and many other works.

Notice also that (1.22), with » = min A, implies the following lower bound on the
bottom of the spectrum

min A > N9,

Our goal is not only to study the controllability properties of our system but also to
obtain estimates that are uniform in a way to be precised. To do so, we define the
following class of sequences: let p € N*, o, N > 0, a € (0,1) and consider the class

(1.23) L(p,0,a,N) :={A € (0,+00)" ; A satisfies (1.21) and (1.22)} .

In this work, we obtain sharper estimates when replacing (1.22) by the stronger
assumption

(1.24) ’NA(T)—NT‘G‘ < Nr¢, vr >0,
with N > 0 and @’ € [0,a). This motivates the definition of the class
(1.25)  L(p,0,a,N,a/,N):={A € (0, +00)"; A satisfies (1.21) and (1.24)} .

Finally, we can also deal with the slightly larger class £(p, 0, N') used in [10]
(see (A.1)) but this will not lead to explicit estimates with respect to the control
time.

11
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* Multiplicity of eigenvalues.

In our study we allow both algebraic and geometric multiplicities for the eigenval-
ues. We assume that these multiplicities are finite and that the algebraic multiplicity
is globally bounded. More precisely, we assume that

(1.26) v = dimKer(A" — X\) < 400, VA €A,
and that there exists n € N* such that
(1.27) Ker(A* — \)7 = Ker(A* — \)7, VA €A
For any A\ € A we denote by a the smallest integer such that
Ker(A* — \)* = Ker(A* — \)o2F!
and set
Ey = Ker(A* — \)*.

For a given group G = {A1,...,A\;} we denote by o = (a1, ..., ay) the multi-index of
corresponding algebraic multiplicities.

* (Generalized) eigenvectors.
To study null-controllability, we assume that the Fattorini-Hautus criterion is
satisfied

(1.28) Ker(A* — \)NKerB* = {0},  VA€A.

It is a necessary condition for approximate controllability. Note that, under additional
assumptions on .4 and B it is also a sufficient condition for approximate controllability
(see for instance [22, 33]). However, when studying null controllability of system (1.1)
for initial conditions in a closed strict subspace Yy of X_, the condition (1.28) can be
too strong. This is discussed in Section 7.2.

We assume that the family of generalized eigenvectors of A*

O={peEr; \eA}=[]E,
AEA

is complete in X} i.e. for any y € X_,,

(1.29) ((y,¢>70’0 =0, Ve <1>) — y=0.

In the following, to simplify the writing, we gather these assumptions and say that
the operators A and B satisfy (H) if there exists p € N*, r, 0, N,N > 0, a € (0,1),
a’ € [0,a) and NV : (0,4+00) — R such that

A and B satisfy the assumptions of Proposition 1.1 ;

A = Sp(A*) satisfies (1.20), (1.26), (1.27) and

A€ L(p,o,N)UL(p,0,a,N)U L(p, 0,a,N,d',N);

the associated (generalized) eigenvectors satisfy (1.28) and (1.29).
12
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429 1.3.3. Notation.
430 We give here some notation that will be used throughout this article.
e For any integers a,b € N, we define the following subset of N:

[a,b] := [a,b] N N.
431 e For any s € R we denote by e, the exponential function

es: (0,400) = R

432
x e .
133 e We shall denote by Cy, . ¢, > 0 a constant possibly varying from one line to
434 another but depending only on the parameters 601, ...,60;.
435 e For any multi-index a € N", we denote its length by |a| = 377, a; and its
436 maximum by |a|e = max;cpy n] ;-
437 For a, u € N, we say that u < « if and only if p; < «; for any j € [1,n].
138 e In all in this article the notation f[---] stands for (generalized) divided dif-
439 ferences of a set of values (x;, f;). Let us recall that, for pairwise distinct
440 Z1,...,2, € Rand fi1,..., f, in any vector space, the divided differences are
441 defined by
flza, .o yxy] — flea, ..o xj-1]
442 f[.’lﬁj] ij, f[l‘]_,...,xj] = J J .
Tj—T1

443 The two results that will the most used in this article concerning divided
144 differences are the Leibniz formula

J
445 (gf)[wla s axj] = Zg[xla v 7xk]f[xk,' .. 7xj},

k=1
446 and the Lagrange theorem stating that, when f; = f(z;) for a sufficiently
447 regular function f, we have
fU=D(z)
148 Ce | = —
f[xh axj] (]_1>| )

449 with z € Conv{xzy,...,z;}. For more detailed statements and other useful
450 properties as well as their generalizations when z1, ..., z, are not assumed to
451 be pairwise distinct we refer the reader to [10, Section 7.3]. This generaliza-
152 tion is used in the present article whenever there are algebraically multiple
453 eigenvalues.
454 e For any closed subspace Y of X_, we denote by Py the orthogonal projection
455 in X_, onto Y. We denote by Py € L(X}) its adjoint in the duality X_.,
456 X3.
457 1.4. Block moment problems and minimal time for null-controllability.
458 * Definition of block moment problems.
459 Using the notion of solution given in Proposition 1.1 and the assumption (1.29),
160 null controllability from yg in time 7" reduces to the resolution of the following problem:

461 find w € L2(0,T;U) such that

—0,0

T
162 (1.30) / <u(t),B*e’(T’t)A*¢>Udt _ <y0,efm*¢> , Vo€ Ey, VA€EA.
0

13
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Following the strategy initiated in [10] for scalar controls, we decompose this problem
into block moments problem. Hence we look for a control of the form

(1.31) u=—> v(T —e)

k>1

where for every k € N*, vy, € L?(0,T;U) solves the moment problem in the group Gy,
i.e.

0,0

T
(132&) / <Uk(t), B*e—tA* ¢> dt = <y07 e_TA*¢> , V¢ € Ey, VA € G,
0 U -
T *
(1.32b) / <vk(t), Bre~tA ¢>U dt =0, Vo€ Ey, VA€ A\Gy.
0

Let us rewrite the orthogonality condition between groups (1.32b) in a more conve-
nient way. For any ¢ € E, from [10, (1.22)], it comes that

(1.33) eft.A*qS oM Z #(A* —\)'p= Zet [)\(erl)} (A* = \)" 6,

r>0 ’ r>0

where the sums are finite (and contains at most the first a;, terms).
From (1.32) and (1.33), we study in this article the following block moment prob-
lems for a given group G

T
(1.34a) / <v(t), B*e‘tA*¢>U dt = (e ™yo,d)_,,, Vo€ Ex, VAEG,
0
T
(1.34b) / v(t)tle™Mdt =0, VYA€ A\G, VI € [0,n - 1].
0

where e~ 74yq is defined in (1.19).

REMARK 1.5. Thanks to (1.33), every solution of (1.34) solves (1.32). Yet, the
orthogonality condition between groups (1.34b) is more restrictive than (1.32b): it is
stated directly in U and each eigenvalue outside the group G is considered as if it has
mazimal algebraic multiplicity n. Those two choices allow a unification of the writing
when the eigenvalues in different groups have different spectral behaviors and have no
influence on the obtained results.

* Resolution of block moment problems.

In our setting, the block moment problem (1.34) is proved to be solvable for any
T > 0. The resolution will follow from the scalar study done in [10] (see Theorem 1.2).

Due to (1.31), the main issue to prove null controllability of (1.1) is thus to sum
these solutions to obtain a solution of (1.30). This is justified thanks to a precise
estimate of the cost of the resolution of (1.34) for each group G that is the quantity

inf {[|v||z2(0, 7,y ; v solution of (1.34)}.

To state this result, we introduce some additional notation.
To solve the moment problem (1.34) we lift it into a ‘vectorial block moment

14
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497

498
499

problem’ of the following form (see (2.1))
4 (=" xiq o B
o(t) e Mt =0, YA€ G, VI € [0,ax — 1],
O .
T
/ v(t)tte™Mdt =0, VA€ A\G, VI e [0,n—1],
0

where Q4 belongs to U. Following (1.33), to recover a solution of (1.34), we need
to impose some constraints on the right-hand side. Thus, for any A\ € A and any
z € X_s, we set

ax—1
(1.35) O\, 2) = {(QO, LT h e o Z QLB (A" = N)'), = (2.0) s,
1=0
Vo € E)\}
For a given group G = {\1,..., g} we set
(1.36) O(G,2) = O(A,2) x - x O(\g,2) C UL
Recall that a = (au,...,a4) is the multi-index of algebraic multiplicities. Consider

any sequence of multi-indices (Nl)l€[0,|a|ﬂ such that

pmt <l Ve[, al],
(1.37) =1, Vieoal,
plel = a.
To measure the cost associated to the group G let us define the following functional
lot| 5
138) F:Q=(Q0. ... Qn"1 .0 . Qo) eplel, HQ ] H .
(1.38) (@ 1 g :) ; U
The use of such functional to measure the cost comes from the analysis conducted
in [10] (see Proposition 2.1).
The first main result of this article concerns the resolution of block moment

problems of the form (1.34).

THEOREM 1.2. Assume that the operators A and B satisfy the assumption (H)
(see page 12) and let (Gp)k>1 € G(A,p,7,0) be an associated grouping. Let T €
(0, 400).

For any G ={\1,..., 2} € (Gp)k and any z € X_,, there exists v € L*(0,T;U)
solution of

T *
) [ (o B ) A= o) .. Vo€ By Vi€ [l

T
(1.39b) / v(t)tle Mdt =0, YA € A\G, VI € [0, — 1].
0
Moreover, we have the following estimate
(1.40) lllZ2 0,70y < EO) K(T) C(G, 2),
15
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where

(1.41)

C(G, 2) == imf {F(Q); Q€ OG,2)}

with F defined in (1.38), O(G, z) defined in (1.36) and the functions £ and K satisfy
the bounds given in Theorem A.1.

Moreover, there exists Cp p mina > 0 such that any v € L*(0,T;U) solving (1.39a)

satisfies

(1.42)

||'U||%2(0,T;U) > CppminaAC(G, 2).

Before giving the application of this resolution of block moment problems to null
controllability of problem (1.1), let us give some comments.

As it was the case in [10], the considered setting allows for a wide variety
of applications. In (1.29) the generalized eigenvectors are only assumed to
form a complete family (and not a Riesz basis as in many previous works)
which is the minimal assumption to use a moment method-like strategy. The
weak gap condition (1.21) is also well adapted to study systems of coupled
one dimensional parabolic equations (see Section 6).

The main restriction is the assumption (1.22) or (1.24) (or (A.1)). As detailed
in Section 1.1, this assumption is common to most of the results based on a
moment-like method.

Though restrictive, let us underline that the moment method is, to the best
of our knowledge, the most suitable method to capture very sensitive features
such as a minimal null control time for parabolic control problems without
constraints.

The main novelty of this theorem is to ensure solvability of block moment
problems coming from control problems with control operators that are only
assumed to be admissible. In particular, the space U can be of infinite di-
mension.

As proved by (1.42), for any fixed T > 0, up to the factor £()\1), the obtained
estimate (1.40) is optimal in the asymptotic min G — 4o0o0. This will be cru-
cial to completely characterize the minimal null control time in Theorem 1.3.
In the applications to control theory, this term £(\;) which accounts for the
orthogonality condition (1.39b), will always be negligible (see the bounds
given in Theorem A.1).

The estimate (1.40) does not explicitly depend on the sequence of eigenval-
ues A but rather on some parameters such as the weak-gap parameters and
the asymptotic of the counting function. As presented in Section 1.1, the
uniformity of such bounds can be used to deal with parameter dependent
problems.

Let us also underline that the obtained estimate (1.40) tracks the dependency
of the constants with respect to the controllability time 7" when

A€ L(p,0,a,N)UL(p,0,a,N,d', N).

This will be crucial to estimate the cost of controllability in Proposition 1.5.
We refer to Remark 1.7 for possible applications of such estimates of the cost
of controllability.

Though quite general and useful for the theoretical characterization of the
minimal null control time, the obtained estimate (1.40) is not very easy to

16
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deal with on actual examples. With slightly stronger assumptions on the
eigenvalues of the group GG we provide in Section 1.5 more explicit formulas.

e The formulation of the right-hand side of (1.39a) is not standard. Usually,
to set a moment problem, a specific basis of the generalized eigenspace is
exhibited. Here, in our study, we do not exhibit any particular generalized
eigenvector. This enables to choose different normalization condition on dif-
ferent examples and then simplify the computations on actual examples (see
Sections 5 and 6). Our study also leads to the resolution of block moment
problems with ‘standard’ right-hand sides. The obtained results are detailed
in Appendix C.

* Application to null controllability.

The resolution of block moment problems stated in Theorem 1.2 allows to obtain
the following characterization of the minimal null control time from a given initial
condition.

THEOREM 1.3. Assume that the operators A and B satisfy the assumption (H)
(see page 12) and let (Gk)r>1 € G(A,p, T, 0) be an associated grouping. Then, for any
Yo € X_o, the minimal null control time of (1.1) from yo is given by

. lnC(GkvyO)
1.4 T =1 T
() o) = S S min G

where C(G,yo) is defined in (1.41).

If one considers a space of initial conditions (instead of a single initial condition), the
characterization of the minimal null control time is given in the following corollary.

COROLLARY 1.4. Let Yy be a closed subspace of X_. Then, under the assump-
tions of Theorem 1.3, the minimal null control time from Yy is given by

. th(Gk,Yo)
To(Yy) =1 _—
n(Y0) = limsup = Gy

with
C(G7Y0) = sup C(G7y0)
Yo€Yo
llyoll —o=1

The remarks on the assumptions and their benefits and restrictions stated after
Theorem 1.2 remain valid.

When system (1.1) is null controllable, we obtain the following bound on the cost
of controllability.

PROPOSITION 1.5. Assume that the operators A and B satisfy the assumption (H)
(see page 12) and let (Gi)i>1 € G(A,p, 7, 0) be an associated grouping. Let Yy be a
closed subspace of X_o and let T > Ty(Yp).

For any yo € Yo with ||yo||_, = 1, there exists a control u € L*(0,T;U) such that
the associated solution of (1.1) satisfies y(T) =0 and

ullF2 0,10y < K(T) D (1 + 1)kl € (min Gy )e 2 EITC(Gy, Vy),
k>1

where the functions € and K satisfy the bounds given in Theorem A.1.
17
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Though quite general the above formula is not very explicit. More importantly,
it is proved in [30, Theorem 1.1] that, with a suitable choice of A and B satisfying
our assumptions, any blow-up of the cost of controllability can occur. We give below
a setting (inspired from [30, Theorem 1.2]) in which this upper bound on the cost of
controllability is simpler and can have some applications (see Remark 1.7).

COROLLARY 1.6. Assume that the operators A and B satisfy the assumption (H)
(see page 12) with
A€ L(p,o,a,N,d',N)

as defined in (1.25). Let k > 0. There exists C > 0 depending only on k, p, o, 1, a,
N, o' and N such that for any yo € X_, satisfying

(1.44) C(G,yo) < re2minGTolo) |1yo |2 "0 g > 1,

for any T > Ty(yo) close enough to To(yo), there exists a control u € L?(0,T;U) such
that the associated solution of (1.1) satisfies y(T) =0 and

C
U oy <Cexp| ————— .
o < Cesp (piosmee ) ol

REMARK 1.6. In the setting of Corollary 1.6, replacing the assumption (1.44) by
C(Groyo) < weCmm O EmnGITO00) [lyg||2 | vk > 1,

with b € (0,1) leads to the following estimate

C C
lullz2 0,750y < Cexp <T1“a + ) ) llyoll s -
(T _ TO(QO)) T—max(a,b)

REMARK 1.7. Giving the best possible estimate on the cost of small time null
controllability is a question that has drawn a lot of interest in the past years.

In classical cases, for instance for heat-like equations, null controllability holds
in any positive time and the cost of controllability in small time behaves like exp (%)
(see for instance [36]). There are two mains applications of such estimate.

e Controllability in cylindrical domains.
1t is proved in [9] that null controllability of parabolic problems in cylindrical
geometries (with operators compatible with this geometry) with a boundary
control located on the top of the cylinder can be proved thanks to null con-
trollability of the associated problem in the transverse variable together with
suitable estimates of the cost of controllability. Their proof relies on an adap-
tation of the classical strategy of Lebeau and Robbiano [29] and thus uses
an estimate of the cost of controllability in small time of the form exp (%)
These ideas were already present in [11] and later generalized in an abstract
setting in [1].

e Nonlinear control problems.
The source term method has been introduced in [31] to prove controllability
of a nonlinear fluid-structure system (see also [8, Section 2] for a general
presentation of this strategy). Roughly speaking it amounts to prove null con-
trollability with a source term in suitable weighted spaces and then use a fized
point argument. The null controllability with a source term is here proved by
an iterative process which strongly uses that the cost of controllability of the
linearized system behaves like exp (%)

18
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Notice that from the upper bound given in Corollary 1.6, the cost of controllability in
small time can explode faster than exp (%) Yet, as studied in [3/, Chapter 4], the
arguments of the two previous applications can be adapted with an explosion of the

cost of the form exp (Tlc%> with a € (0,1).
However, these two applications uses a decomposition of the time interval [0,T)

into an infinite number of sub-intervals (which explains the use of the asymptotic of
the cost of controllability when the time goes to zero). Thus their extension in the
case of a minimal null control time is an open problem.

1.5. A more explicit formula.

Assume that the operators A and B satisfy the assumption (H) (see page 12).
Let G = {A1,...,Ag} C A be such that G < p and diam G < p. We have seen in
Theorem 1.3 that the key quantity to compute the minimal null control time from g
is

C(G,yo) = inf {F(); 2 € O(G,y0)} -
where the function F' is defined in (1.38) and the constraints O(G,yo) are defined
in (1.36).

Notice that, for any z € X_,, the quantity C(G, z) can be expressed as a finite
dimensional constrained problem. Indeed, for a given group G we consider the finite
dimensional subspace

(1.45) Ug =B*Span{¢ € Ex; A € G}

and Py, the orthogonal projection in U onto Ug. Then, for any Q € O(G,z) it
comes that Py, Q € O(G, z) and F(Py,Q) < F(). Thus, the optimization problem
defining C(G, z) reduces to

C(G, 2) = inf {F(Q) Qe 0G,2)N Uc‘?l} :

which is a finite dimensional optimization problem. From [10, Proposition 7.15], the
function F' is coercive which implies that the infimum is attained:

(1.46) C(G, 2) = min {F(Q) L QEeOG, )N Ug‘} .

In this section, solving the optimization problem (1.46), we provide more explicit
formulas for this cost depending on stronger assumptions on the multiplicity of the
eigenvalues in the group G (and only in the group G).

REMARK 1.8. All the results in this section only concern the group G. Then, the
assumption (H) is stronger than needed. For instance, one does not need the weak
gap condition (1.21) on the whole spectrum A but only that G < p and diam G < p.
However, to simplify the reading we stick with assumption (H).

* A group G of geometrically simple eigenvalues.

First, assume that the eigenvalues in G are all geometrically simple i.e. vy =1
for every A € G where 7, is defined in (1.26).

For any j € [1, g] we denote by ¢9 an eigenvector of A* associated to the eigen-
value \; and by (¢§-)le[[o,ajf1]] an associated Jordan chain i.e.

(A" =\)oh =o' Ve[l —1].
19
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To simplify the writing, we set
b=B¢eU,  Vie[o,a; —1], Vj € [1,4].
Recall that the sequence of multi-index (! )ic[o,laf) satisfy (1.37) and let
loe|
(1.47) M:=>"T,
1=1
with

1 1-1 |, 1—1
I, := Gramy 0,...,0,b[/\£“ a )],...,b[/\ﬁ“ : )}
——

-1

where Gramy (---) denotes the Gram matrix of the arguments with respect to the
scalar product in U. To explicit the cost C(G,yo), we will use the inverse of this
matrix. Its invertibility is guaranteed by the following proposition which is proved in
Section 4.2.

PROPOSITION 1.7. Under condition (1.28), the matriz M defined in (1.47) is in-
vertible.

The matrix M plays a crucial role in the computation of the cost C(G,yo). Let us
give some comments. It is a sum of Gram matrices whose construction is summarized
in Figure 1 on an example with G = {\1, A2} with a1 = 3 and as = 2. Each of these
matrices is of size || which is the number of eigenvalues (counted with their algebraic
multiplicities) that belong to the group G. Thus, on actual examples (see Section 6),
the size of these matrices is usually reasonably small.

Then, we obtain the following formula for the cost of a group of geometrically
simple eigenvalues.

THEOREM 1.8. Assume that the operators A and B satisfy the assumption (H)
(see page 12). Let G = {A1,..., g} C A be such that §G < p and diam G < p and
assume that vy =1 for every A € G. Then, for any yo € X_,, we have

(o)

)

(mop))

C(GvyO) = <M71§7§> ) where §=

and M is defined in (1.47).
Moreover, if Yy is a closed subspace of X _,,

(1.48) C(G,Yo) = p (Gramx; (¢4, ... UMD

where ; = Py ¢ {)\Su])} and, for any matriz M, the notation p(M) denotes the

spectral radius of the matriz M.
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/ \ Gram matrix '}
oA N
\ / \ Gram matrix F‘fl

T Gram matrix I'}
T 0
b2 \

Gram matrix l"f,

/

Gram matrix I',

FI1GURE 1. Construction of the Gram matrices FL in the case of a group G = {\1, 2} with
multiplicities a = (3,2) and the sequence of multi-indices p = ((O, 0), (1,0),(2,0),(3,0),(3,1), (3, 2))

REMARK 1.9. Notice that we do not choose any particular eigenvector or Jordan
chain. To compute explicitly the cost C(G,yo) on actual ezamples, we will often choose

them to satisfy
URRY

||b3||U = 17 <b0 bl‘>U = 0’ NS [[Laj - 1]]7

to simplify the Gram matrices. Obviously, as the quantity C(G,yo) is independent of
this choice, we can choose any other specific Jordan chains or eigenvectors that are
more suitable to each problem.

REMARK 1.10. In the case where the eigenvalues of the considered group G are
also algebraically simple, then the expression of M given in (1.47) reduces to

g
(1.49) M=>"T" with T'=Gramy [0,...,0,b[\],....b[A,..., A
=1

-1

and the expression of € reduces to

<y0, ¢[)‘1}>—<>,<>

<y07 (b[)‘l’ : i) )‘gD—o,o

* A group G of semi-simple eigenvalues.
We now assume that all the eigenvalues in G are semi-simple i.e. for any A € G
we have ay = 1 where ) is defined in (1.27).
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For any j € [1, g], we denote by (¢;,:)ic[1,1,] & basis of Ker(A* — A;). To simplify
the writing, we set

bji=B"¢;i,  Vje[lgl, viellyl
and v :=m + -+ - ‘
For any i € [1, g], we set 0} := 1 and

j—1

(1.50) O =T (=),  Vie[2.g]
k=1

Notice that 5;- =0 as soon as j > 1.
Let

g9
(1.51) M=) _T' with T = Gramy (6{b1,1,-.,8/b1y,- -, 07bg1, ..., 67bg,) .
=1

Here again, to explicit the cost C(G,yo) we will use the inverse of this matrix. Its
invertibility is guaranteed by the following proposition which is proved in Section 4.3.

PROPOSITION 1.9. Under condition (1.28), the matriz M defined in (1.51) is in-
vertible.

Notice that the square matrix I'? is of size ¢ and can be seen as a block matrix where
the block (7, j) is

GO N S A

<5?bm7.5zjbj,1>U <5fbi,w<.51jbm>U

Thus, the block (4,7) of T is identically 0 for 4,5 € [1,1 — 1].
Then, we obtain the following formula for the cost of a group made of semi-simple
eigenvalues.

THEOREM 1.10. Assume that the operators A and B satisfy the assumption (H)
(see page 12). Let G = {A1,..., g} C A be such that §G < p and diam G < p and
assume that ay = 1 for every A € G. Then, for any yo € X_,, we have

C(G,y) = (M'¢,€)
where
<y03 ¢1,1>,<>’<>

(Y0, P1,31) o6

<y07 ¢g71>—<>,<>

<y07 ¢g,’yg>_070
and M is defined in (1.51).
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Moreover, if Yy is a closed subspace of X _,,

(1.52) C(G,Yo) = p (Gramuxs (Y11, V11, Pg1, .oy Pgq, ) M)

where ¥;; 1= Py ¢;,; and, for any matriz M, the notation p(M) denotes the spectral
radius of the matriz M.

REMARK 1.11. When the eigenvalues of the group G are geometrically and alge-
braically simple, Theorem 1.10 gives a characterization of the cost of the block C(G, yo)
which is different from the one coming from Theorem 1.8 and detailed in Remark 1.10.
A direct proof of this equivalence (stated in Proposition D.3) using algebraic manipu-
lations is given in Appendiz D.

* Dealing simultaneously with geometric and algebraic multiplicity.

Combining Theorems 1.8 and 1.10, we can deal with operators A* which have
both groups of geometrically simple eigenvalues and groups of semi-simple eigenval-
ues. However, for technical reasons, in the case where both algebraic and geometric
multiplicities need to be taken into account into a group G we do obtain a general
formula for the cost of this group C(G,yo). Nevertheless, if this situation occurs in
actual examples, computing this cost is a finite dimensional constrained optimization
problem which can be solved ‘by hand’. We present in Section 4.4 an example of such
resolution for a group G that does not satisfies the assumptions of Theorem 1.8 nor
of Theorem 1.10.

2. Resolution of block moment problems.

In this section we prove Theorem 1.2 that is we solve the block moment prob-
lem (1.39). To do so, we first consider a vectorial block moment problem (see (2.1)
below). We solve it in Section 2.1 with an estimate of the cost of this resolution.
Then, using the constraints (1.36), we prove that this implies Theorem 1.2. This is
detailed in Section 2.2.

2.1. An auxiliary vectorial block moment problem.
Let A € (0,+00), G ={A1,...,A\;} CA,n € N*and a = (ay,...,q,) € N9 with
|a|oo < m. For any

Q=(Q0,...,00 " ...,Q0 ... 0 ) e Ul

we consider the following auxiliary vectorial block moment problem
T !
(2.1a) / ’U(t)T67 itdt = Q;, Vjel[l,g], Vie[0,a; —1],
0 .
T
(2.1b) / v(t)tle ™ Mdt =0, VA€ A\G, Vi€ [0,n—1].
0

This block moment problem is said to be wvectorial since the right-hand side Q be-
longs to Ull. Tts resolution with (almost) sharp estimates is given in the following
proposition.

PROPOSITION 2.1. Let p € N*, 7,0, NN > 0, a € (0,1), d’ € [0,a) and N :
(0, +00) = R. Assume that

A€ L(p, 0,N) U L(p, 0,a, N)UL(p, 0,a,N,a’,N)
23
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797 and let (Gr)r>1 € G(A, p, 7, 0) be an associated grouping. Recall that these classes are
798 defined in (A.1), (1.23) and (1.25).

799 Let T € (0,400) and n € N*. For any G = {\1,..., g} € (Gi)i, for any
800 multi-index o € N9 with |a|eo < n and any

801 Q= (..., 00 e evll

802 there exists v € L?(0,T;U) solution of (2.1) such that

w03 o100y < EOW) K(T) F@),

804  where F is defined in (1.38) and the functions € and K satisfy the bounds given in
805  Theorem A.1.

806 Proof. Let (ej);eq1,q4) be an orthonormal basis of the finite dimensional subspace
807 of U
808 Span{Qé» ;jelgl, lef0,a;—1]}.
809 Then, we decompose Qé as
d
810 0L =>"d} e
i=1

811 From Theorem A.1, for any i € [1,d], there exists v; € L?(0, T;R) such that

T _ 1\
/ vi(t)( ) e Ntdt = a!
0

1! Lo Viell,gl, Vi€ [0,a; —1],

812
T

/ vit)tle ™ Mdt =0, VA e A\G, VI € [0,7— 1],

0
813 and 9
C ’22 < .~ (Ml)... (H)‘ .
s loillE2(o,re) < EODK(T) mas [l AL, 2]

pla

815 Setting

d
816 V= E V€4,
i=1

817 we get that v solves (2.1) and using [10, Proposition 7.15]

d
818 ”UH%Z(O,T;U) = Z ||"Uz‘||%2(o,T;R)
i=1
d 2
819 < EOWKM)S max |a2 {Aﬁ*‘l),...,Agﬂg)”
— neN? ’
i=1 u<a
lel 7 d a2
820 < CponEMK(T) Y ( as,; [Agu )H )
p=1 \i=1
£ 9
821 = CponfOEM Y [ M)
822 p=1
823  Modifying the constants appearing in £ and K (still satisfying the bounds given in
824  Theorem A.1) ends the proof of Proposition 2.1. ]
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2.2. Solving the original moment problem.

Through (1.33), when the right-hand side Q of (2.1) satisfy the constraints (1.36),
solving this vectorial block moment problem provides a solution of the original block
moment problem (1.39). More precisely we have the following proposition

PROPOSITION 2.2. Let T > 0 and z € X_,. The following two statements are
equivalent:

i. there exists Q € O(G, z) such that the function v € L*(0,T;U) solves (2.1);
i. the function v € L?(0,T;U) solves (1.39).

Proof. Assume first that there exists 1 € O(G, z) and let v € L%(0,T;U) be such
that (2.1) holds.
Then, using (1.33), for any j € [1,g] and any ¢ € Ej, we have

/T (o0 4°) /T <v(t), M ail (_Tf)l(A* - Aj>l¢> dt
0 0 =0

U

aj—l

> </T v(t)(_l—f)le—*ﬂdt, (A" — Aj)l¢>
1=0 0 :

04_7'71

>0k (A =2, -

=0

U

Since (QO ,qul) € O(\j, z), this leads to

TERRE i

T
/ <v(t),B*e*tA*¢>Udt:<Z>¢>_o,oa vj € [1,9],6 € Ex;,
0

which proves that v solves (1.39).
Assume now that v € L?(0,T;U) solves (1.39). Setting

T l
L (=)' _\¢
Ql ._/O o(t) et

we obtain that v solves (2.1). As in the previous step, the identity (1.33) implies that
0 e O(qG,z2). 0

Finally, to solve (1.39) we prove that there exists at least one 2 satisfying the
constraints (1.36).

PROPOSITION 2.3. Let A € A and z € X_,. Then, under assumption (1.28), we
have

O\ z) # @.

Proof. Let T > 0. From (1.33) the finite dimensional space E} is stable by the

semigroup e~*A". Using the approximate controllability assumption (1.28) we have
that

b€ By [Bre*Ag)

L2(0,7,0)
is a norm on E). Then, the equivalence of norms in finite dimension implies that the
following HUM-type functional

1 e
Ji¢ €y 3 HB*e_'A qb’

25
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is coercive. Let gz~5 € E) be such that

J(¢) = inf J(o)

PEEN

and v := B*e¢~*A"$. Then it comes that

T
(2.2) | (oBre o) di=zor,,. vocb.

Finally, we set ) := (QO, ceey Qak—l) with

I
Using (2.2) and following the computations of Proposition 2.2 we obtain that Q €
O\, z). a

We now have all the ingredients to prove Theorem 1.2.

Proof (of Theorem 1.2).

e From Proposition 2.3, we have O(G, z) # &. Recall that, from (1.46), the opti-
mization problem defining C(G, z) can be reduced to a finite dimensional optimization
for which the infimum is attained. Thus, let Q € O(G, z) be such that

F(Q) =C(G,2).

Let v € L?(0,T;U) be the solution of (2.1) given by Proposition 2.1 with €2 as right-
hand side. As Q € O(G, z), from Proposition 2.2 we deduce that v solves (1.39). The
upper bound (1.40) on |[v][z2(0,7;v) is given by Proposition 2.1.

e We now turn to the lower bound (1.42). Let v € L?(0,7;U) be any solution
of (1.39a). Let

Ql = / U(t) e_ktdt, Vl 6 [[O,Q)\ - ]‘ﬂ'
0

T [y T
a ;:/ o(t) z't) e_’\ftdt:/ (t)es [Ay“)} dt, Vje[l,g], ¥l eo,a; —1].
0 . 0

As in the proof of Proposition 2.2, the use of (1.33) implies that
Q=(Q),....0n " ...,00,...,09 ) € OG, 2).

Thus,

2

(23) c(G.2) < F@) =3 o [x]|

U .
=1

Notice that .
Q[AW}:/ v(t)ey [AS“Z)] at, viel[o,|al.
0

Using Lagrange theorem [10, Proposition 7.14] yields,
tl_ 1 6—)\1 t

e ] =

Together with Cauchy-Schwarz inequality this implies

400 4l—1,—Ait 3
(1) e M
HQ {)\' i|HU < (/0 (ll)!dt> ||UHL2(0,T;U)-

Then, as A\; > min A and |a| < pn, estimate (2.3) ends the proof of Theorem 1.2. 0O
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3. Application to the determination of the minimal null control time.

This section is dedicated to the consequences of Theorem 1.2 on the null control-
lability properties of system (1.1).

From Theorem 1.2, the resolution of block moment problems (1.34) associated
with null controllability of (1.1) will involve the quantity C(G,e~Tyy). To formulate
the minimal null control time we isolate the dependency with respect to the variable
T leading to quantities involving C(G,yo). The comparison between these two costs
is detailed in Section 3.1.

Then, this leads to the formulation of the minimal null control time stated in
Theorem 1.3. This is detailed in Section 3.2.

We then prove, in Section 3.3, the estimates on the cost of null controllability
stated in Proposition 1.5 and Corollary 1.6.

3.1. Relating the different costs.
The costs C(G, z) and C(G, e~ TA2) satisfy the following estimates.

LEMMA 3.1. Assume that the operators A and B satisfy the assumption (H) (see
page 12). There exists Cp o > 0 such that for any G C A with §G < p and diam G <
0, for any T >0 and any z € X_,,

(31) C(G7 e—T.AZ) S Cp,g,n(l + T)Q\a|e—2(min G)TC(G, Z)
and
(3.2) C(G,z) < Cpon(l+ T)2\a|62(max G)TC(G, eiT‘Az),

Proof. Recall that from (1.19) we have
<y07 eiT‘A* ¢>
We set G = {A1,..., A} with Ay <--- < A,

e We start with the proof of (3.1).
From (1.46), let Q € O(G, z) be such that F(Q2) = C(G, z). We define ) by

= <€7T‘Ay03 ¢>_070 ) vd) € X:

)

Q= (er® ATY], Wie Dl Ve [0,0; 1]

Let us prove that Q € O(G,eT4z). For any j € [1,¢] and any ¢ € E,,, using
Leibniz formula [10, Proposition 7.13] and ©Q € O(G, z), we obtain

l
S BIAT = 2)'0), = DD er ATV (@B AT = A
1>0 1>0 r=0
=S er NS (A B - Aj)l¢>U
r>0 >r
= er AT (R B AT - A )
>0 1>0
= > er [(ATV] (m (AT = )00
r>0 B
_ —-TA" _ /,—TA
(3.3) = <z,e ¢>—<>,<> <e z,<;$>7<>7(>
27
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This proves the claim.
Applying Leibniz formula [10, Proposition 7.13] and Lagrange theorem [10, Propo-
sition 7.14] we obtain,

l
HQ [)\EN )} HU _ ’ ;BT [/\EM —pt )} Q [/\Eﬂq)]
< Cpon(l+ T)la‘e_)\lT <i Hﬁ {)\EMQ)} H2>

1
2

Thus,
F(Q) < Cpon(1+T)He2MTR(Q) = C, (1 + T)2le=2MTC(q, 2).

As Q € O(G, e TA2), this proves (3.1).

e The proof of (3.2) uses the same ingredients.
From (1.46), let Q € O(G,e~T4%) be such that F(Q) = C(G,e"T4%). For any
j€1,g] and any [ € [0, a; — 1], let

Qé = (e_7Q) [Aglﬂ)} .

As previously, applying Leibniz formula [10, Proposition 7.13] and Lagrange theo-
rem [10, Proposition 7.14], we obtain

! 3

AN < 2lal AT H (%) H2
[opY ”(U < Cpp(1 4+ T)20le (; oA
The same computations as (3.3) give that Q € O(G, z). Thus

C(G,2) < F(Q) < Cpom(1+ T TF(Q) = Cy o (1+ T)?1 e TC(G, e T42)

and (3.2) is proved. |

3.2. The minimal null control time.
This section is dedicated to the proof of Theorem 1.3 and Corollary 1.4.

Proof (of Theorem 1.3).
e We start with the proof of null controllability in time T > Ty(yo). Let k € N* and
set G = {A1,...,A\g}. Let v, € L?*(0,T;U) be the solution of the block moment
problem (1.39) associated with z = e~Ty, given by Theorem 1.2 i.e.

T
/ (we().B7eg) dt=(cTTy,0) . Vo€ En, V€L,
0 s
T
/ vp(t)tle Mdt =0, VA€ A\Gy, VI € [0,n—1].
0

From (1.33), this implies that vy solves (1.32). Thus, the only point left is to prove
that the series (1.31) defining the control u converges in L?(0,T;U).
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From Theorem 1.2 we have that

lorllZ2 0,70y < EOA1) K(T) C(Gry e yo).

Using (3.1), up to a modification of the constants appearing in £ and K (still depending
on the same parameters), we obtain

(3-4) lorllZ20,rr) < (L+T)2EMN) K(T) e 20T C(G, o).

Using the definition of Ty(yo) given in (1.43) and the bound on £ given in Theorem A.1,
it comes that the series
Z vp(T — o)

keN*

converges in L2(0,T;U) when T > Ty(yo) which proves null controllability of (1.1)
from yo in any time T > To(yp)-

e We now end the proof of Theorem 1.3 by proving that null controllability does not
hold in time T < Ty(yo). The proof mainly relies on the optimality of the resolution
of the block moment problems given in Theorem 1.2 (see (1.42)).

Let T > 0. Assume that problem (1.1) is null controllable from yy in time T.
Thus there exists u € L?(0,T;U) such that y(T') = 0 and

llull 20,7507 < Cr llyoll _s -

Let v := —u(T — ). Then, for any k& € N*, v satisfies (1.39a) with z = e~ T4y.
From (1.42), this implies

2 _
(3.5) CF llyolZe > lulZ2o.rwy = 101122(0,77) = Cponamin AC(Giky €™ o).

2(max Gi)T < 629T82(min Gp)T we obtain

Applying (3.2) and using that e
C(Gh,90) < Crpo e ™™ HTC(Gr e yp).

Together with (3.5) this implies

(3.6) C(Gk,y0) < Crp,om,min A ||y0||2_<> AminGR)T

Getting back to the definition of Tp(yo) given in (1.43), this implies that T > Ty (yo)
and ends the proof of Theorem 1.3. ]

We end this subsection with the proof of Corollary 1.4.

Proof (of Corollary 1.4). By definition, we have To(Yy) = sup,,cy, To(yo). Using
the definition of C(G, Yy) and Theorem 1.3, it directly comes that

. IHC(Gk,Yo)
To(Yo) <1 _
o(Yo) < msup = G

We now focus on the converse inequality. Let

T < limsup w
kotoo 2min Gy

and let us prove that T' < Tp(Yp).
29
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There exists € > 0 and an increasing sequence of integers (ng)gen+ such that for
any k € N*, there exists yo r € Yo with |lyo x| _, = 1 satisfying

lIl C(Gnk ) yO,k)

2minG,,

(3.7 T+e<

By contradiction, assume that for any yo € Yy, we have T > Ty(yo). Thus,
from (3.6), there exists Crp o5 mina > 0 such that for any k € N*

InC(Gy,,Yo.k) < In C7p,o,n,min A

T.
2minG,, ~ 2minG,, *

Taking k sufficiently large, this is in contradiction with (3.7). d

3.3. On the cost of controllability.

A careful inspection of the proof of null controllability in time T > Ty(yo) detailed
in Section 3.2 allows to give a bound on the cost of controllability. Indeed, the proof
of Proposition 1.5 follows directly from (1.31) and (3.4) and will not be more detailed.

Its consequences stated in Corollary 1.6 are proved below.

Proof (of Corollary 1.6). Let yo € X_o and T > Ty(yo). From Proposition 1.5 it
comes that there exists u € L2(0,T;U) such that y(T) = 0 and

[ullF2 0.0y < K(T) Y (1 + 1)kl (min Gy )e 2 EITC(Gy., o),
k>1

The seeked estimate is only interesting when T — Tp(yo)™ thus, as |ag, | < np, the
term (1 + T)2‘O‘Gk| is bounded. To simplify the writing we set A, 1 := min Gj. Due
to the assumption on A, it comes from Theorem A.1 that

EN) < Cexp(CAY), VAe€A,

and

Ti—a

/C(T)SC’eXp( C;), vT > 0,

where the constant C' depends only on p, 7, o, 1, a, N, o’ and N. Thus, using the
assumption (1.44), we obtain
(3.8)

C
Jull o) < Coxp (-

a
—a

> IIyOHQ_O Z e M (T*TO(yo)) eCNe 1=k (T*Tg(yo)) .
k>1

The maximum of the function z — Ca® — (T — Ty(yo)) is given by

(cayla(i-1)(jjjbzm»1aa.

Thus, up to a modification of C' (still depending on the same parameters),

(3.9) 5W”M“WW<W«CQ>7W>L
(T — To(yo)) =
30
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From [16, Propositions A.6.20 and A.6.21], it comes that

Co,n
(3.10) Ze”hl(T*Tﬂ(y@) <
= T — To(yo)
Plugging (3.10) and (3.9) into (3.8) ends the proof of Corollary 1.6. |

4. Computation of the cost of a block.

In this section we prove more explicit formulas to estimate the cost C(G,yo)
of the resolution of a block moment problem depending on the assumptions on the
eigenvalues in the group G. More precisely, we prove here Theorems 1.8 and 1.10.
For pedagogical purpose, we start in Section 4.1 with Theorem 1.8 for algebraically
(and geometrically) simple eigenvalues i.e. when ay = v, = 1 for any A € G. Then,
in Section 4.2, we prove the general statement of Theorem 1.8 that is when all the
eigenvalues in the group are geometrically simple i.e. vy = 1 for any A € G.

The formula for the cost C(G,yo) when all the eigenvalues in the group G are
semi-simple (i.e. ay = 1 for any A € G) stated in Theorem 1.10 is then proved in
Section 4.3. The extension to spaces of initial conditions (1.48) and (1.52) does not
depend on the matrix M and follows directly from Lemma B.1. Thus, their proofs
are not detailed here.

When both algebraic and geometric multiplicities appear in the same group we
do not get a general formula but describe the procedure on an example in Section 4.4.

Recall that from (1.46), computing C(G,yo) is a finite dimensional optimization
problem given by

C(G,yo) = min {F(Q) ; Qe O, y)N UIGa\}

where the function F is defined in (1.38), the constraints associated with O(G, yo) are
defined in (1.36) and Ug is defined in (1.45).

4.1. The case of simple eigenvalues.

In all this section, we consider the simpler case where o) = vy = 1 for every
A € G. Thus, in the rest of this section, we drop the superscript 0 associated to
eigenvectors.

We start with the proof of the invertibility of the matrix M stated in Proposi-
tion 1.7.

Proof. Recall that, as ay = v, = 1, the positive semi-definite matrix M is defined
in (1.49). Let 7 € RY be such that (M7, 7) = 0. Then, for each I € [1, g], we have

<Fl7', T> =0.
We prove that 7 = 0. By contradiction let
l=max{j € [1,9]; 7; #0}.

Then from (1.49) this leads to (I'7,7) = ||b[/\l]||?]7l2. Using (1.28) implies 7; = 0.
This is in contradiction with the definition of [ which proves the invertibility of M .0

We now prove Theorem 1.8.
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Proof. First of all, notice that the function F' to minimize reduces to

@

F(Q) = 190, A0

j=1
and, as yx» = ax = 1, the constraints defining the set O(\;, o) reduce to

(Q5,05)y = Y0, 95) o6

Thus, the minimization problem reduces to
(4.1) C(G.yo) = min {F(Q) Q= (Q,....,Q,) € U such that

<Qj7bj>U = <y07¢j>—o,<>7 Vj e [[Lg]]}'

For the sake of generality, let us consider for this proof any wi,...,wy € R and the
more general constraints

(4.2) (Q,bj)y =wj,  Vi€[lg]

Using the formalism of divided differences, this is equivalent to the family of con-
straints

(4.3) (Q0)y Ay N =wh, 0N Ve gl

Denote by (1) eq1,4] the Lagrange multipliers associated with the minimization
problem

min {F(Q); @ = (Q,...,Qy) € UL such that (4.3) holds}.

Then, we obtain that the minimum satisfies

g g
(44) S AL DAy = S s (g P A
j=1 j=1
for any H,,...,Hy € Ug.

Then, for a given ¢ € [1,¢], using Leibniz formula [10, Proposition 7.7], the
constraints (4.3) can be rewritten as

(4.5) WAL, A = (0)y A A =D Q0 AL B, Ay

j=1

To relate (4.5) and (4.4), we set Hy,...,H,y € Ug such that

b, ...y A, for j < ¢,
HlA1,... A = A o ,
0, for j > q.

This can be done defining Hy = b[Aq, ..., A;] and, from the interpolation formula [10
Proposition 7.6], defining H; by the formula

Hy=Y" (H(Ai — m) H\, .. N, Vie[2,9]

=1
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1100
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Then, from (4.5) we obtain

Now relation (4.4) leads to

g
WAL A =D my (HL by [Ms . A
j=1

The application of Leibniz formula [10, Proposition 7.7] yields

g J
WA, A =D my (Z ST ]b[/\l,...,/\j])U>
Jj=1 =1
g min(j,q)
=> my RS TED  Ip VISR V1 B
j=1 =1
g g
=D myTy; = (Mm),

-~
Il

19=1

where T'! and M are defined in (1.49).

Let
wlA1]

Q%Al,...,Ag]

As m = M, getting back to (4.4) with H = Q together with the constraints (4.3),
we obtain

(M71€);65 = (MT1,€).

1

Q) :ij (Q,0)y sy ] =

With the specific choice, w; = (yo, #;) _, ., this ends the proof of Theorem 1.8 with
the extra assumption that ay =1 for all A € G. O

g9

J

REMARK 4.1. As mentioned in Remark 1.9, estimate (4.1) implies that the cost
of the block G (i.e. the quantity <M71§,§>) can be estimated using any eigenvectors:
there is no normalization condition.

REMARK 4.2. Rewriting the constraints in the form (4.3) is not mandatory but,
as the function to minimize involves divided differences, it leads to more exploitable
formulas and will ease the writing when dealing with algebraic multiplicity of eigen-
values. Dealing directly with (4.2) would lead to the expression (D.9) for the cost of
the block G as it will appear in the proof of Theorem 1.10.

4.2. The case of geometrically simple eigenvalues.

The proof of Proposition 1.7 and Theorem 1.8 under the sole assumption vy = 1
for any A € G follows closely the proof done in Section 4.1. The main difference is
the use of generalized divided differences (see [10, Section 7.3]) instead of classical
divided differences as detailed below.
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Proof (of Proposition 1.7). Due to (1.37), for any [ € [1,|«|] the multi-index
put — p!=1 is composed of only one 1 and g — 1 zeros. Thus,

b A =

for a certain j € [[1,¢]. From (1.28) it comes that
b [AE“’*“H)} £0,  Vie[Llal].

The rest of the proof follows as in Section 4.1. ]

Proof (of Theorem 1.8). As 5 = 1, the constraints defining the set O(\;,yo)
reduce to

l
(.65 )y = D (2 B A" = 4)"65),,

r=0
= (Y0, 85)_, .. V€005 —1].

Using Leibniz formula [10, Proposition 7.13] this is equivalent to

MN

%
Il
=

(@00 (M) = (o, 0h)_, . VL€ 0,05~ 1],
Thus,
(4.6) C(G,yo) = min {F(Q) Q= (00,007 00 ) e Ul

vj € [l,g], Vi € [0,0; — 1]}
For the sake of generality, let us consider for this proof any

0 a;—1 0 ags—1 «
(wl,...,wl T N S )E]RH

such that (%,b),, [Ag“ ”] = (y0,8")

—0,0"

and the more general constraints
(@00 [NV] = wh, Vi€ Tgl, Vi€ [0,a; - 1],
From (1.37), this is equivalent to the family of constraints

(), [AE“”’} —w [AE‘”)} . WpelLlall,

and we proceed as in Section 4.1. The only difference is the use of generalized divided
differences. For instance, the equation (4.4) defining the Lagrange multipliers now
reads

|| ||

STONELHAE) = S m(H 0], vH = () e U
=1 =1

and the Leibniz formula [10, Proposition 7.7] is replaced by its generalization [10,
Proposition 7.13]. The rest of the proof remains unchanged. 0

REMARK 4.3. As mentioned in Remark 1.9, estimate (4.6) implies that the cost
of the block G (i.e. the quantity <M‘1§,£>) can be estimated using any eigenvectors
and any associated Jordan chains.
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~

2

o
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1167
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4.3. The case of semi-simple eigenvalues.
We start with the proof of Proposition 1.9.

Proof (of Proposition 1.9). Recall that the positive semi-definite matrix M is de-
fined in (1.51). Let 7 € RY¢ be such that (M7,7) = 0. Then, for any | € [1,¢],
<Fl7', T> = (0. We prove that 7 = 0. By contradiction let

[ =max{j € [1,7¢]; 75 # 0}
and [ € [1, g] be such that
M-+ <I<m+ 4+
with the convention that [ = 1 when | < ;. We denote by o € R™ the I*® block of 7

i.e.
Tyi+-+y—1+1

Tyite4m

From (1.50) we have §} = 0 when i < [. Thus all the blocks (i, j) of T are equal to 0
when 7,5 € [1,1 — 1]. This leads to

<Fl7'7 7'> = <(5ll)2 Gramy (b 1,...,b14,) 0, o’> )

As the eigenvalues A1,..., )\, are distinct it comes that §! # 0 (see (1.50)) which
implies
<GramU (bl,h ey blyfyl) g, 0> =0.
From (1.28), we have that b;1,...,b;,, are linearly independent. This proves the
invertibility of Gramg (b1, ..,b14,) and gives ¢ = 0. This is in contradiction with
the definition of [ which proves the invertibility of M. 0
We now turn to the proof of Theorem 1.10

Proof (of Theorem 1.10). First of all, notice that the function F' to minimize

reduces to
g

F(Q) =1, Al

J=1

and, as a) = 1, the constraints defining the set O(\;,yo) reduce to
<Qj’6*¢>U = <y07 ¢>_070 s V¢ € Ker(A* — )\J)
To simplify the writing, let us consider the maps

(B*¢j1,9)y,

B =

§ € L(U,RY).

<B*¢J’ﬁj">U

Then the constraints defining O(\;,yo) can be rewritten as the equality
<y07 ¢j,1>7<>7<>

(4.7) B;Q; = :

<y07 ¢j7’7j >7<>,<>
35

This manuscript is for review purposes only.



1182
1183
1184
1185
1186
1187

1188

1189

1190

1191

1192

1193

1194

1195
1196

1197

1198

1199

Thus,

(4.8) C(G,yo) = min {F(Q) Q= (Q,....Q,) € UY
such that (4.7) holds for any j € [[1,g]]}.
For the sake of generality, let us consider for this proof any
(W11s - Whyys ey Wg,ds oo v s Wy, ) € RTE

and the more general constraints
B =wj,  Vje[lgl,

Wi 1
where w; denotes e RY.
Wiy,

As the w;’s have different sizes we avoid in this proof the use of divided differences
to rewrite the constraints. This is why we end up with the formula (1.51) rather than
an adaptation of (1.49) (see also the discussion in Remark 4.2).

Denoting by m; € R the Lagrange multipliers we obtain that the minimum
satisfies

g
Q-G NLHD Ny = (g, BiH), VHy,. . Hy € U

1 j=1

(4.9)

g9
j=

Recall that in (1.50) we defined

s= TI (-N).  Viel2gl

lef1,—1]

Then, from the interpolation formula [10, Proposition 7.6], we obtain that
(4.10) Q= 50, A
1=1

For any H € Ug and i € [1, ], let us design Hl(i), .. .,H_c(,i) € Ug such that
(4.11) HOMN\, ..., N =6iH, Viel[l,id].

We set H fi) = H and, using the interpolation formula [10, Proposition 7.6], we define
recursively

‘ i i )
H](z) _ Z(;ZJH(U A, N] = <Z 5;5;) H = 9§_1)H
=1 =1
with
. 9 min(4,5) '
(4.12) 0 = %ol = 3 oo,
=1 =1
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This ensures (4.11). Taking into account (4.10), plugging HJ@ in (4.9) leads to
g .

(4.13) Qi =>0"Brm;.
=1

Together with (4.7), using (4.12), we obtain that

W; = Gj(l)B B*mJ

M‘°

<.
Il
-

i B) (78,) m

Jj=1

[
M

m);

Ez

where M is defined in (1.51) and (Mm); € R denotes the i*® block of Mm € R,
Finally, if we set
w1

=11 | eRe.
Wg

we have proved that the Lagrange multipliers are given by m = M ~1¢. Applying (4.9)
with H; = Q; and using the constraints (4.7) leads to

g
=> 191, A
j=1

which proves the claim. ]
REMARK 4.4. From (4.13) and m = M ~'¢ it comes that

1§ ]7§J> < _1£7§>7

u Mm

C(G,yo) = min { F(2): @ = (1,...,0y) € U
such that (4.7) holds for any j € [[l,g]]}

is attained for

-3 () more.
=1

=1

REMARK 4.5. As mentioned in Remark 1.9, estimate (4.8) implies that the cost
of the block G (i.e. the quantity <M’1§,§>) can be estimated using any basis of
etgenvectors.

4.4. Dealing simultaneously with algebraic and geometric multiplici-
ties.

The proof of Theorem 1.8 strongly relies on the use of divided differences to rewrite
the constraints whereas the proof of Theorem 1.10 is based on the vectorial writing
of the constraints through the operators B; € L£(U;R). As the target spaces of
these operators do not have the same dimension, one cannot directly compute divided
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differences. Thus, the setting we developed to compute the cost of a given block does
not lead to a general formula when both kind of multiplicities need to be taken into
account in the same group. However, for actual problems, the computation of this
cost is a finite dimensional constrained optimization problem which can be explicitly
solved.

Let us give an example of such a group that does not fit into Theorem 1.8 nor
into Theorem 1.10 but for which we manage to compute the cost ‘by hand’.

We consider a group G = {1, A2} such that vy, = ay, = 2 and vy, = ay, = 1.
Let (¢9 1,99 5) be a basis of Ker(A* — 1) and ¢ | be an eigenvector of A* associated
to the eigenvalue Xy. Assume that the generalized eigenvector ¢f ; is such that

("4* - )‘1) Qﬁ,l = (25?,13

and that (¢9 1,91 ,,97 ) forms a basis of Ker(A* — Ap)2.
For this group, in the same spirit as in Theorems 1.8 and 1.10, we obtain the
following result.

PROPOSITION 4.1. For any yo € X_o, we have

<Z/07 (1)1>_Q7Q

C(G,yp) = <M_1§ £> where £ = <y07 (1)’2>_°’°
7 ’ <?J07¢%,1>_<>7<>
<?J07 <25(2),1>_<>7<>

and M is the invertible matriz defined by
M :GramU (b?,].’ b?727 bil, bg,l)
+ Gramy (0, 0, b(f’l, 5bg’1)
+ Gramy (0, 0, 0, §°b9 ;)
with § = /\2 — )\1.
Proof. Let

0 0 1 0 \? 4
(wl,lvwl,Qawl,l’le) € R"

As in the proofs of Theorems 1.8 and 1.10, the goal is to compute the minimum of
the function

F o+ (0,91,9) € UG = 9917 + 19117 + 101, A, A1,

under the 4 constraints

VAR 7t

<Q(1]7 bi,1>U + <Q%7 b(1),1>U = w%,l'

(QF,05:), =wiir  Vie [1,y], Vi e [1,2],

Then, the Lagrange multipliers m(l)vl, m(l),Q, mil and mg,l satisfy the equations

(4.14) (9, HY), + (0, H )y + (A1, Ar, Aol H[A A, Aoy = mS  (HYL B 1)
mf g (D085, + mi o (CHELBEL )y + (LWL ) )+l (S84,
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for every HY, H}, HY € Ug. Considering successively
}J? ::bgla 1{%32207 ]fg ::b?Ja
0_ 30 1 0 _ 10
Hl = b1,2a H1 =0, H2 = b1,2a

HY =by, Hi=bly, Hy=biy+ (=),

and
HY =05, Hi=M=A)by;, Hy=(1+—M)>+N2—M)*) 05,

W(l),l m(l),l
w? mY

and plugging it into (4.14), we obtain that w%’Q =M m%’Q which ends the

11 1,1

Wa 1 mg,l

proof. 0

5. Application to the study of null controllability of academic exam-
ples.

In this section we provide examples to illustrate how to use the formulas obtained
in Theorems 1.3, 1.8 and 1.10 in order to compute the minimal null control time.

We start with academic examples for which computations are simpler. Then, in
Section 6, we study coupled systems of actual partial differential equations of parabolic
type.

5.1. Setting and notations.
Let A be the unbounded Sturm-Liouville operator defined in L?(0, 1;R) by

(5.1) D(A) = H*(0,1;R) N H(0,1;R), Ao = —0,(y0, ®) + co,
with ¢ € L*°(0,1; R) satisfying ¢ > 0 and v € C1([0, 1]; R) satisfying [10nlf] v > 0.
The operator A admits an increasing sequence of eigenvalues denoted by (vi)ren--

The associated normalized eigenvectors (¢ )ken+ form an Hilbert basis of L?(0,1;R).

REMARK 5.1. The assumption ¢ > 0 ensures that for any k > 1, the eigenvalues
satisfies v, > 0. From Remark 1.3, the controllability results proved in the present
article still hold when the function c is bounded from below.

To lighten the notations, for any I C (0,1) we set || o [|; = || @ ||z2(7).
Let f : Sp(A) — R be a bounded function. Associated to this function we consider
the operator f(A) defined on D(A) by the spectral theorem by

(5.2) f(A) = Z f(i) (e, Sﬁk>L2(0,1;R) Pk-

k>1
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5.2. Spectral properties of Sturm-Liouville operators.

Let A be the Sturm-Liouville operator defined in (5.1). All the examples studied
in this article are based on this operator. We recall here some spectral properties that
will be used in our study.

From [2, Theorem 1.1}, there exists ¢ > 0 such that

(5.3) 0 < Vi1 — Vg, Yk > 1,
/
(5.4) inf Iw\/(g)I >0, Ve {01},

and, for any non-empty open set w C (0, 1),

(5.5) inf k[l > 0.

Moreover, using [16, Theorem IV.1.3], we have
(5.6) N(,,k)k(’l“) < Cyr, VYr>0.

To estimate various quantities, we will make an intensive use of the following
lemma proved in [2, Lemma 2.3].

LEMMA 5.1. Let A be the Sturm-Liouville operator defined in (5.1) and let Ao > 0.
There exists C > 0 depending on vy, ¢ and Ao such that, for any A > Ao, for any
F € L*(0,1;R), for any x,y € [0,1], for any u satisfying

(A=XNu=F onlz,yl,

we have

u@)? + W@ < o <u<y>|2 + W42

/: |F(s)|ds 2) .

Applying Lemma 5.1 with u = ¢y, F' = 0, A = v}, and integrating with respect to
the variable y € (0,1) we obtain

1 1 [t
ok (z)|* + yjlwﬁc(fﬂ)\z <C (1 + 7;@/0 v(y)lwﬁc(y)Qdy> . Vze(0,1), Vk > 1.

Integrating by parts leads to

1 1
| wleiiar = [ o= cto)eiay < v+ el
which yields the existence of C' > 0 such that

1
(5.7) lon ()] + V—klw;(mﬁ <C, Vzxe(0,1),Vk>1.
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5.3. Perturbation of a 2x2 Jordan block.

Let w C (0,1) be a non-empty open set and U = L?(2). Let A be the Sturm-
Liouville operator defined in (5.1) and f(A) be the operator defined in (5.2) with
f:Sp(A) — R satisfying

fo)l <3 V=1L

We consider the operator A on X = L2(0,1;R)? defined by

(5.8) A= (g‘ ) +€[(A)) . D(A) = D(A) x D(A),
and

(5.9) B uEU»—)(ISu>

Then,

It is easy to see that (—.A, D(A)) generates a Cp-semigroup on X and that B: U — X
is bounded. Thus we consider for this example that X = X = X_.

PROPOSITION 5.2. Let us consider the control system (1.1) with A and B given
by (5.8)-(5.9). Then, null-controllability from X_o holds in any time i.e. To(X_o) =
0.

Proof. The spectrum of (A*, D(A)) is given by
A={vr; k> 1 U{vp + f(ve); k> 1}

From (5.3) and (5.6) it comes that there exists N > 0 such that A € £(2,£, 1, N).
An associated grouping is given by

Gr ={e1 =i, Moo =vi+ f(vi)}, if f(ve) # 0,
Gk = {)\k,l = I/]g}7 lf f(l/k) = O

If f(vk) # 0 the eigenvalues A, 1 and Mg o are simple and we consider the associated

eigenfunctions
—f(y 0
ﬁJ_< quwh 22_<J¢k

If f(vi) = 0 the eigenvalue Ay 1 is algebraically double and we consider the associated

Jordan chain
0 1
¢2,1 = (1> Pk ¢1£71 = (0) Phk-

From (5.5) it comes that (1.28) and (1.29) are satisfied. Thus, from Theorem 1.3, we
obtain that for any yo € X_,

. InC(Gr, yo)
T = limsup —————.
olyo) =R 0> = i G

Let us now conclude by estimating C(Gx, yo)-
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1354 o Consider first that f(vy) # 0. Then, @[ g1, A\k2] = <(1)> pr and
lopr — 1wk

1355 b[Ak1, Aol = B O[Ai1, Mg o] = ————— T2 = 0.

5 [Ak,1, Ak,2] O Ak,15 k2] o)
1356 From Theorem 1.8 it comes that
1357 C(Gr,yo) = (M71E,6)
1358 with
1359 M = Gram(b[A1], b[M 1, Aea]) + G _ (llexlls O
35 = k1], O[ Ak, 1, Ak2 ram(0, b[Ax 2]) = 2
1360 0 ek lls
1361 and

1362 €= (< (Wo, o[ Akal) o o ) _ <y0, <_f§l/k)> %>—oo

Yo, (ZSP\k,la >‘k,2]>7<>,<>

1363 Thus,
2 2

, —fve)\ ¥k 1\ ¢&
1364 C(Gk,yo) = <y0, ( + { Yo, .

1 ||S0k||w —0,0 0 HSOkHUJ —0,0
1365 e Consider now that f(vx) = 0. Then, b[Ag 1, Ag,1] = 0. From Theorem 1.8 it
1366 comes that
1367 C(Gr,yo) = (M71E,6)
1368 with
_ _(llexl2 0
1369 M, = Gram(b[Ak,l], b[)\k,ly Ak,l}) + Gram(O, b[)\k,l]) = 2 |-
1370 0 o lZ
1371 and

- 5:(< (o, Bkl >: <y @ *”’“>_M

Yo, (,25[)\]@1, >‘k71}>—o,o |

(o)),

s

1373 As previously,

0 Pk 2 1 Pk 2
1374 C(Gg, = , + , .
(G- 30) <y (1) |sok||w>o,o <y (0) ||sok||w>o,o

1375  Gathering both cases and using estimate (5.5) we obtain, for any yo € X_o,

1376 C(Gr,m0) <Clwol>,,  VE>1.
1377 Thus,
. InC(Gy, yo)
T = limsup ————= = 0.
1378 0(v0) k%Jrof 2min Gy, 0
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5.4. Competition between different perturbations.
Let wy,ws C (0,1) be two open sets with wy # @ and U = L?(2)2. Let By, By €
R3. To simplify the computations, we assume that

Let o, 8 > 0 with aw # 8 and f, g : Sp(A) — R be defined by

J0) = Semor, gln) = Sem,

As previously, we consider the associated operators f(A) and g(A) defined by the
spectral theorem and we define the evolution operator A on X = L2(0,1;R)? by

A I 0
(5.10) A=10 A+ f(4) 0 , D(A) = D(A)3‘7
0 0 A+g(A)
and the control operator by
(511) B : (Zl) cUw— 1W1’U,1B1 + leung.
2

Then, the observation operator reads

©1
x 1y, (B12w2 + Bi13ps)
B € X vy (Lun (B0, 3¢3))
gz (1w2 (B2,2¢2 + Ba303)

PROPOSITION 5.3. Let us consider the control system (1.1) with A and B given
by (5.10)-(5.11).
i. If wg = &, we assume that

(5.12) By 2By 3 #0.

Then,
Ty(X_o) = B+ min{a, B}.

it. If wo # &, we assume that
(5.13) (Bfa+ B3,) (Bt s+ Bis) #0.
(a) If By and Bs are linearly independent, then,
To(X-o) = 0.
(b) If By and By are not linearly independent, then,

Ty(X-) = B+ min{a, 3}.
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Proof. Tt is easy to see that (—A, D(A)) generates a Cy-semigroup on X and that
B :U — X is bounded. Thus we consider for this example that X; = X = X_, and
Yo =X_s.

The spectrum of (A*, D(.A)) is given by A = J,~,; Gr where

G ={ e =i, Moo =vi+ f(Vk), Aoz i =vi+g(vi)}.

and (Gk)k>1 is an associated grouping.
The eigenvalues are simple and the corresponding eigenvectors are given by

. —f(vk) . 0 . 0
Pr1 = 1 Pk Pep= | 1| rs br3=10] ¥k
0 0 1

Thus, the assumption (1.29) hold. Moreover,

1, SpkBl 2 1, (pkBl 3
514 b = b = 1 ’ , b — 1 5
( ) ! 2 (lwzkaQ,Q) 3 (].UJQ ngBQB

From (5.5) and (5.12) or (5.13) (depending on the assumption on ws) it comes
that (1.28) is satisfied. Thus, from Theorem 1.3, it comes that for any yo € X _,

) InC(G, yo)
T =1 _—
0(%0) e o min Gy,

Let us now estimate C(Gy, yo). From Theorem 1.8 it comes that
C(Gr yo) = (M71E,6)
with
M =Gram (b[Ar1], b[Ak,1, Ae2), Ak, 1, Ak2, Ak,3))
+ Gram (0, b[Ag,2], b[Ag,2, Ak,3]) + Gram(0,0,b[Ay3])

and
(Yo, o[ Aeal) o0

£ = (Yo, o[ Me,1, Ak2]) oo
(405 B[Nk, 1, A2, Aesl)

Explicit computations yield

—f(ve) 1
A Akn] = 1 Ok, Ak k2l = | 0| ¢x,
0 0
and
N 1 fwi) = g(v)
= -1 .
A[Ak,15 Ak,25 Ak,3] 90) (9 om) — 1) : Ok

i. Assume that wy = @.
After the change of variables

ai 1 1 1

z=diag | =—, 5—, 5—

8\ Br2 B2 Bis) Y
44
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1434 the system under study reads

A 1 0 0
N Gt [0 Avp) 0 |r=tamte) (1],
1439 0 0 A+g(A) 1
z(t,0) = z(t,1) = 0.
1436 This leads to
1437 b[)\k,l] = b[Ak72] = b[)\hg} = ]_W1 Pk -
1438 Thus, M = ||¢x||2, I3 and
1439
2 2
—f(vk) on 1\,
1440 C(Gk,v0) = { Yo, 1 +{yo, |0
0 0kl 0 ek llw,
—0,0 —0,0
2
1441 + ! 2 fon) _19(Vk) L
4 Yo, - T
9(vi) (9(vr) — f(vk)) 1 okl w,
1442 —0,0
1443 From (5.5), we obtain for any yo € X_,,
) 2
1444 C(Gryy0) < Cllyoll®y | 1+
¢ 9(we) (9(vk) = ()
1445 This leads to
1 _
1446 To(X_o) < limsup - }g(l/k)(g(uk) f(yk)” )
k——+o0 Vi
1447 Conversely, with the particular choice
> Lo
1448 =3 — (0] e
k>1k \1
1449 we have )
1 1
1450 C(Gk,y0) = .
V%H%H& Q(Vk)(g(Vk) - f(l/k))
1451 Thus, from (5.5), we obtain
| _
1452 To(X_o) > To(yo) = limsup - |g(yk)(g(yk) f(yk)”
k—+o00 Vi
1453 which gives
1 _
1454 To(X_o) = limsup - }g(l/k)(g(uk) f(yk)” .
k—4o00 Vi
1455 Then, the same computations as [10, Section 5.1.3] yield
1456 To(X_s) = B+ min{a, B}.
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1457 ii. We now consider the case wo # @.
1458 (a) Assume that By and By are linearly independent. If necessary, we con-
1459 sider smaller control sets so that w; Nwe = &. As we will prove that
1460 To(X_,) = 0, this is not a restrictive assumption.
1461 To ease the reading we drop the index k in what follows. As pre-
1462 viously, the vector £ is not bounded. Let us consider the dilatation
1463 D, = diag(1,1,¢) with
1464 e=g()(9(v) - f(v))
1465 and E: D.£. Then, from Section D.1, it comes that
1466 C(G,yo) = <A7*15,5>
1467 with
1468 M =Gram (b[\1], b[A1, Ao, €b[A1, Mg, As])
1469 + Gram (0, b[A2], €b[A2, A3]) + Gram(0, 0, eb[A3]).
1471 As Ha is bounded, we simply give a lower bound on the smallest eigen-
1472 value of M. Using (5.14), it comes that
by — by 1

1473 b[A1, No] = b[A2, A5 = ————,  b[A1, Ao, A3] = — (b3 — b1).

/ [ 15 2] O’ [ 25 3] g(y)_f(y)? [ 1, N2, 3} E( 3 1)
1474 Thus,
1475 M =Gram (b;,0,b3 — by ) + Gram(0, by, g(v)(bs — b1))
1476 + Gram(O, 0, ebg).
1478 This gives that, for any 7 € R?, we have
1479
1480 (5.15) <J\77,T> = ||mib1 + T3(bs — bi)||5 + [[m2br + g(v)73(bs — b1)||7,
. 2
1483 + € || mbally; -
1483 To obtain a lower bound on this quantity we use the following lemma.
1484 LEMMA 5.4. There exists C > 0 (independent of k) such that for any
1485 01, 05 € R,
1486 10101 + O3bs][7, > C (63 + 63) .
1487 Proof. As wy Nwe = @,
1488 10161 + 03317, = (B1,261 + Bi303)° [low 12,
1489 + (B + B2.365)" [lonll2,.
1491 Using (5.5) it comes that
1492 ||01b1 + 93[)3”%] Z C ((31,291 + B1’393)2 + (327201 + 32’393)2>

2
03 _||(Br2 Big) (01
1494 Bss Bas) \0s
1495 Since By and Bs are linearly independent, this ends the proof. 0
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1496
1497

1488

Applying this lemma twice to (5.15) yield

<MT,T> >C ((71 — 73)2 + T§ + (12 — g(l/)Tg)2 + g(z/)2732 + €2T§)
>C((n—73)° 475 + (12— g(v)73)?) .

Taking into account that 0 < g(v) < 3 for v large enough, the study of
this quadratic form in R? leads to

<MT,T> 20(712—1—7'22—&-7'3?).

Thus the smallest eigenvalue of M is bounded from below. This leads to
the boundedness of <M ’15, E> which concludes the proof of case ii (a).

Assume now that B; and By are not linearly independent. Then, there
exist 1, x9 € R such that

z1B12+x2B13=0
21822 + w283 3 = 0.

Up to a change of normalization of the eigenvectors (independent of k)
we obtain
1,,prT1B12
by =by=bg= [ " ’
e (1wQsﬁkxle,2

and this amounts to case i. 0

6. Analysis of controllability for systems of partial differential equa-

tions.

We now turn to the analysis of null controllability of actual partial differential
equations. We consider cascade systems of two parabolic equations. First, we consider
systems with different diffusion operators and constant zero order coupling term.
Then, we consider the same diffusion operator with a space varying zero order coupling

term.

6.1. Coupled heat equations with different diffusion coefficients.
In this example, we consider the Sturm Liouville operator A defined in (5.1) and
we define in X = L?(0,1;R)? the operator

with d > 0.

A:(é d{4>7 D(A) = D(AY?,

We study the following boundary control system

(6.1)

Oy + Ay =0, te (0,7),
y(t7 0) = BOUO(t)7 y(tv 1) = BlUl (t)7 te (OvT)u

This manuscript is for review purposes only.



1528
1529

The control operator B is defined in a weak sense as in [37]. The expression of its
adjoint is given by

o (1) exi o 2 (510)) (VOO

Thus, setting X7 = HJ(0,1;R)?, we obtain that B is admissible with respect to
X _o=H0,1;R)%

PROPOSITION 6.1. For any d > 0, the minimal null control time of system (6.1)
is given by To(X_,) = 0.

REMARK 6.1. The situation with a single control is quite different. Indeed, con-

sidering By = ((1)> and By = 0, it is proved in [5] that, when A is the Dirichlet

Laplace operator, approzimate controllability holds if and only Vd & Q and in this

case that A
— Indist (A, A
To(X_o) = limsup naw ( M })
A— 00 A
AEA

With this formula the authors prove that, for any T € [0,400|, there exists a diffusion
ratio d > 0 such that the minimal null control time of system (6.1) satisfies To(X_o) =
T.

REMARK 6.2. The particular choice of By and By is done to simplify the com-
putations. Notice that with this choice, it is not possible to steer to zero the second
equation and then control the first equation. This would be the case with the simpler

choice
0 1
Bo = <1> and Bl = (0> .

Proof. The case d = 1 is very similar to the analysis conducted in Section 5.3
(with f =0) and is not detailed here. We now assume that d # 1. Let

Ay :=Sp(4) ={w; k> 1}

and Ay := dA;. The spectrum of A* is given by A = A; U Ay which belongs to
L (27 0, %,N) for some o, N > 0. For any A € A, there are three cases:
e A\ =y € Aj\ Ay is a simple eigenvalue. An eigenvector is given by

1
dr = ( 1 )9%.
v (1—d)

e A\ =dy; € Ay\A; is a simple eigenvalue. An eigenvector is given by

O\ = (2) k-

e A\ =y, = dyy € Ay N Ay is a geometrically double eigenvalue. A basis of
eigenvectors is given by

1 0
dr1 = ( 1 ) Ok, Or2 = <1> o
v (1—d)
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1564

1565

1566

1567
1568

1580

1581

1582

1583
1584

1586

1588

Since (¢k)r>1 is an Hilbert basis of X, this implies that (1.29) holds. Due to (5.4), it
comes that (1.28) also holds. Then, from Theorem 1.3,

. InC(Gr; yo)
T =1 —_—.
o) = Bl = win G

Using again (5.4), the blocks consisting of a single simple eigenvalue do not contribute
to the minimal time.

* Blocks of two simple eigenvalues. Assume that we have a block of the form
G :={)\ = vk, Ao :=dvp}.

As we will deal later on with semi-simple eigenvalues, we evaluate the contribution of
the block G using Theorem 1.10. Then,

C(G7 yO) = <M71§7 £>
with
M = Gram(b[\1],b[\2]) + Gram (0, (A2 — A1)b[A2])

- <<y07¢xl> <>,<>> .
<y ¢>\2> —0,0
For any k > 1, we define ¢, € R by ¢}.(1) = €}, (0). From Lemma 5.1, there exists
C > 0 such that

and

1
(6.3) ol < lex| < C, Yk > 1.
Then,
/ * 1
—¢,(0)Bg 1 14+ 1
b\ = B ¢x, = ] = () ( j’;“—d>>
a1 ) k
v (1—d)
(0
*90;9’ (O)BO <1> , 1
b[)‘Q] = B*¢A2 = 0 = —QDk/(O) (O) :
e (1)
To ease the reading, we use the following change of normalization for the eigenvectors
- ¢>\1 - (/!)Az
(b)\ = ) (b)\ =
o —9i(0) o —e(0)
and we denote by M and € the associated quantities. Notice that, due to (5.4), the
quantity ‘ €| is bounded. Thus, to estimate C (G,yo) we give a lower bound on the

smallest eigenvalue of M. We have

M = Gram (b[\1], b[Aa]) + Gram (0, (A2 — A1)b[A2])

2
— 6%+(1+‘uk<117d>> o | 4 (© 0 ).
1+ —L 1 0 (A2—X1)
I/k(l d)

=Tl
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1590
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1600

1601
1602
1603
1604

1605

1606

1607
1608

1609

1610
1611
1612
1613
1614

For any 7 € R?, <MT,T> > <F17', T>. Then,

Fl 2
min Sp(I'') > det(I") _ %k

= o 2
L+ep + (H‘ Vk(f—d))

From (6.3), it comes that min Sp(I'!) is bounded from below by a positive constant
independent of G. Thus, the quantity C(G,yo) is bounded.

* Blocks of a geometrically double eigenvalue.
Consider G = {A} with A = v, =dyp € A; N As.
With the same notations as previously, Theorem 1.10 implies that

C(G,yo) = <1\7_15,5>

where
[
s <y07,<‘0;c(0)>70’(>
5‘7 < P2 >
Yo: =ol, @/ _y
and
M = Gram (B ?A’l , B ?A’Z >
—¢3,(0)" —¢}.,(0)

2
1 1
eﬁ + (1 + Vk(lfd)) 1+ nw(i-d) | =t

1
1+ o (i=d) 1

Thus, the study of the previous item proves that min Sp(I'!) is bounded from below
by a positive constant independent of A and that the quantity C(G,yp) is bounded.

Gathering both cases, this implies that

. InC(Gk,y0)
T = limsup ————= = 0.
0(%0) k_,+£ 2min Gy, O
6.2. A system with two different potentials.
Let us consider the following control system
(6.4)

—Opz + €1() 1 - 0

o+ (5 L aw) = (i) 0 € 0T x @)

y(t70) = y(ta 1) =0, te (OvT)a
y(oa x) = yo(x),
where c1,c € L2(0, 1;R).

With the technics developed in this article, one can prove the following control-
lability result.

PROPOSITION 6.2. For any mon-negative potentials c1, ca, system (6.4) is null
controllable in any time T > 0 from L?(0,1;R)2.
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1615
1616
1617
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1630

1631
1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

The proof follows closely the computations done for the same system with a boundary
control in [10, Section 5.2.1]. The only difference is that the contributions of terms
of the form ||B*e||;; = || ® ||, are estimated using Lemma 5.1. As the result stated in
Proposition 6.2 is already known (it is for instance an application of [25] with a proof
based on Carleman estimates), we do not detail the proof here to lighten this article.

6.3. A system with a space varying zero order coupling term.
Let us consider A the Sturm-Liouville operator defined in (5.1). In this section
we study the null controllability of the following control system

Dy + (61 q&f)) y = <1wu((’t7x)) , (t,z) €(0,T) x (0,1),
y( ) yo(iﬂ)

(6.5)

where the coupling function ¢ belongs to L>=(0,1;R) and w C (0,1) is a non empty
open set.
To fit in the formalism of system (1.1) the evolution operator A is defined by

A:(S‘ j) D(A) = D(A)?

and the control operator B is defined by

B:ueUzLQ((O,l);]R)H< 0 )

1,u

As the control operator is bounded we consider in this example X_, = X = X} =
L?(0,1;R)2. Recall that the eigenvalues vy, and the associated eigenvectors ¢y of the
operator A satisfy (5.3), (5.5) and (5.6).

6.3.1. Already known controllability results for this system.
o Approximate controllability.
For any k € N*| let us define ¢ as the unique solution of the Cauchy problem

{(A - Vk)SZk = 0;

(6.6) 50 =1 F0)=0.

For any F € L?(0,1;R), we also define the quantities

(6.7a) Mpa(F,w) = sup{

Fyy| ; € connected component of (0, 1)\w}
¢

/F@c
¢

; € connected component of (0,1)\w

(6.7b) My 2(F,w) = sup{

such that €N {0,1} = @}

(6.8) My (F,w) = max {My1(F,w), Mg 2(F,w)}.
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1672

1673

1674

1675

1676

1677

It is proved in [17, Theorem 3.2] that, if Supp(q) Nw = &, approximate controllability
of (6.5) holds if and only if

(6.9) Mi(gpr,w) #0,  Vk>1.

Notice also that applying [17, Theorem 2.2] we obtain that
. If Supp(q) Nw # @, approximate controllability of (6.5) holds without any
other condition.
. If Supp(¢) Nw = @, approximate controllability of (6.5) holds if and only if

(6.10) My (In(q) — @)pr-w) #0,  Vk>1,

where

(6.11) Ii(g) = / 9(2) 2 ().

Rewriting the condition this way is more coherent with the expression of the
minimal null control time that is proved in what follows (see Section 6.3.3).

o Null controllability under a sign assumption.

If there exists wyg C w such that ¢ has a strict sign inside wy then it follows
from [25] that null controllability holds in any arbitrary time. The proof is based on
Carleman estimates.

o Null controllability with disjoint control and coupling domains.

System (6.5) was then studied in the case where A = —0,, and w = (a,b) is an
interval such that Supp(q) Nw = @.

First, it was proved in [6] that if Supp(q) C (b, 1) then, approximate controllability
holds if and only if

This condition is equivalent to (6.9). In this case the authors proved that

—In|7
To(X_o) = limsup M

k— 400 Vi

Later on, it was proved in [7] that if Supp(q) C ((0,a)U (b, 1)), then approximate
controllability holds if and only if

[N k(@) + [H2k(q)| #0,  VEk2>1,

where
(6.12) I x(g) = /an(w)soi(x)dl‘, Iyx(g) = / 4(2) 2 (2)de.

In this case the authors proved that

To(X o) = limsup — Inmax {|Zk(q)|, [114(9)], [12.1(@)]}

k—+4oc0 Vi

Moreover, the authors proved that for any 7 € [0, +00] there exists a coupling function
g such that Tp(X_,) = 79. Let us underline that these results are the first results
exhibiting a positive minimal null control time for a system of coupled parabolic
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equations with a distributed control. Due to the assumption Supp(q) Nw = &, the
strategy based on Carleman estimates is inefficient. The proofs of [6, 7] are based on
the moments method.

In what follows we give a minimal time characterization that unifies all these
results (see Section 6.3.4). It also extends these results to a general Sturm-Liouville
operator and enables us to deal with new geometric configurations for w and the
support of ¢ (see Proposition 6.8).

6.3.2. A first formula for the minimal time.

To compute the minimal null control time let us detail the spectral analysis of
the operator A*.

For any k € N*| we define 1) as the unique solution of

(A —vi)e = (Ie(q) — q) ex,
(6.13) ¥1(0) = x(1) =0,
{(r; Vi), = 0.

This is possible since

/0 (In(q) — q(2)) pr(z)pr(z)dz = 0.

We have A = (v)ren+ and we distinguish the following cases.
* If T;;(q) # 0 then vy, is algebraically double and geometrically simple. A Jordan
chain is given by

(D) g

where 1)y, is given by (6.13).
* If It (q) = 0 then vy, is geometrically double and a basis of eigenvectors is given

by

(6.15) ﬁJ(gj, ﬁg(ﬁ>

where 1)y, is given by (6.13).

REMARK 6.3. In the definition of vy, the choice of normalization (@i, ¥r), =0
is done to simplify the computations. It ensures orthogonality between observations of
(generalized) eigenvectors.

Applying Theorem 1.3 we obtain the following characterization of the minimal
null control time.

PROPOSITION 6.3. Letw C (0,1) be a non empty open set and let ¢ € L>=(0,1;R).
Assume that either Supp(q) Nw # & or that (6.10) holds. Then, the minimal null
control time for system (6.5) is given by

— 1 I 2 2 + 2
To(X_o) = limsup — @ NorllS + 19412)
k—+-o00 2vp
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This formula is valid in a general geometric configuration for w and the support
of ¢ and unifies the different results obtained in the literature for the study of null
controllability of system (6.5). For example, even if it is not straightforward, we prove
in Section 6.3.4 that it allows to recover the null controllability of (6.5) in any time
proved in [25] when ¢ has a strict sign on wy C w.

We also give in Section 6.3.3 another formula which is more convenient to deal
with but necessitates the geometric assumption Supp(q) Nw = &.

Proof. Since A = (vg)ren+, it belongs to £ (1,@7 %,N) for some N > 0 and p
defined in (5.3). Thus, a suitable grouping is given by ({vk})x>1-

Due to (6.14) and (6.15) we obtain that (1.29) holds. As mentioned previously, the
approximate controllability assumption (1.28) follows from (6.10) and [17, Theorem
2.2].

Then, from Theorem 1.3, for any yg € X_, we have

To(yo) = limsup M'

k—4o0 2vg

To compute C({vy},yo) we distinguish two cases.
* Assume that I (q) # 0. Then, from Theorem 1.8, it comes that

C({Vk}7y0) = <M71§7£>

where
o % 0 1% 41 x 0\ _ ||80kHE; 0
M = Gram(B*¢y, B*¢;) + Gram(0, B*¢}) = ( 0 ol + Ik(lq)2||1/’k||a
and .
f _ <y05¢]{;>_<>70 )
<905¢k>_070
Thus,

et = o (w (8)) + o (o ().
FIT G AT ek ) /T T@2lenl2 + el N\ )/ L,

* Assume that I(g) = 0. Then, from Theorem 1.10, it comes that

C({vi},y0) = (M€, €)

where
M = Gram(B*¢) 1, B* ¢} ) = (I¢SH H¢k|i>
and
‘= <<y0a¢k,1>—o,o) .
(Y0, Pr,2) 0
Thus,

C({w) >—1< (0)>2 +1< (wk)>2
A= ol NP ) /o Tl NP )/
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Finally, in both cases, the cost of the group {vy} is given by
(6.16)

et = oz (o (3)) .+ gtz (o ().
FI T T2\ e )/ o T @2 lenl2 e 2 N\ )/

)

We now evaluate the different contributions of the terms in the previous right-hand
side.
Recall that [|¢kl| ;) =1 and that, from (5.5),

llorlle > C >0, vk > 1.

We now prove that |[¢y[,. = [[¢xl ) is bounded. Let

= (0
g = P %(0)%

Then, the function {Ek satisfies

(A=) = (In(q) — @) o,
Yi(0) = Pr(1) = 0,
V3,(0) = 0.

From Lemma 5.1 it comes that

< 9, vz € (0,1), Vk > 1.

2
‘ Vp

)] + L2 [
which yields
ol z6 e

Notice that, by definition of {bv;w we have (wk - @Zk) € Ryg. Then, multiplying by ¢,
integrating over w and recalling that (¢, @), = 0, we obtain that

. <{Ek7(pk>
Yk =Pk — =5 Pk
ok ll2
This implies that
ol <H{/;H (1+1><c vk > 1
kll(o,1) = ||k (0,1) ||<Pk||w T -

Now, getting back to (6.16), we obtain that

1
(@)ool + lIPrllZ

am&mscmﬁxujk ),WELWﬁXW

which proves that

“1In(I 2 2 4 2
1) < timsup @7kl + 1)

k—+o00 2vg,
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To prove the converse inequality let us choose

From (6.16) we obtain that for this particular choice of yo,

1 1
C{vk},%0) = — . Vk>1.
(el vii Te(@)?llellz + llvell2
Thus,
—In (Ix(q)? 2 4 2
To(X-o) = To(yo) = limsup n (1 (g) H;k”w Hwk”w).
k—+o0 143

This ends the proof of Proposition 6.3. O

6.3.3. A second formula for the minimal time with disjoint control and
coupling domains.

The main result of this section is the following characterization of the minimal
null control time.

PROPOSITION 6.4. Let w C (0,1) be a non empty open set with a finite number of
connected components. Let ¢ € L*(0,1;R) be such that Supp(q) Nw = &. Assume
that (6.10) holds. Then, the minimal null control time for system (6.5) is given by

—1 I _
To(X ) = limsup n M ((Tk(0) = ), @) .
k—+o00 Vg

The main advantage of this formulation with respect to the one proved in Proposi-
tion 6.3 is that it does not involve . As we prove in Section 6.3.4, this formula
allows to recover the values of To(X _,) proved in the literature for various geometric
configurations. It also allows to prove new results for this system (see Proposition 6.8).

REMARK 6.4. Notice that the assumption Supp(q) Nw = & is necessary for this
formulation. Indeed, if ¢ =1 and w is an interval then, from [25], null controllability
holds in any time T > 0 but Ix(q) — ¢ = 0 for any k > 1. However, the assumption
Supp(q) Nw = & is not restrictive for our study as it is the setting in which a minimal
null control time can occur.

Using Proposition 6.3, the proof of Proposition 6.4 consists in comparing the
asymptotic behaviors of ./\/lk((Ik (9) — Q)¢r, w) and

Lu(@?llewllZ + llowll2

To do so we will use the following technical lemma. To improve the readability we
postpone its proof to Appendix E.

LEMMA 6.5. Let w C (0,1) be a non empty open set with a finite number of
connected components.
i. There exists K € N* and C > 0 such that for any k > K, any F € L?(0,1;R)
and any u satisfying the differential equation

(A—vi)u=F,
we have

Mu(F,w) < C(virlullo + voe (u(0)] + [u(D) + 1Pl )
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it. There exists K € N* and C' > 0 such that for any k > K and any F €
L?(0,1;R), there exists u satisfying

(A—v)u=F,
u(0) = u(l) =0,

such that
(Virllulle = IFIL) < CMy(Fow).
We now turn to the proof of Proposition 6.4.

Proof (of Proposition 6.4). Recall that, from Proposition 6.3,

—In (I(9)* 12 + [l 12
To(X o) = limsup 0 (@2 lrlls + 1xllZ)

k—+o00 pA

As Supp(q) Nw = @, applying point i. of Lemma 6.5 to ¢y yields, for k > K,

M ((Ie(q) = Qprsw)” < C (willvrll + | (Te(a) — @)erll?)
< Cu (10l + Tn(@)?[loxll2) -

Thus,

-1 T —
Tp(X—o) < limsup n M ((Tx(9) = @) "J).
k—+o00 Vg

We now prove the converse inequality. Let u be the function given by the point ii.
of Lemma 6.5 with F = (I;(q) — q)px. Notice that there exists « € R such that
u = ¢ + apg. Then, as (pr, ¥r), = 0, we have ||¢i|, < ||ull,. Thus, using the
estimate given by point ii. of Lemma 6.5 and the assumption Supp(q) Nw = &, we
obtain that, for any £ > K,

Cuelvnllz, < Mi(F,w)? + |F|12 < Mi(F,w)? + I(q)*lorll2 -
This yields

(6.17) [ell? + Ik (@) [enllZ < C (Mi(F.w)* + Ii(@)lrllZ) -

We denote by €1, ..., €y the connected components of (0,1)\w. As Supp(q) Nw = &,
notice that

N N v
; /@j F(z)op(x)dz = I1(q) ; /cj or(z)dz — ; /Cj q(z)pi(z)da

= In(@) (1 = llgxllZ) — Ix(a)
= —Li(@)llexll-
Thus, from (5.5) we deduce that
1 (q)| < CMy(F,w).
Plugging it into (6.17) we obtain

1kl + Ik (@) onllZ < CM(F,w).
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This implies that

-1 I —
To(X-o) > limsup n M ((Tk(0) ~ d)gr, @)
k—+o0 Vg

and ends the proof of Proposition 6.4. 0

6.3.4. Application of the minimal null control time formulas.

Unification of previously known results.
Let us prove that the obtained results unifies previous characterizations given in
the literature and stated in Section 6.3.1. Recall that ¢y, satisfies (5.5).

e Let us consider the setting studied in [6] i.e. w = (a,b) and Supp(q) C (b, 1).
In this case, (0,1)\w has at most two connected components both touching the
boundary of (0,1). Thus, setting

F = (Ix(q) — ¢)¥x

we obtain

a

My (Fw) = max{ F(x)pr(z)dx|, /b F(x)pk(x)d

b

0

Using the assumption Supp(q) C (b, 1) we get

/a F(z)pk(z)d
0

— 11s(0) / 2 (x)de,
and

1 1 b
| Fon] = i [ soimdx—fk(q)\:uk(q) | s,

Thus, ,
Mi(F0) = |10) [ o).

Recall that from (5.5)

inf /Ob or(z)dz > 0.

E>1

This implies that approximate controllability holds if and only if
Ik(q) # Oa vk Z ]-7

and in this case that i
To(X_o) = limsup M
k—+o00 Vi
Thus we recover the result proved in [6] and extend it to a general Sturm-Liouville
operator.

e Let us now consider the setting studied in [7] i.e. w = (a,b) and Supp(¢)Nw = @.
Again, setting
F = (Ix(a) — a)er
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1863 we obtain

a 1
1864 My (Fw) = max{ / F(x)pr(z)dz|, / F(x)pr(x)d }
0 b

1865 Using the notations introduced in (6.12) we have
s (618) | F@enads = 1) [ e - huda)

0 0
1867 and

1 1
1868 (6.19) / F(z)pk(x)dz = Ix(q) / o (z)dr — I 1(q)-

b b
1869 Thus,
1870 My (F,w) < 2max {|Tx(q)], [Tx(@)], | T2,x(a) ]} -
1871 Conversely, using (6.18) and (6.19) we have

a 1
1872 / F(x)pr(x)dx +/ F(z)pr(z)d
0 b
a 1
1873 = Ii(g) (/ wi(x)dwr/ wi(x)dw) — (Ik(q) + T2,4(q))
0 b
b

1874 = *Ik(Q)/ or(x)’dz
1875 a

1876 where we have used that I;,(¢) = I1 x(q) + I2,k(g). Thus, from (5.5) we get
1877 [Ik(q)| < CMy(F,w).

1878 Using (6.18) or (6.19) and the previous inequality we obtain

1879 [Lik(q)| < CMi(Fw),  Vje{1,2}.
1880  Thus,
1881 max {|1x(q)|, [11,x(q)], H2,x(q)|} < C./\/lk(F, w).

1882 This implies that approximate controllability holds if and only if

1883 max {|Ix(q)], k(D) [L2k(a)|} #0,  VE>1

1884 and in this case

-1 I I I
1885 To(X_o) = limsup nmax {|Zx(q)|, [11,k(q)]. | 2,1@((])‘}.
k——+oo Vi

1886 Thus we recover the result proved in [7] and extend it to a general Sturm-Liouville
1887 operator.

1888 e Let us finally consider the setting studied in [25].

1889 PROPOSITION 6.6. Assume that there exists an open set wy C w such that q(x) >

1890 qo > 0 for almost every x € wy. Then, system (6.5) is null controllable in any time
1891 T > 0.
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Even though this result is already known from [25], we provide here a proof without
Carleman estimates. The same result holds if there exists an open set wg C w such
that g(x) < go < 0 for almost every = € wy.

Proof. Here we consider the minimal time characterization given by Proposi-
tion 6.3 and prove that

. . —1Inrg
Ik(CI)QH@kHi + ||"/’k”3, > 7, with  limsup =0.

k— 4o Vi

As we seek for a lower bound, due to our assumptions, we can restrict w to an interval
(a,b) such that ¢(x) > go > 0 for almost every z € w. We now cut w into the following
pieces
« w1 = (a,a + ¢£) with £ sufficiently small (to be determined later on);
« wy = (b—£,b) with ¢ sufficiently small (to be determined later on);
0= wi Uwo;
e
C=la+0,0—1].
This procedure is summarized in Figure 2

& ¢=la+l,b—1
0 aa+l b—Cb 1 @@= (a,a+)U(b—2Lb)

FIGURE 2. Cutting of w = (a,b)
Notice that for any k > 1,

(@) llewlls + 1l = Te(@)lorllZ + llvnllZ-

From (5.5), there exists a; > 0 depending on v, ¢ and €y such that
(6.20) / @i(m)dx > aq, vk > 1.
[

Following closely the proof of item i of Lemma 6.5 with a careful tracking of the
dependency with respect to [ we prove the following lemma.

LEMMA 6.7. There exists ag > 0 depending on vy and ¢ such that for any ¢ < b_T“,
there exists K € N* such that for any k > K, any F € L?(0,1;R) and any u satisfying
the differential equation

(A—wvi)u=F,

we have

Vi < agv/ugullz + azl|| Fllz.

/ F(x)pu(a)d
¢

To improve the reading, the proof of Lemma 6.7 is postponed at the end of the current
proof (see page 62).

Let ag > 0 be the constant given by Lemma 6.7 and assume in all what follows
that £ > 0 is fixed such that

37 2042||(J||L<><>(0,1)
60
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1924 Let K € N* be the index given by Lemma 6.7. In the rest of the proof, we assume
1925 that k > K.

1926 * Let us first consider the case I;(¢) = 0. Applying Lemma 6.7, with u = 95, and
1927 F' = —qyyj, we obtain
928 Vi| [ a@)ei@aa] < arvilinls + arflae o
1920 As £ < 5% we have €y C € and thus
1930 Aq(x)@i(m)dx > q{o/€ @2 (z)dx > qoory.
o

1931 Notice also that, since ||px|/(0,1) = 1, we have

1932 laerllz < llallne(o,1)-

1933 Gathering these estimates and using (6.21) we obtain

1934 /il vnllz > Ve /q(x)gai(x)dx — axl|qenlls
[
. doC1
133 > VI (a0 — 02Vl o) > VE L

1937 which gives the desired estimate in the case It (q) = 0.
1938 * Let us now consider the case Ix(q) # 0. Let u be the solution of the Cauchy
1939  problem
(A - Vk)u = —qPk;
1940 u(0) = oy (0),
u'(0) = 41,(0).
1941  The same analysis as in the previous step yields
1942 (6.22) /g ||ulls > Ve %.
1943 Notice that

(A =) (W — u) = k(@) ek,
1944 (Y — u)(0) =0,
(¢ — u)'(0) = 0.

1945 From Lemma 5.1, there exists C' > 0 depending only on v and ¢ such that

C

1946 ok = ullLoe(0,1) < ﬁ|fk(Q)\~
1947 Then, from (5.5), we deduce that
1948 lull3 < 2(19ell3 + llvn — wllZoe0,1))

C
o <2 (1l + SinwP)

Vi
1958 < C (I19wll3 + 1e(@)Pllexll3) -
1952  Together with (6.22) this gives the desired estimate in the case I(q) # 0 and ends
1953 the proof of Proposition 6.6. O
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To complete the proof of Proposition 6.6 let us prove Lemma 6.7.

Proof (of Lemma 6.7). From (5.7), there exists C > 0 depending on 7 and ¢ such
that

1
(6.23) llonllLe(0,1) + ﬁ”%HLw(o,l) <C, Vk>1

Integrating by parts, we obtain

b—t
/QF(x)gok(m)dx :/ (A — vp)u(x)pr(x)de

4o
=— (vu'or)(b—0) + (v 1) (a + 0)
+ (uyer) (b =€) — (uvgy) (a+90).

Using (6.23) we obtain

7= | L F@pn(@aa| < Al (|u<a+e>| v Wmaw)

OVl <|u<b 0 ”\(bﬁemb e>|)

Let A\p > 0 by given Corollary E.1 (for an interval of length ¢) and let K € N* be such
that
k> K — VL > Ao.

Assume that £ > K. As a + ¢ € w7 the application of Corollary E.1 yields

Ya+1), C CVe
ula +0)| + ——=u'(a+0)| < —=||ullw, + —=|F||w, -
|u(a +0)] N |u'(a+ 0)] \/ZH | \/WH I
As b — ¢ € w3 the application of Corollary E.1 yields
\V yb-1¢) , CVe
u(b =)+ —=—|u'(b = )| < || ||w2+7|| [
Vi NG Vi
which proves Lemma 6.7. O

Dealing with new geometric configurations.

As proved in the previous paragraph, the obtained characterization of the minimal
null control time unifies the different known results for system (6.5). It also enables
to study new geometric configurations for example when w is not an interval and
Supp(g) Nw = &. We provide below an example inspired by [17].

PROPOSITION 6.8. Let v =1 and ¢ =0 (i.e. A is the Dirichlet Laplace operator)

and let
qg:x€(0,1)— <a: - ;) 1(%)%)(:1:).

. IfwC (%, 1), then approximate controllability for system (6.5) does not hold.
it. If w= (O, %) U (%, 1), then system (6.5) is null controllable from L?(0,1;R)
in any time T' > 0.
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Proof. In this case, we have for any k > 1,
v, = k*n?, O = \/Qsin(lmr-), Ok = \@COS(kﬂ'o).

The proof of item i can be found in [17, Section 3.3.1] and relies on explicit com-
putations: due to symmetry it comes that Ix(q) = 0 for any k& > 1. This implies
that

inf(w)
[ el = g =o.
0
Let € be any other connected component of (0,1)\w. Then € C (%, 1). This means
that ¢ = 0 on € which gives

/q(m)(pk(x)gok(x)dx = / q(z)pr(z)pr(x)dz = 0.
¢ ¢
Thus,

Mi(gpr,w) =0, Vb >1.

We now turn to item ii. In this case (0,1)\w has only one connected component
which is [1,2] but the key point is that it does not touch the boundary of (0,1).
Approximate controllability in this case was also studied in [17, Section 3.3.1]. Again
for symmetry reasons we have

but
k—1
1=
3 —%, if & is odd,
| d@a@a@an = 2
i (-D* if k is even
- if k is even.
Ak’
This implies that for any k£ > 1,
1 if k£ is odd
2 27 )
Mi((Inla) =)o) = § 27°F
yrs if k is even.
T

Thus, from Proposition 6.4

—Iln M ((1 - ’
T0<Xf<>> = limsup o k(( k(Q) Q)on w) _o.

7. Some extensions.

7.1. Dealing with complex valued eigenvalues.

In this section we allow the eigenvalues in A to be complex valued with a dominant
real part (see the precise assumptions below). The resolution of block moment prob-
lems, the estimate of the cost of a block and thus the minimal null control time are
obtained with really few adjustments that we detail in this section. However, as it is
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already true for scalar control operators, the dependency of the cost of controllability
with respect to the final time T is lost. Indeed it follows from Proposition A.2 which
deeply uses real analysis. Thus in the case of complex valued sequences there is no
need to consider the adaptation of the classes L(p, o, a, N) or L(p, 0,a, N, a’, N) which
are mainly introduced in this article to obtain sharper bounds on the cost of control-
lability. We restrict ourselves to sequences of eigenvalues A in the class Lc (4, p, 0, N)
which for 6, 0 > 0, p € N* and A/ : Rt — R is the class of sequences A € CY satisfying

e Parabolicity condition:
RA > 0|A], VAeEA.

e Asymptotic behavior: for any ¢ > 0, we have
1
y oL
sen
[A>N(e)
e Weak gap condition with parameters ¢ > 0 and p € N*:
#AN ([, 1+ 0 +4R) <p, Vyu>0.
In that case, a grouping (Gy)x should satisfy

A= U G, #Gp <p, diam(Gp) < g,inf(RGg41) — sup(RGy) > r.
k>1

In this setting replacing the auxiliary moment problem (2.1) by

T l
—t —
/O v(t)( zz) e Mt = Qf, Vje[l,g], VI e[0,0; —1],

T _
/ v(t)tle™dt =0, VA€ A\G, V€ [0,n—1],
0

we obtain that the resolution of block moment problems stated in Theorem 1.2 still
holds. The minimal null control time given in Theorem 1.3 is replaced by

. 1nC(Gk7yO)
T =1 ——
olyo) = Timsup

with C(G, z) still defined in (1.41) and the function F' is now defined by

2
o
el
U

In the course of the proof, one should replace in the estimates A by RA and the use
of Lagrange theorem [10, Proposition 7.14] by an inequality proved by Jensen in [27]
(and recalled in [10, Proposition 6.1]).

Similarly, replacing A by X the more explicit formulas for C(Gy, yo) provided by
Theorems 1.8 and 1.10 also holds.

|ex|

F:Q= (), ..o " .0 . e )eus Y
=1

7.2. Weakening the Fattorini-Hautus test.

When studying null controllability from a closed strict subspace Yy of X_,, the
Fattorini-Hautus test (1.28) can be a too strong requirement. Let us underline that
this condition (1.28) is only used in this article for two purposes:
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1. to prove that the set O(), z) defining the constraints is not empty (see Propo-
sition 2.3);

2. to prove that the matrices M defined either by (1.47) or (1.51) are invertible
(see Propositions 1.7 and 1.9).

Let Yy be a closed subspace of X_,. Following for instance [15, Proposition 1.17],
it can be proved that if every assumption of (H) except (1.28) hold, then a necessary
condition for approximate controllability from Yy can be expressed as follows: for any
A € A, for any ¢ € E) and for any I € [1, ],

(7.1) (B*(A* — AT =0, Vr € [[1,5]]) — (P;}O(A* — NG =0, Vr € [[1,1}]).

Notice that when dim U = 1, this condition is equivalent to the condition formulated
in [10, Section 6.2].

Let us prove that the results of this article hold (for null controllability from Yj)
under assumption (7.1) instead of (1.28), at least in the case when every eigenvalue
of A* is either geometrically simple or semi-simple. Let A € A be such that

Ker(A* — X) N Ker B* # {0}.

o If £\ C Ker B* then from (7.1) it follows that E) C Ker Py . Then, the equations
associated with A in the moment problem (1.30) are automatically satisfied. We can

then simply forget about the eigenvalue A in the analysis, which amounts to replace
A by A\{\} in our study.

e Otherwise we distinguish the two cases ay = 1 and 7, = 1.
i. Assume that oy = 1 and let I be a (non-empty) set of indices such that the
family (B*¢x ;)icr is a basis of B*E. Then, the moment equations associated
to A in the moment problem (1.30) can be reduced to

T
j/ N0 (u(t), B or )y dt = — (9o, e T4 0ni) Wil

0 <,0

Indeed, from (7.1), it comes that the moment equations associated with ¢ ;
for j € [1,vA]\I are automatically satisfied and can be forgotten. This leads
to a decrease of the geometric multiplicity replacing v by |I|.

ii. Assume that vy = 1 and let us consider a basis of E) formed by a Jordan

chain ¢9,..., ik_l.
Let j € [1,a,] be the first index such that B*¢3 # 0. From (7.1), it comes
that

* * j—1
Pydh == Bl =0

and thus the moment equations associated to A in the moment problem (1.30)
can be reduced to

/OT <u(t), e_(T_t)A*¢>U dt = — <y0, e_TA*¢>> o’ Vo € (A* — N\ E\.

This leads to a decrease of the algebraic multiplicity replacing a\ by ay — j
and shifting the associated Jordan chain.
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This proves the claim.
Finally let us notice that, if on a given example there exists A € A with a) > 2,
oy 2 27
Ker(A* — X) N Ker B* # {0},

then under assumption (7.1) one can iterate a finite number of steps of the form 4. or
ii. to reduce the moment equations associated to A in the moment problem (1.30) to
a solvable moment problem.

Appendix A. Some refinements in the case of scalar controls.

In [10], the block moment method was introduced to solve null controllability
problems with scalar controls (U = R). With respect to block moment problems, the
main result of this paper is [10, Theorem 4.1]. In this work there were no assumptions
on the counting function. The spectrum A was only assumed to satisfy >, A% <
+00. More precisely, for p € N*, o > 0 and N : (0,400) — R it is defined in [10,
Definition 2.1] the following classes

(A1) L(p,0,N) = A€ (0,+00)"; A satisfies (1.21) and Z <e

AEA
A>N(g)

1
y

Using the slightly more restrictive condition (1.22) (or (1.24)) we can adapt the res-
olution of scalar block moment problems to obtain better estimates on the cost of
this resolution. In particular, this allows to explicit the dependency of the various
estimates with respect to the variable T' (see Remark 1.7 for possible applications of
such estimates). Namely, we obtain the following result.

THEOREM A.1. Let p € N*, r,0,N,N > 0, a € (0,1), @’ € [0,a) and N :
(0, +00) = R. Assume that

A€ L(p, 0, N)UL(p, 0,a, N) U L(p, 0,a,N,d',N)

and let (Gr)r>1 € G(A,p,r, 0) be an associated grouping. Recall that these classes are
defined in (A.1), (1.23) and (1.25). Let n € N* and T € (0, +00).

For any G = {\1,..., ¢} € (Gp)k, for any multi-index o € N9 with |alee < 7
and any w € Rl there exists vg € L2(0,T;R) satisfying

T 1\l
(A.2a) / vG(t)( lf) e Mt =w!, Vje[l,g], Vie[0,a; —1],
0 .
T (—t)l
(A.2b) / v (t) 0 e Mdt=0, VAeA\G, Vielo,n—1],
0 .
and the bound
(A.3) lvallzeo.rm) < EG) K(T) max |w ] |
u€<N9
pn<la

where the functions € and KC are such that
i. for any T € (0,400), for any € > 0, there exists C > 0 depending only on ¢,
T, p, 7, 0,n and N such that for any A € L(p, 0, N') we have

EN) < Cexp(eN), VIeA;
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i. there exists C' > 0 depending only on p, v, ¢, n, a and N such that for any
A€ L(p,0,a,N) we have

E(N) < Cexp (CA*(1+10g(N)), VAeA,

K(T) < Cexp (TC;) , VT € (0,400);

1—a

iwi. there exists C'> 0 depending only onp, r, o, 1, a, N, da' and N such that for
any A € L(p,0,a,N,a’,N) we have

EN) < Cexp(CA"), VAe€A,

K(T) < Cexp <TC;) , VT € (0,400).

1—a

Moreover, up to the factor E(A1), the estimate (A.3) is sharp: there exists a constant
Cp.pmin A > 0 such that any solution vg of (A.2a) satisfy

w M) ‘ .

(A4) ||UG||L2(O,T;]R) > C’p,n,minl\ max
peEN?
pn<a

The statement i. is exactly the one given in [10, Theorem 4.1]. Let us detail the
necessary adjustments to obtain Theorem A.1 ii. and Theorem A.1 iii..

e Dependency with respect to the variable T

One key point of the strategy developed in [10] is to solve the scalar block moment
problem in infinite time horizon (see [10, Proposition 4.5]) and then use a uniform
bound on the inverse of the restriction map

Rar: f € A(A,+00) = fior) € AN, T),

where for any T € (0, +o0],

ANT) = Span{t > e M3 ae Ay 079,

This uniform bound (see [10, Proposition 2.9]) was proved by contradiction and thus
its dependency with respect to T' was not explicit.

Actually, one can use instead the following result (which at that time was not
known to the authors of [10]).

PROPOSITION A.2. Let a € (0,1), o, N > 0 and A € (0, +00)" be a family whose
counting function satisfies (1.22). There exists a constant C, y > 0 depending only
on a and N such that, for any T > 0,

2200 < Coexp ( F25 ) Wlsoys ¥ € Al 50).
This general result is a consequence of the study of Remez-type inequalities in Miintz
spaces that can be found for instance in [13, 14]. A detailed proof is proposed in [16,
Theorem IV.1.18].

Then, following [10, Section 4], but using Proposition A.2 instead of [10, Propo-
sition 2.9] leads to the bounds on K(T") given in cases ii. and iii..
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2145
2146
2147
2148
2149
2150
2151

2152

2160

2161

e Bounds on £()).

In the estimate (A.3), the term £(A) comes from the orthogonality condition given
by the equations (A.2b).

In the proof of [10, Theorem 4.1], the bound of case i. is given by [10, Proposition
2.8]. Following exactly the proof given in [10, Section 2.1.6] but using [16, Proposition
IV.1.14 and Corollary IV.1.16] (see also [16, Theorem IV.1.10] for an explicit formula
for the function £) instead of [10, Proposition 2.8] directly yield the bounds on £(\)
given in Theorem A.1 cases ii. and iii..

Appendix B. An auxiliary optimization argument.

LEMMA B.1. Let Y be a closed subspace of X_,. Let g € N* and 91,...,¢4 €
Py XS, Foranyy €Y, let

Y, ¥1) o0
&y =
<yv wg>—<>,<>
Then, for any positive semi-definite symmetric square matriz M € My(R), we have
(B.1) sup (M¢&y, &) = p(GyM)
Il =1

with Gy = Gramx; (1, ... ,1g).

In the course of the proof we will use that there exists an isometric bijection
I:X_,+— X7 such that

<y7 <P>_<>,<> = (Iy7 50)0* 9 Vy S X_O,VC,O € X:

Note that it satisfies
Ty, @) ex = (y,I_lgp)_o, Vye X o, Vp e XJ.

Proof. Let S be the value of the supremum in the left-hand side of (B.1). By
assumption on the (1;);, we first observe that the supremum can be taken on the
whole space X_, instead of Y without changing its value. Then, for any 1 <i < g,
we have

(Yot o0 = (v I 1i)
and therefore the value of S does not change if we take the supremum over the set
U= Span(izl, ... ,1;9) c X_o,
with
(B.2) i =17
We write any element y € U as follows y = > ziab;, with z = (75)jeq1.9) € RY

so that we can compute

() =D (4005) = (Gga)i Vi€ Ll
j=1
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9 9
W) o= ) i (1/%,7/13‘)_0 = <G1;33,33> :
i=1 j=1

where G is the Gram matrix in X_, of the family {{/)vl, vy {/ng}. Using that I is an
isometry from X_, onto X7 it actually appears that

Gy =Gy.
Finally, we have proved that

2
§y = Gyz, and [y|Z, = (Gyz,z).
The supremum we are looking for thus reads

S= sup (MGyz, Gyx).

e By compactness, we know that this supremum is actually achieved at some
point zg € R, that is

<]\4G¢LU()7 Gw$0> = S, and <Gw.’£07x()> =1.

2162 The Lagrange multiplier theorem gives that there exists A € R such that
2163 (B-?)) <MG¢SC0, Gwh> = )\<G11[,CCO7 h>, Vh € RY.
We get

G¢MG¢:L‘0 = )\Gwl'o,

and since Gyxzg # 0 (we recall that (Gyzo, o) = 1), we deduce that X is an
eigenvalue of Gy M and therefore

A < p(GyM).
Moreover, taking h = zg in (B.3), we get
(MGyxo, Gypzo) = MGyxo, o) = A,
and thus A = S. We have thus proved that
S < p(GyM).
o If p(Gy M) = 0, the claim is proved. If not, we set

A= p(GuM) = p(MGy) = p (6] MG,

which is positive and which is an eigenvalue of the three matrices above. In
particular, there exists zo € RY \ {0} such that

MGyzo = Azo.
Taking the inner product with Gyzo we obtain
(M Gy, Gyzo) = Mo, Gyo),
and since (g, Gyzo) = HGimoH cannot be equal to zero, we deduce that

ALS,

2164 and the proof is complete. O
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2166
2167
2168
2169
2170
2171

2176
2177
2178
2179
2180
2181

2182

2183

2184
2185

2186

2187

2188
2189
2190

2191

2192

2193
2194

2195

2196

Appendix C. Solving general block moment problems.

As this paper is oriented towards control theory we do not deal with the most
general block moment problems. Indeed, in Theorem 1.2, the considered block mo-
ment problems have a specific right-hand side which is a linear form. This formalism
is chosen in order to avoid exhibiting a particular basis of the generalized eigenspaces.
The price to pay is this restriction on the considered right-hand sides. However the
proofs detailed in Sections 2 and 4 directly lead to the following more general results.

The study with a group composed of geometrically simple eigenvalues (see Sec-
tions 4.1 and 4.2) leads to the following theorem.

THEOREM C.1. Let p € N*, r,o,N,N > 0, a € (0,1), @’ € [0,a) and N :
(0, +00) = R. Assume that

A€ L(p,0,N)UL(p,0,a, N)UL(p, 0,a,N,d', N)

and let (Gi)r>1 € G(A,p, 1, 0) be an associated grouping. Recall that these classes are
defined in (A.1), (1.23) and (1.25). Let n € N* and T € (0, +00).

For any G = {\1,..., A} € (Gi)g, for any multi-index o € N9 with |a|e < 7,
any w € RI°l and any b € Ul®l with

0 .
there exists v € L?(0,T;U) satisfying

(C.1a) /OT <v(t), (esb) wﬂq >U dt =w!, Vje[lg], viel0,a;—1],

T
(C.1b) / v(t)tle ™ dt =0, VYA€ A\G,VIe[0,n—1].
0

Moreover, we have the following estimate

I0ll72 0,70y < EQ) K(T) (MTIE,E),  where & := : ,

w {/\.(“al)}

the sequence (UP)pefo,jay|] 8 defined in (1.37), the associated matriz M is defined
in (1.47) and the functions € and K satisfy the bounds given in Theorem A.1.
Moreover, any v € L*(0,T;U) such that (C.1a) holds satisfy

Hv”%?(O,T;U) 2 Cpymin A <M_1§7 f>
for some Cp y mina > 0.

REMARK C.1. As detailed in Remark 1.10, when the eigenvalues in G are also
algebraically simple, i.e. ay = vy =1 for any A\ € G, the expression of £ reduces to

wlA1]

7ax%
Il

)

Q%Al,...,Ag]

and the expression of M reduces to the one given in (1.49).
70

This manuscript is for review purposes only.



2197
2198
2199
2200

2201

2202
2203
2204
2205

2214

2215
2216
2217

2218

2219

2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

2232

The study with a group composed of semi-simple eigenvalues (see Section 4.3)
leads to the following theorem.

THEOREM C.2. Let p € N*, r,0,N,N > 0, a € (0,1), o’ € [0,a) and N :
(0, +00) — R. Assume that

A€ L(p,o,N)UL(p,0,a,N)UL(p,0,a,N,a',N)

and let (Gr)r>1 € G(A,p, 7, 0) be an associated grouping. Recall that these classes are
defined in (A.1), (1.23) and (1.25). Let v1,...,7g € N* and vg =v1 + -+ + 4. Let
neN* and T € (0,400).

For any G = {\,..., A} € (Gi)k, for any (wj’i)jeﬂl,gﬂ,ieﬂl,’ﬁ]] € U and any

(bj’i)jG[[l,g]],iE[[l,’yjﬂ € U7¢ such that bj1,...,bj, are linearly independent for every

j €[1,g], there exists v € L*(0,T;U) satisfying
T
(C.2a) /O (v(t), e "), dt = wyq, Vi€ [L,g], Vi€ [1,y],
T
(C.2b) / v(t)tle ™ Mdt =0, VA€ A\G, VI €[0,n—1].
0

Moreover, we have the following estimate

HUH%Z(O,T;U) < E(A\) K(T) <M_1fa§> )
where £ € RY¢ s defined by blocks with

the matrizc M is defined in (1.51) and the functions € and K satisfy the bounds given
in Theorem A.1.
Moreover, any v € L?(0,T;U) such that (C.2a) holds satisfy

HU”%P(O,T;U) > Cpmin A <M_1§’§>

for some Cp mina > 0.

Appendix D. Post-processing formulas.

The minimal null control time given in Theorem 1.3, together with the compu-
tation of the contribution of each group given in Theorems 1.8 and 1.10, allow to
answer the question of minimal null control time for a wide variety of one dimensional
parabolic control problems. However, for a given problem, the precise estimate of the
quantity of interest <M “le g > can remain a tricky question.

There is no normalization condition on the eigenvectors and no uniqueness of
the considered Jordan chains. Thus, it happens that there are choices for which the
quantity of interest <M —leg > is easier to compute (see for instance Remark 1.9). We
gather here some results that are use in Sections 5 and 6 to estimate such quantities.

We will make an intensive use of the following reformulation. Let n € N* and let
T,M € GL,(R). For any £ € R", let £ := T¢. Then,

(D.1) (Mg, ) = <M—1T—1£, T—1£> - <J\7—1£, £>
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2240

2243

2244

2245

(>

J

2260

where
(D.2) M :=TM'T.

As the matrix M is a sum of Gram matrices we will also use the following lemma.

LEMMA D.1. Let X be an Hilbert space. Let n € N* and e = (eq,...,e,) € X™.
Let T € M,(R). Then,

TGramx ey, ..., e,)"T = Gramy ((Te)l, el (Te)n)

where, for any i € [1,n], (Te); is defined by
(T@)l = ZT’Z‘JBJ'.
j=1

Proof. For any w € R™, it comes that

(D.3) (TGramx (€1, ..., ) Tw,w) = (Gramx (e1, ..., e,) ("Tw) , ("Tw))
(D.4) = Z(tTw)iei
(D5) - Z Z Tj7iw]‘€i
'L:l J= ,
(D.6) IS wsre),
j=1
(D.7) = (Gramx ((Te)1, ..., (Te)n)w,w). d

Depending on the phenomenon at stake on actual examples, with a suitable choice of
¢ (i.e. of T), the quantity (M1 €) can be easier to estimate than (M ~1¢, €).

D.1. Dilatations.
Notice that

(M7EE) < M €)1

When the minimal null control time can be estimated with rough estimates (this can
only characterize the minimal time when T = 0), it can simplify the computations
to have a bounded ||€]|. To do so, it is convenient to consider dilatations of .

Let X be an Hilbert space. Let n € N* and ey,...,e, € X. Let £ € R" and
£ € R™ with non-zero entries. Let

T = Dg := diag(B) € GL,(R), £ =TE¢.
Then, from Lemma D.1, it comes that

TGramx (e1,...,e,)'T = Gramy (6161, . ,ﬁnen).
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2261 D.2. Invariance by scale change.

2262 In our assumptions there is no normalization condition on the eigenvectors (see
2263  Remark 1.9). This allows to have simpler expressions for these eigenvectors. Actually,
2264 the computation of <M _1§,§> can be done with a different scale change on every
2265 generalized eigenvector as detailed in the following proposition.

2266 PROPOSITION D.2. Let M and & be as defined in Theorem 1.8. Let B € Rl®l be
2267  such that 6? #0 for all j € [1,g]. Set

(0. (89) [ )

—0,0
2268 £= :
AT
(0. (80) ALD])
2269  Then,
2270 (Mg ¢) = <M7157£>
2271  where
— lo] [ lagl_,1-1
22072 (D.8) M := Z Gramy | 0,...,0,(5b) [A(” s )} ,- .y (BD) {)\(“ —u'7)
=1 -1
2273 Proof. From Leibniz formula [10, Proposition 7.13], it comes that for any p €
227 1, o],

2275 (86) A0 = IMZ B A=) g [

q=1

2276 Thus, é = T¢ where T is the following lower triangular matrix

2277 T= <1quﬁ [)\(“p_”qil)])

p,q€[1,|a[]

2278 The diagonal entries of this lower triangular matrix are B? and thus T € GL4|(C).
2279 From (D.2),

laf
9280 M =Y TGramy 0,...,0,b[A(Ml—HH)},...7b[A(“‘“'—“H)} tp,
=1 -1

2281 Let I € [1,]a|] and

2282 ep =---=¢_1 =0,
]
2283 e =b/A . vpe L]l

2285 Then, for any p € [1, |a]],

||

2986 (Te)p = Z 1q§p6 [A(Hp—ﬂqfl)} €q-
q=1
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2287 Thus, (Te); =--- = (Te);—1 = 0 and, for any p € [I,|«|],

la| P

2o (Te)p = eyl [A(”p_”ﬂ)} eg=Y B [A(“p—”“)] b [A(#‘*—u“)} .
q=1 q=l

2289 Let » _
2290 K=t Vi e [l,p—1+1].
2291 Then, using again Leibniz formula [10, Proposition 7.13], we obtain
2292 (8b) [A(”"*#H)] — (Bb) [/\(“p’l“)}

p—Il+1
2293 = B [)\(”p_lﬂf”r—l)] b {)\("T)}

r=1
p—Il+1

2994 _ (ﬂ’— Ll*1+7‘*1) (tzf1+»«_ 171)
2294 ;ﬁ{)\/ / }b[/\’ M }

2295 = iﬂ [/\(l‘p*“(’fl)] b [A(“q*l‘m)}

q=l
3396 = (Te)y
2208 Finally, applying (D.1) and Lemma D.1 ends the proof of Proposition D.2. |
2299 REMARK D.1. As there is no normalization condition on the eigenvectors a sim-
2300 dlar statement automatically holds with M and & defined in Theorem 1.10.

2301 D.3. An equivalent formula for simple eigenvalues.
2302 In this section, we consider the case of a group of simple eigenvalues i.e. a) =
2303  yx = 1 for every A € G. In that case, the cost of the group G can be computed either
2304  using the formula of Theorem 1.8 for geometrically simple eigenvalues or the formula
2305 of Theorem 1.10 for semi-simple eigenvalues. Even though these theorems imply that
2306  those two formulas coincide (as they are both the cost of the group) we give a direct
2307 proof of this statement.
2308 PROPOSITION D.3. Let M and & be the matrix and the vector given in Theorem 1.8
2309 i.e.

g
2310 M = ZGramU 0,...,0,b[\],...,b[A, ..., Ag]

1=1 v

= -1
2311 and

<y07 (b[)‘lb—o,o

2312 &= :

<y07 (rb[)‘la . i) )‘gD,o o

s

2313 Let M andé be the matrixz and the vector given in Theorem 1.10 i.e.
<y07 ¢[)‘1]>—<>,<>

g9
2314 (D.9) M :=Y Gramy (6;b[\],...,67b[\ and & :=
l g

= (o, 6N .
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2315 Then,

2316 <M_1§,§>=<1\7_1575>
2317 Proof. The usual interpolation formula [10, Proposition 7.6] gives
i /-1
2315 (D.10) NEDY (H i — /\k> DAL, A
j=1 \k=1

2319 Recall that the notation 5} has been introduced in (1.50). With these notations,
2320 §~ = T¢ where T is the following lower triangular matrix

2321 T= (6})i,je[[17g]] € GL,(C).
2322 From (D.2), we define
. g
2323 M :=> TGramy [0,...,0,b[\],...,b[A,..., Al | 'T.
=1 -1
2324 Let [ € [1, ¢] and
2325 e1=---=¢-1=0,
3339 €j :b[)‘lw"v)‘j]v Vj € [[lvg]]~
2328 Then, (Te)y = -+ = (Te);—1 = 0 and for i € [I,g], using again the interpolation
2329  property [10, Proposition 7.6], we obtain
g .
2330 (Te); = Z I PYR V]
j=l
i .
2331 = 8bN, ]
j=l
i /i1
2332 =0y (H Ai — /\k> b - A
j=1 \k=l
3334 = 3;b[Ai]
2335 Recalling that ] = --- =6, * = 0, we thus obtain
2336 (Te); = oib]Ng],  Vi[l,g].
2337 Finally, from Lemma D.1, we deduce that M = M which ends the proof of Proposi-
2338 tion D.3. a
2339 Appendix E. Technical estimates for Sturm-Liouville operators.
2340 In this appendix, we prove Lemma 6.5.
2341 To do so, we start with the following corollary of Lemma 5.1.
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2343
2344

2345

ot Ot Ot gt Ut
(L ISV V)

2360
2361

2362

2363

2364

2365

2366

2367

COROLLARY E.1. Let A be the Sturm-Liouville operator defined in (5.1). There
exists C' > 0 such that for any 0 < a < b < 1 there exists \g > 0 (depending on b—a)
such that for any X > X, for any F € L?(0,1;R), for any u satisfying

(A=XNu=F on]a,b,

and for any x € [a,b], we have

v(x 2 C b—a)?
)+ 52 W@l < 55 (i + C5 PR, ).

Proof. We start with the proof in the case F' = 0.
Let xo € C*(R;R) be a cut-off function such that 0 < yo <1 and
e xo(z) =1 for every x € [1/4,3/4],
e xo(x) =0 for every x & (0,1).
We then set

@) =0 (55

in such a way that, if we set « = a + Z’TT“ and 8 =b— 2% we have
e x(z) =1 for every z € [o, ],
e x(x) =0 for every = & (a,b).

Let C; > 0 be the constant given by Lemma

4

proof we set

(E.1)

Ao = max {1 , 2C7 HX’”%*}

and assume that A > Ag. Note that A\g only depends on b — a

X0l oo (b —a)~
Let © € [a,b]. We apply Lemma 5

obtain

(E.2)

b

1

—a T B
3 (e + k) < e (un%a,b) +3 [ 0

5.1 with Ay = 1. In the rest of this

since [|x'l| g =

.1 and integrate in the variable y € (o, 8) to

)Iu'(y)lzdy> :

Then integrating by parts, using (A — A)u = 0 and Cauchy-Schwarz inequality yield

1

B b
3 [l Py < 5 [ oo

b
:—% X' (y) (yu') (y) dy+>\/
< (P 2 vl aw) (vAlle=llella)

+ [ |- wray

c(y)) lu(y)*dy

2
< (1+ ”CH + ”’}/HLOC ||UH2 + HX/HLOO ”\/»u/HQ
> Lo 2 (a,b) 222 g (a,b)"

Plugging it into estimate (E.4) we obtain

(E.3)

b—a ~y(x C1 X' |7
122 (e + ) < ot + Sl

2X2
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2382

2386

2387

2388

2389

2390

2391

2397
2398
2399

Applying again Lemma 5.1 gives that, for any y € (a, b),

TR < 0 (o + L@ ).

Integrating in the variable y € (a,b) and using the definition of Ay given in (E.1) we
obtain

G~ CIXI} - 2, @) o
s VA |,y < T (= a) (Ju@) P + L2 (@)

< b;“ <|u(:l:)|2 + ”(;)u’(x>2> :

Plugging it into (E.3) ends the proof of Corollary E.1 in the case F = 0.

Assume now that F' # 0. Let x € [a,b] and define @ as the solution of the Cauchy
problem

(A—XNa=0,
' (x) =/ (2)

From the case F' = 0 we deduce that
7(z) _ v(x) - c .-
B4 )P+ T @) = i@+ T2 @) <l

Notice that

(A= M\)(u—1a)=F,
(u—a)(z) = (u—1a)(z) = 0.

Thus, from Lemma 5.1 we obtain that for any y € [a, ]

2

|(u—@)(y)[?

(s)|ds

which implies

b—
fu—ilt,y <=Ly,

Thus, we deduce that

~ (-2
il < € (Il + 52NN )

Together with (E.4) this ends the proof of Corollary E.1. |

REMARK E.1. Notice that, when v € C?([0,1];R), for X large enough, for any u
satisfying (A — N)u = 0, there exist a and § in (a,b) such that
b—a
5

u(a) = u(p) =0, B—az>

This is a consequence of the Sturm comparison theorem (see for instance [16, Corollary
A.5.16]). With this choice one does not need to introduce the cut-off function x in
the first step of the proof of Corollary E.1 which simplifies the proof.
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2424

2425

We now have all the ingredients to prove Lemma 6.5.

Proof (of Lemma 6.5). We denote by wy,...,wy the connected components of w
labeled such that

supw; <infw;iq, Vi e [1,N —1].

For any j € [1, N], let Ao(w;) > 0 be the constant given by Corollary E.1 applied to
the interval w;. Let

Ao = A ;
0 el 0(y)

and, let K > 0 be such that

We start with the proof of item i.
Let € = [a,b] be a connected component of (0,1)\w. Integrating by parts we
obtain

/€ F(x)pp(z)de = —(yu'or)(0) + (7' ¢r) (a) + (wyer) (b) — (uypy)(a).
Recall that from (5.7),
r(@)] + \/}k@;(xn <O Vre(0,1), k> 1.

Similarly, applying Lemma 5.1 with y = 0 we obtain

(E.5) |Gk ()| + \/%%(x)l <C, Vxe(0,1),Vk>1
Thus,
¢117k /@ Fo)pi(z)dz| < C <|u<a> + \;VL:O |u/(a)|> e <|u(b)| N ;%b)m,(b”) |

e If €N {0,1} = &, then there exists j € [2, N] such that a € w;—7 and b € w;.
Applying twice Corollary E.1 we obtain

Vv7(a)

lu(a)| + WIU'(G)\ < C (Vurlulle, s + I1Fllw, ) »
and
lu(b)[ + ﬂIU’(b)I < C (Vukllullw, + I1F]lwy)

N

where C' now also depends on w. This implies

< C(Vurlullw +1F])

/ F(a)pi(x)da
¢

The same computations hold for | [, F(z)@k(z)dz|.
78

This manuscript is for review purposes only.



2429

2430

2431

2433
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2436

2437

2438

2439

2440

2441

2442

2443

2444
2445

2446

2447

2448
2449

e Now, if a = 0, taking into account the boundary condition ¢i(a) = 0, the

same computations yields
1

N /c F(z)p(x)d

As b € w, applying Corollary E.1 we obtain

7(b)
NS

NS

|u(b)] + ' (0)] < C (Vllulle + [[Fll)

which implies

e Similarly, if b = 1, we prove that

Gathering these results proves item i.

We now turn to the proof of item ii.
e We start designing u a solution of

(A —vp)u=F,
u(0) =u(l) =0,
such that
(E6)  fu(z)|+ ]Vi:) ! (z)] < f (Mi(F) + [ Fllor)

Let @ be any solution of

(A—I/k)HZF,
u(0) =u(1) =

< Clu(0)| + C <u(b)| IRa0) u’(b)|> ~

/e F(@)g(@)dz| < C(y/rllullo + varlu©)] + [ Fll)-

/@ﬂ@%(@dm < C(Voellulle + vorlu()] + [ Fll)-

Vo € wy.

If 0 € w1 we set b = infw; whereas if 0 € Wy we set b € w;. Notice that in

both cases

b
/O F(x)er(x)dz =(b)y(b) e (b) — y(b)T' (b)@x ().

Applying Lemma 5.1 with y = b, integrating with respect to the variable
x € (0,1) and using [[¢x][(0,1) = 1 we obtain that there exists C' > 0 such

that

()] + jyﬁf’w;(b» e

— Ak
— If | (b)| > &, we set u =1 — w;c( ) 0.

79

This manuscript is for review purposes only.



2460
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2462
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2464

2465

2466

2467

2468
2469

2470

2471

2472

2473
2474
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2476

Thus, we have u(b) = 0 which implies

-1 b
T (0) = ———— | F)pu(a)d.
VA (0)er(b) Jo

Thus,

(), c /b
E.7 u(b)| + u (b)) < — F(x r)dz| .
(E.7) |u(d)| \/E‘()‘_\/ﬁo (x)er ()

— Otherwise, we have JVLZ)) |0 (b)] > % Setting u = u — %(pk, the

same computations also imply (E.7).

We now prove that (E.7) implies (E.6).
As b € wy, applying Lemma 5.1 and (E.7) we obtain for any = € @y,

(@), (®), L
ol + 8y <x>|sc<|u<b>+ 0, <b>|+M|F||M>
C
< =
< \/E(

+ ||F||w1> :

— Assume first that 0 € wy and recall that b = inf w;. Then, by definition
of My (F,w) (see (6.8)), we have

/ ' Pla)pu(@)d

/OF(;v)gok(x)dx < M (Fw).

Thus, for any = € wy,

fu(z)| + %) ()] < \/(’;»k(wﬂ @)+ [ Flon)-

— Otherwise, 0 € w7 and we have set b € wy. Then, since (0,b) C wy and
llerllo,1) =1, we have

b
| F@gerte)a] < Il
Thus, for any x € Wy,
7(%) / C
u(x)| + ()] < —||F||w,-
lu(z)| Ml()\ MHH

Gathering these two cases proves (E.G).

e We prove by induction that the function w designed at the previous step

satisfies
7($) ’ C —
B8 )+ LW @) € = (MyF ) 1), Veeds
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2490

2494

2495

2496

2497

2498

2499

The case j = 1 was proved in the previous step. Let j € [2, N] be such that

Ju(e)| + \/glw(w)l < f(Mk( w)+|Fl.),  Vrewig

Let a; = supw;_1 and b; = infw;. Integrating by parts we obtain

1 b ()i (b;)  y(by)u'(by)

%iajﬂ@%@ﬁmzw%) N N er(by)
u(aj)W(aiﬁgi(aj) V(Gixzfaj)¢k(aj)

The same computations hold replacing ¢ by @r. This can be rewritten in
matrix form as

(E.9)
HACL (b)) [ ulby) f] (2)on(2)da
Y (b;) @5 (b5) ~ bl (by) | = b; + R
U —ou(by) Vor F(x)@(z)dz

with

IR, < C <|u<aj>| n }%W(am) |

Notice that the determinant of the matrix appearing in (E.9) is a wronskian
which is constant. Thus,

b]' /bj
» ij) —en(bi)) __ 7(0)¢(0)
W) g (p,) Ve

which is bounded from below. From (5.7) and (E.5), all the coefficients of
this matrix are also bounded. Thus, we obtain

fulby)| + }%)m’(w < \%Mk(ﬂm L OIR,).

As a; € w;—7 the induction hypothesis imply

IR < ﬁ(Mku:’ @) + IF L)

and thus
'Y(bj) ’ c
. v A7 N < —
|u(bs)] + N |u'(bj)] N (M (F,w) + [[Fll) -
As b; € wj, applying Lemma 5.1 we obtain for any x € @y
(@), YO) oy L
c
f( R(F,w) + [ Fll)

This proves (E.8).
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e Conclusion. From (E.8) we obtain

u(e)] € <= (Mu(F) + IFIL), Yo ew;, Vi€ [LA],

ThlS leadS to
w; — /iyk k ) w ) )

and ends the proof of item ii. O
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