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Abstract. This article deals with abstract linear time invariant controlled systems of parabolic4
type. In [Annales Henri Lebesgue, 3 (2020), pp. 717–793], with A. Benabdallah, we introduced the5
block moment method for scalar control operators. The principal aim of this method is to compute6
the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in7
particular in the case when spectral condensation occurs. The purpose of the present article is to8
push forward the analysis to deal with any admissible control operator. The considered setting leads9
to applications to one dimensional parabolic-type equations or coupled systems of such equations.10

With such admissible control operator, the characterization of the minimal null control time is11
obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the12
control space) followed by a constrained optimization procedure of the cost of this resolution. This13
leads to essentially sharp estimates on the resolution of the block moment problems which are uniform14
with respect to the spectrum of the evolution operator in a certain class. This uniformity allows the15
study of uniform controllability for various parameter dependent problems. We also deduce estimates16
on the cost of controllability when the final time goes to the minimal null control time.17

We illustrate how the method works on a few examples of such abstract controlled systems and18
then we deal with actual coupled systems of one dimensional parabolic partial differential equations.19
Our strategy enables us to tackle controllability issues that seem out of reach by existing techniques.20
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1. Introduction.24

1.1. Problem under study and state of the art.25

In this paper we study the controllability properties of the following linear control26

system27

(1.1)

{
y′(t) +Ay(t) = Bu(t),
y(0) = y0.

28

The assumptions on the operator A (see Section 2.1) will lead to applications to29

linear parabolic-type equations or coupled systems of such equations mostly in the30

one dimensional setting. In all this article the Hilbert space of control will be denoted31

by U and the operator B will be a general admissible operator.32

The question we address is the characterization of the minimal null control time33

(possibly zero or infinite) from y0 that is: for a given initial condition y0, what34

is the minimal time T0(y0) such that, for any T > T0(y0), there exists a control35

u ∈ L2(0, T ;U) such that the associated solution of (1.1) satisfies y(T ) = 0. A36

more precise definition of the minimal null control time is given in Definition 2.1 in37

Section 2.1.1.38
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For a presentation of null controllability of parabolic control problems as well as39

the possible existence of a positive minimal null control time for such equations we40

refer to [4] or [9, Section 1.1] and the references therein. Such a positive minimal41

null control time is due either to insufficient observation of eigenvectors, or to con-42

densation of eigenvalues or to the geometry of generalized eigenspaces, or even to a43

combination of all those phenomena. Let us underline that this phenomenon is com-44

pletely unrelated to the minimal control time arising from constraints on the state45

or on the control as studied for instance in [31], or to the one arising in hyperbolic46

problems due to intrinsic finite speed of propagation in the equation.47

Under the considered assumptions on A, the problem of characterizing the mini-48

mal null control time has been solved for scalar controls (dimU = 1) in [9] where the49

block moment method has been introduced in that purpose. The aim of the present50

article is to push forward the analysis of [9] to extend it to any admissible control51

operator. The new difficulties come from the interplay between spectral condensation52

phenomena and the particular geometry of the control operator.53

To present the general ideas, let us assume for simplicity that the operator A∗54

has a sequence of real and positive eigenvalues Λ and that the associated eigenvectors55

ϕλ, for λ ∈ Λ, form a complete family of the state space (the precise functional setting56

is detailed in Section 2.1). Then, the solution of system (1.1) satisfies y(T ) = 0 if and57

only if the control u ∈ L2(0, T ;U) solves the following moment problem58

(1.2)

∫ T

0

e−λt ⟨u(T − t),B∗ϕλ⟩U dt = −e−λT ⟨y0, ϕλ⟩ , ∀λ ∈ Λ.59

• Solving moment problems associated with a scalar control operator.60

In the scalar case (U = R), provided that B∗ϕλ ̸= 0, the moment problem reduces61

to62

(1.3)

∫ T

0

e−λtu(T − t)dt = −e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
, ∀λ ∈ Λ.63

This problem is usually solved by the construction of a biorthogonal family (qλ)λ∈Λ64

to the exponentials65 {
t ∈ (0, T ) 7→ e−λt ; λ ∈ Λ

}
66

in L2(0, T ;U), i.e., a family (qλ)λ∈Λ such that67 ∫ T

0

qλ(t)e
−µtdt = δλ,µ, ∀λ, µ ∈ Λ.68

From [36], the existence of such biorthogonal family is equivalent to the summability69

condition70

(1.4)
∑
λ∈Λ

1

λ
< +∞.71

Remark 1.1. This condition (which will be assumed in the present article) is the72

main restriction to apply the moment method. Indeed, due to Weyl’s law it imposes73

on many examples of partial differential equations of parabolic-type a restriction to the74

one dimensional setting. However, in some particular multi-dimensional geometries,75

the controllability problem can be transformed into a family of parameter dependent76

moment problems, each of them satisfying such assumption (see for instance [8, 3, 15]77

among others).78
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With such a biorthogonal family, a formal solution of the moment problem (1.3)79

is given by80

u(T − t) = −
∑
λ∈Λ

e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
qλ(t), t ∈ (0, T ).81

Thus if, for any y0, the series defining u converges in L2(0, T ;U) one obtains null82

controllability of system (1.1) in time T . To do so, it is crucial to prove upper bounds83

on ∥qλ∥L2(0,T ).84

Suitable bounds on such biorthogonal families were provided in the pioneering85

work of Fattorini and Russell [21] in the case where the eigenvalues of A∗ are well86

separated i.e. satisfy the classical gap condition: inf {|λ− µ| ; λ, µ ∈ Λ, λ ̸= µ} > 0.87

When the eigenvalues are allowed to condensate we refer to the work [5] for almost88

sharp estimates implying the condensation index of the sequence Λ. A discussion on89

other references providing estimates on biorthogonal families is detailed below. These90

results have provided an optimal characterization of the minimal null control time91

when the eigenvectors of A∗ form a Riesz basis of the state space (and thus do not92

condensate).93

However, as analyzed in [9], there are situations in which the eigenvectors also94

condensate and for which providing estimates on biorthogonal families is not sufficient95

to characterize the minimal null control time. In [9], it is assumed that the spectrum96

Λ can be decomposed as a union G of well separated groups of bounded cardinality.97

Then, the control u is seeked in the form98

u(T − t) =
∑
G∈G

vG(t),99

where, for any G ∈ G, the function vG ∈ L2(0, T ;U) solves the block moment problem100

(1.5)


∫ T

0

e−λtvG(t)dt = e−λT
〈
y0,

ϕλ
B∗ϕλ

〉
, ∀λ ∈ G,∫ T

0

e−λtvG(t)dt = 0, ∀λ ̸∈ G.

101

This enables to deal with the condensation of eigenvectors: the eigenvectors (ϕλ)λ∈Λ102

are only assumed to form a complete family of the state space.103

• Solving moment problems associated with a non scalar control operator.104

When the control is not scalar there are less available results in the literature. Here105

again, these results rely on the existence of a biorthogonal family to the exponentials106

with suitable bounds. For instance, in [6], null controllability in optimal time is proved107

using a subtle decomposition of the moment problem into two families of moment108

problems. In a more systematic way, one can take advantage of the biorthogonality109

in the time variable to seek for a solution u of the moment problem (1.2) in the form110

u(T − t) = −
∑
λ∈Λ

e−λT ⟨y0, ϕλ⟩ qλ(t)
B∗ϕλ

∥B∗ϕλ∥2U
.111

This strategy was introduced by Lagnese in [25] for a one dimensional wave equation112

and used in the parabolic context for instance in [17, 2, 18, 3].113

In the present article we deal with such general admissible control operators.114

As the eigenvectors will only be assumed to form a complete family, for each initial115
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condition y0, we study its null control time for system (1.1) by solving block moment116

problems of the following form117

(1.6)


∫ T

0

〈
VG(t), e

−λtB∗ϕλ
〉
U
dt =

〈
y0, e

−λTϕλ
〉
, ∀λ ∈ G,∫ T

0

〈
VG(t), e

−λtB∗ϕλ
〉
U
dt = 0, ∀λ ̸∈ G.

118

Let us recall that, for pedagogical purposes, we have restricted this first introductory119

subsection to the case of real simple eigenvalues. The general form of block moment120

problems under study in this article is detailed in Section 2.2.121

The strategy to solve such block moment problem and estimate its solution is122

presented on an example in Section 1.3. Let us already notice that the geometry of123

the finite dimensional space Span{B∗ϕλ ; λ ∈ G} is crucial.124

For instance, if this space is one dimensional, say generated by some b ∈ U , the125

strategy of Lagnese can be adapted if one seeks for VG solution of the block moment126

problem (1.6) in the form127

VG(t) = vG(t)b,128

where vG ∈ L2(0, T ;R) solves a scalar block moment problem of the same form129

as (1.5).130

If, instead, the family (B∗ϕλ)λ∈G is composed of linearly independent vectors131

then it admits a biorthogonal family in U denoted by (b∗λ)λ∈G. Then, one can for132

instance seek for VG solution of the block moment problem (1.6) in the form133

VG(t) = vG(t)

(∑
λ∈G

b∗λ

)
.134

where vG solves a scalar block moment problem of the form (1.5). An upper bound135

of the minimal control time can then be obtained thanks to an estimate of the family136

(b∗λ)λ∈G, but without guarantee of optimality.137

In the general setting, taking into account the geometry of the observations of138

eigenvectors to solve block moment problems of the form (1.6) is a more intricate139

question that we solve in this article, still under the summability condition (1.4).140

Let us mention that we not only solve block moment problems of the form (1.6)141

but we also provide estimates on their solutions to ensure that the series defining the142

control converges. These estimates will lead to an optimal characterization of the143

minimal null control time for each given problem.144

We pay particular attention to these estimates so that they do not directly depend145

on the sequence Λ but are uniform for classes of such sequences. This is an important146

step to tackle uniform controllability for parameter dependent control problems. Esti-147

mates of this kind have already proved their efficiency in various contexts such as: nu-148

merical analysis of semi-discrete control problems [2], oscillating coefficients [32], anal-149

ysis of degenerate control problems with respect to the degeneracy parameter [17, 18],150

analysis of higher dimensional controllability problems by reduction to families of one151

dimensional control problems [8, 1, 3, 15] or analysis of convergence of Robin-type152

controls to Dirichlet controls [11].153

Another important feature of the estimates we obtain is to track the dependency154

with respect to the final time T when T goes to the minimal null control time. As pre-155

sented in Remark 2.8, this allows applications in higher dimensions (with a cylindrical156

geometry) or applications to nonlinear control problems.157
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• An overview of some estimates on biorthogonal families.158

Finally, let us recall some classical results providing estimates for biorthogonal159

families to a sequence of exponentials.160

Under the classical gap condition, uniform estimates for biorthogonal families161

were already obtained in [22] and sharp short-time estimates were obtained in [8].162

In this setting, bounds with a detailed dependency with respect to parameters were163

given in [19]. In this work, the obtained bounds take into account the fact that the164

gap property between eigenvalues may be better in high frequencies. Similar results165

were also obtained in [26].166

Under a weak-gap condition of the form (2.4), that is when the eigenvalues can167

be gathered in blocks of bounded cardinality with a gap between blocks (which is168

the setting of the present article), uniform estimates on biorthogonal sequences follow169

from the uniform estimates for the resolution of block moment problems proved in [9].170

Similar estimates, but where the sharp dependency with respect to T of the different171

constants is tracked, were obtained in [24]. Using the strategy detailed in [12], the172

estimates of [9] can also be supplemented with such dependency with respect to T173

(see Theorem A.1). Let us mention that similar results were also obtained in [16] with174

stronger assumptions, namely with a weak-gap assumption on the square roots of the175

eigenvalues.176

In the absence of any gap-type condition, estimates on biorthogonal families were177

first proved in [5] involving the condensation index and then later in [3] involving a178

local measure of the gap.179

1.2. Structure of the article.180

To ease the reading, let us give here the detailed outline of this article.181

In Section 1.3 we detail, for a simple example, the obtained results as well as182

our strategy of proof. This allows to explain the contents of this article without183

introducing too many notations.184

In Section 2.1, we detail the framework, assumptions and notations that will be185

used throughout this article. The main results concerning the resolution of block186

moment problems with a non scalar control are stated in Section 2.2. The application187

of these results to the characterization of the minimal null control time is stated in188

Section 2.3. We provide in Section 2.4 more explicit formulas to compute the minimal189

null control time. We also deduce from our study some estimates on the cost of190

controllability that are given in Section 2.5.191

The results concerning the resolution of block moment problems are proved in192

Section 3. The application of these results to the characterization of the minimal193

null control time and the study of the cost of null controllability are then proved in194

Section 4. More explicit formulas for the computation of the minimal null control195

time are proved in Section 5.196

Finally we apply these results to different examples. First we deal in Section 6197

with academic examples. For these examples the computations are rather simple and198

this allows to highlight the different phenomena at stake in this minimal null control199

time study. We end this article with the analysis of null controllability for systems of200

coupled linear partial differential equations of parabolic type in Section 7.201

1.3. Our analysis on a toy system.202

To highlight the ideas we develop in this article (without drowning them in tech-203

nicalities or notations), let us present our strategy of analysis of null controllability204

on an abstract simple example.205
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We consider X = L2(0, 1;R)2 and ω ⊂ (0, 1) a non empty open set. For a given206

a > 0 we define207

Λ =
{
λk,1 := k2, λk,2 := k2 + e−ak

2

; k ≥ 1
}
,208

and take (φk)k≥1 a Hilbert basis of L2(0, 1;R) such that209

inf
k≥1

∥φk∥L2(ω) > 0.210

Let ϕk,1 :=

(
φk
φk

)
and ϕk,2 :=

(
0
φk

)
. We define the operator A∗ in X by211

A∗ϕk,1 = λk,1ϕk,1, A∗ϕk,2 = λk,2ϕk,2,212

with213

D(A∗) =

∑
k≥1

ak,1ϕk,1 + ak,2ϕk,2 ;
∑
k≥1

λ2k,1a
2
k,1 + λ2k,2a

2
k,2 < +∞

 .214

The control operator B is defined by U = L2(0, 1;R) and215

B : u ∈ U 7→
(

0
1ωu

)
∈ X.216

The condition infk≥1 ∥φk∥L2(ω) > 0 yields217

(1.7) B∗ϕk,1 = B∗ϕk,2 = 1ωφk ̸= 0, ∀k ≥ 1.218

This ensures approximate controllability of system (1.1).219

We insist on the fact that the goal of this article is not to deal with this particular220

example but to develop a general methodology to analyze the null controllability of221

system (1.1). The general assumptions that will be considered in this article are222

detailed in Section 2.1.223

• Let y0 ∈ X. From Proposition 2.1 and the fact that {ϕk,1, ϕk,2 ; k ≥ 1} forms a224

complete family of X, system (1.1) is null controllable from y0 at time T if and only225

if there exists u ∈ L2(0, T ;U) such that for any k ≥ 1 and any j ∈ {1, 2},226 ∫ T

0

e−λk,jt ⟨u(T − t),B∗ϕk,j⟩U dt = −e−λk,jT ⟨y0, ϕk,j⟩X .227

Following the idea developed in [9], we seek for a control u of the form228

(1.8) u(t) = −
∑
k≥1

vk(T − t)229

where, for each k ≥ 1, vk ∈ L2(0, T ;U) solves the block moment problem230

(1.9)


∫ T

0

e−λk,jt ⟨vk(t),B∗ϕk,j⟩U dt = e−λk,jT ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2},∫ T

0

e−λk′,jt ⟨vk(t),B∗ϕk′,j⟩U dt = 0, ∀k′ ̸= k, ∀j ∈ {1, 2}.
231
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• To solve (1.9), for a fixed k, we consider the following auxiliary block moment232

problem in the space U233

(1.10)


∫ T

0

e−λk,jtvk(t)dt = Ωk,j , ∀j ∈ {1, 2},∫ T

0

e−λk′,jtvk(t)dt = 0, ∀k′ ̸= k, ∀j ∈ {1, 2},
234

where Ωk,j ∈ U have to be precised. If we impose that Ωk,1 and Ωk,2 satisfy the235

constraints236

(1.11) ⟨Ωk,j ,B∗ϕk,j⟩U = e−λk,jT ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2},237

we obtain that the solutions of (1.10) also solve (1.9). The existence of Ωk,1 and238

Ωk,2 satisfying the constraints (1.11) is ensured by the approximate controllabil-239

ity condition (1.7); however there exist infinitely many choices. A crucial point240

is that, by orthogonal projection, there exists Ωk,1 and Ωk,2 in the space Uk =241

Span{B∗ϕk,1,B∗ϕk,2} satisfying the constraints (1.11).242

Then, for any Ωk,1, Ωk,2 ∈ Uk, since the space Uk is of finite dimension, applying243

the scalar results of [9] component by component leads to the existence of vk ∈244

L2(0, T ;U) satisfying (1.10). It also gives the following estimate245

(1.12) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1F (Ωk,1,Ωk,2),246

with247

F : (Ωk,1,Ωk,2) ∈ U2 7→ ∥Ωk,1∥2U +

∥∥∥∥Ωk,2 − Ωk,1
λk,2 − λk,1

∥∥∥∥2
U

.248

Using (1.12) and minimizing the function F under the constraints (1.11) we obtain249

that there exists vk ∈ L2(0, T ;U) solution of the block moment problem (1.9) such250

that251

(1.13) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1 inf {F (Ωk,1,Ωk,2) ; Ωk,1,Ωk,2 satisfy (1.11)} .252

The corresponding general statements of the resolution of block moment problems253

are detailed in Section 2.2 (see Theorem 2.4) and proved in Section 3. Actually using254

a refined version of the results in [9] (see Theorem A.1) we obtain sharper results255

including dependency with respect to T .256

• Now that we can solve the block moment problems (1.9), a way to characterize the257

minimal null control time is to estimate for which values of T the series (1.8) defining258

the control u converges in L2(0, T ;U).259

To achieve this goal, we isolate in the estimate (1.13) the dependency with respect260

to T . Notice that the function F does not depend on T but that the constraints (1.11)261

do.262

For any k ≥ 1 and any Ωk,1, Ωk,2 ∈ Uk we set263

Ω̃k,j := eλk,jTΩk,j , ∀j ∈ {1, 2}.264

Then, there is equivalence between the constraints (1.11) and the new constraints265

(1.14)
〈
Ω̃k,j ,B∗ϕk,j

〉
U
= ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2}.266
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Now these constraints are independent of the variable T . From the mean value theo-267

rem we obtain268

F (Ωk,1,Ωk,2) =
∥∥∥e−λk,1T Ω̃k,1∥∥∥2

U
+

∥∥∥∥∥e−λk,2T Ω̃k,2 − e−λk,1T Ω̃k,1
λk,2 − λk,1

∥∥∥∥∥
2

U

.269

≤ e−2λk,1T
∥∥∥Ω̃k,1∥∥∥2

U
+ 2e−2λk,2T

∥∥∥∥∥ Ω̃k,2 − Ω̃k,1
λk,2 − λk,1

∥∥∥∥∥
2

U

270

+ 2

(
e−λk,2T − e−λk,1T

λk,2 − λk,1

)2 ∥∥∥Ω̃k,1∥∥∥2
U

271

≤ 2(1 + T 2)e−2λk,1TF (Ω̃k,1, Ω̃k,2).272273

The general statement of this estimate is given in Lemma 4.1.274

Plugging this estimate into (1.12) and optimizing the function F under the con-275

straints (1.14) yields276

(1.15) ∥vk∥2L2(0,T ;U) ≤ CT,εe
ελk,1e−2λk,1TCk(y0)277

where Ck(y0) is the quantity, independent of T , given by278

279

(1.16) Ck(y0) := inf

{∥∥∥Ω̃1

∥∥∥2
U
+

∥∥∥∥∥ Ω̃2 − Ω̃1

λk,2 − λk,1

∥∥∥∥∥
2

U

; Ω̃1, Ω̃2 ∈ Uk satisfy280

〈
Ω̃j ,B∗ϕk,j

〉
U
= ⟨y0, ϕk,j⟩X , ∀j ∈ {1, 2}

}
.281

282

Estimate (1.15) proves that for any time T > 0 such that283

T > lim sup
k→+∞

ln Ck(y0)
2λk,1

284

the series (1.8) defining the control u converges in L2(0, T ;U). Thus, null controlla-285

bility of (1.1) from y0 holds for such T .286

We also prove that the obtained estimate (1.15) is sufficiently sharp so that it287

characterizes the minimal null control time from y0 as288

(1.17) T0(y0) = lim sup
k→+∞

ln Ck(y0)
2λk,1

.289

The corresponding general statements regarding the minimal null control time290

together with bounds on the cost of controllability are detailed in Section 2.2 (see291

Theorem 2.5) and proved in Section 4.292

• At this stage we have characterized the minimal null control time as stated in (1.17).293

However to be able to estimate the actual value of T0(y0) one should be able to294

estimate the quantity Ck(y0) as defined in (1.16). This formula is not very explicit295

and it does not get better in the general setting.296

However, we notice that (1.16) is a finite dimensional optimization problem that297

we explicitly solve in terms of the eigenelements of A∗ and their observations through298

B∗.299
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Indeed the minimization problem (1.16) has a unique solution characterized by300

the existence of multipliers m1, m2 ∈ R such that for any H1, H2 ∈ Uk we have301

(1.18)〈
H1, Ω̃1

〉
U
+

〈
Ω̃2 − Ω̃1

λk,2 − λk,1
,
H2 −H1

λk,2 − λk,1

〉
U

= m1 ⟨H1,B∗ϕk,1⟩U +m2 ⟨H2,B∗ϕk,2⟩U .302

Setting H1 = H2 = H for any H ∈ Uk implies303

Ω̃1 = m1B∗ϕk,1 +m2B∗ϕk,2.304

Setting H1 = 0 and H2 = (λk,2 − λk,1)H for any H ∈ Uk implies305

Ω̃2 = m1B∗ϕk,1 +m2B∗ϕk,2 +m2(λk,2 − λk,1)
2B∗ϕk,2.306

Getting back to the constraints (1.14) we obtain307

(1.19)

(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
=M

(
m1

m2

)
,308

where the 2× 2 matrix M is defined by309

M = GramU (B∗ϕk,1,B∗ϕk,2) + GramU (0, (λk,2 − λk,1)B∗ϕk,2) .310

Setting H1 = Ω̃1 and H2 = Ω̃2 in (1.18) and using (1.19) impliy311

Ck(y0) =
∥∥∥Ω̃1

∥∥∥2
U
+

∥∥∥∥∥ Ω̃2 − Ω̃1

λk,2 − λk,1

∥∥∥∥∥
2

U

=

〈(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
,

(
m1

m2

)〉
312

=

〈(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)
,M−1

(
⟨y0, ϕk,1⟩X
⟨y0, ϕk,2⟩X

)〉
.313

314

Thus, after computations, for the particular example we are considering here, the315

obtained formula reads316

Ck(y0) =
1

∥φk∥2L2(ω)

〈
y0,

(
φk
φk

)〉2

X

+
e2ak

2

∥φk∥2L2(ω)

〈
y0,

(
φk
0

)〉2

X

.317

Then, from (1.17), it comes that the minimal null control time from X of this example318

is given by319

T0(X) = a.320

Notice, for instance, that this expression also gives that for a given y0 if the set321 {
k ∈ N∗ ;

〈
y0,

(
φk
0

)〉
X

̸= 0

}
322

is finite, then null controllability from y0 holds in any positive time, i.e. T0(y0) = 0.323

We obtain different explicit formula depending on the configuration for the multi-324

plicity of the eigenvalues of the considered block. The general statements of an explicit325

solution of the corresponding optimization problem are detailed in Section 2.4 (see326

Theorem 2.8 and Theorem 2.10) and proved in Section 5.327
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2. Main results.328

We state in this section the main results of this article concerning the resolution329

of block moment problems and the application to the characterization of the minimal330

null control time. We start by giving the functional setting and assumptions we use.331

2.1. Framework, spectral assumptions and notations.332

2.1.1. Functional setting.333

The functional setting for the study of system (1.1) is the same as in [9]. For the334

sake of completeness, let us briefly detail it. Unless explicitly stated, all the spaces335

are assumed to be complex vector spaces.336

We consider X a Hilbert space, whose inner product and norm are denoted by337

⟨•, •⟩X and ∥•∥X respectively. The space X is identified to its anti-dual through the338

Riesz theorem. Let (A, D(A)) be an unbounded operator inX such that −A generates339

a C0−semigroup in X. Its adjoint in X is denoted by (A∗, D(A∗)). Up to a suitable340

translation, we can assume that 0 is in the resolvent set of A.341

We denote by X1 (resp. X∗
1 ) the Hilbert space D(A) (resp. D(A∗)) equipped342

with the norm ∥x∥1 := ∥Ax∥X (resp. ∥x∥1∗ := ∥A∗x∥X) and we define X−1 as the343

completion of X with respect to the norm344

∥y∥−1 := sup
z∈X∗

1

⟨y, z⟩X
∥z∥1∗

.345

Notice that X−1 is isometrical to the topological anti-dual of X∗
1 using X as a pivot346

space (see for instance [38, Proposition 2.10.2]). The corresponding duality bracket347

will be denoted by ⟨•, •⟩−1,1∗ and satisfies348

⟨y, cz⟩−1,1∗ = c ⟨y, z⟩−1,1∗ , ∀y ∈ X−1,∀z ∈ X∗
1 ,∀c ∈ C.349

The control space U is a Hilbert space (that we will identify to its anti-dual). Its inner350

product and norm are denoted by ⟨•, •⟩U and ∥•∥U respectively. Let B : U → X−1 be351

a linear continuous control operator and denote by B∗ : X∗
1 → U its adjoint in the352

duality described above.353

Let (X∗
⋄ , ∥.∥⋄∗) be a Hilbert space such that X∗

1 ⊂ X∗
⋄ ⊂ X with dense and354

continuous embeddings. We assume that X∗
⋄ is stable by the semigroup generated by355

−A∗. We also define X−⋄ as the subspace of X−1 defined by356

X−⋄ :=

{
y ∈ X−1 ; ∥y∥−⋄ := sup

z∈X∗
1

⟨y, z⟩−1,1∗

∥z∥⋄∗
< +∞

}
,357

which is also isometrical to the anti-dual of X∗
⋄ with X as a pivot space. The cor-358

responding duality bracket will be denoted by ⟨•, •⟩−⋄,⋄. Thus, we end up with the359

following five functional spaces360

X∗
1 ⊂ X∗

⋄ ⊂ X ⊂ X−⋄ ⊂ X−1.361

We say that the control operator B is an admissible control operator for (1.1) with362

respect to the space X−⋄ if for any T > 0 there exists CT > 0 such that363

(2.1)

∫ T

0

∥∥∥B∗e−(T−t)A∗
z
∥∥∥2
U
dt ≤ CT ∥z∥2⋄∗ , ∀z ∈ X∗

1 .364
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Notice that if (2.1) holds for some T > 0 it holds for any T > 0. The admissibility365

condition (2.1) implies that, by density, we can give a meaning to the map366 (
t 7→ B∗e−(T−t)A∗

z
)
∈ L2(0, T ;U),367

for any z ∈ X∗
⋄ . Then, we end up with the following well-posedness result (see [9,368

Proposition 1.2]).369

proposition 2.1. Assume that (2.1) holds. Then, for any T > 0, any y0 ∈ X−⋄,370

and any u ∈ L2(0, T ;U), there exists a unique y ∈ C0([0, T ];X−⋄) solution to (1.1)371

in the sense that it satisfies for any t ∈ [0, T ] and any zt ∈ X∗
⋄ ,372

⟨y(t), zt⟩−⋄,⋄ −
〈
y0, e

−tA∗
zt

〉
−⋄,⋄

=

∫ t

0

〈
u(s),B∗e−(t−s)A∗

zt

〉
U
ds.373

Moreover there exists CT > 0 such that374

sup
t∈[0,T ]

∥y(t)∥−⋄ ≤ CT
(
∥y0∥−⋄ + ∥u∥L2(0,T ;U)

)
.375

Remark 2.1. By analogy with the semigroup notation, when u = 0, we set for376

any t ∈ [0, T ], e−tAy0 := y(t). This extends the semigroup e−•A defined on X to X−⋄377

and implies that for any z ∈ X−⋄,378

(2.2)
〈
e−TAz, ϕ

〉
−⋄,⋄ =

〈
z, e−TA∗

ϕ
〉
−⋄,⋄

, ∀ϕ ∈ X∗
⋄ .379

With this notion of solution at hand, we finally define the minimal null control380

time from a subspace of initial conditions Y0.381

Definition 2.1. Let Y0 be a closed subspace of X−⋄ and let T > 0. The sys-382

tem (1.1) is said to be null controllable from Y0 at time T if for any y0 ∈ Y0, there383

exists a control u ∈ L2(0, T ;U) such that the associated solution of (1.1) satisfies384

y(T ) = 0.385

The minimal null control time T0(Y0) ∈ [0,+∞] is defined by386

• for any T > T0(Y0), system (1.1) is null controllable from Y0 at time T ;387

• for any T < T0(Y0), system (1.1) is not null controllable from Y0 at time T .388

To simplify the notations, for any y0 ∈ X−⋄, we define T0(y0) := T0(Span{y0}).389

2.1.2. Spectral assumptions.390

In all this article we assume that the operators A and B satisfy the assumptions391

of Section 2.1.1. Moreover to solve the control problem we will need some additional392

spectral assumptions.393

⋆ Behavior of eigenvalues.394

We assume that the spectrum ofA∗, denoted by Λ, is only composed of (countably395

many) eigenvalues. Moreover, we assume that the eigenvalues lie in a suitable sector396

of the complex plane, i.e., there exists τ > 0 such that397

(2.3) Λ ⊂ Sτ398

where399

Sτ := {z ∈ C ; ℜz > 0 and |ℑz| < (sinh τ)ℜz} .400
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Remark 2.2. In [9], the assumption on Λ was stronger. Namely, in that article401

it was assumed that Λ ⊂ (1,+∞). The fact that minΛ ≥ 1 was only used in the402

lower bound on the solution of scalar block moment problems (see estimate (A.3)).403

The extension to complex eigenvalues satisfying (2.3) was done in [12] and is stated404

in Appendix A.405

If necessary, one can replace the operator A by A + σ without modifying the406

controllability properties. Then, in the different estimates, the behavior with respect407

to σ can be carefully tracked if needed.408

As in the case of a scalar control (see [9]) we assume that this spectrum satisfies409

a weak-gap condition. Namely, there exists p ∈ N∗ and ϱ > 0 such that410

(2.4) ♯
(
Λ ∩D(µ, ϱ/2)

)
≤ p, ∀µ ∈ C,411

where D(µ, ϱ/2) denotes the open disk in the complex plane with center µ and radius412

ϱ/2. This means that the eigenvalues are allowed to condensate by groups but the413

cardinality of these groups should be bounded. To precise this, let us recall the notion414

of groupings used in [9, Definition 1.6, Proposition 7.1] and extended to the complex415

setting in [12, Proposition V.5.28].416

proposition 2.2. Let p ∈ N∗ and ϱ > 0. Let Λ ⊂ C be such that the weak-gap417

condition (2.4) holds. Then, there exists a countable family G of disjoint subsets of Λ418

satisfying419

(2.5) Λ =
⋃
G∈G

G420

and each G ∈ G satisfies421

(2.6) diamG ≤ ϱ,422

423

(2.7) ♯G ≤ p,424

and425

(2.8) dist (ConvG,Λ\G) ≥ ϱ

2× 4p−1
.426

Let us mention that the results do not depend on the particular construction done427

in [12, Proposition V.5.28] and remain valid for any grouping G satisfying (2.5)-(2.8).428

Concerning the asymptotic behavior of the spectrum we will use the counting429

function associated to Λ defined by430

NΛ : r > 0 7→ ♯ {λ ∈ Λ ; |λ| ≤ r} .431

We assume that there exists κ > 0 and θ ∈ (0, 1) such that432

(2.9) NΛ(r) ≤ κrθ, ∀r > 0433

and434

(2.10) |NΛ(r)−NΛ(s)| ≤ κ×
(
1 + |r − s|θ

)
, ∀r, s > 0.435

Notice that this condition is slightly stronger than the classical summability condi-436

tion (1.4) used for instance in [22, 5, 9] and many other works.437
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Remark 2.3. Let us underline that if we do not assume (2.10) to hold all the438

results of the present article still hold with a slight change in the estimates. To lighten439

the writing we only detail this change for Theorem A.1 concerning the resolution of440

block moment problems with a scalar control (see Remark A.1). However, as proved441

in Section 7, the assumption (2.10) holds for many examples.442

Notice also that (2.9), with r = inf |Λ|, implies the following lower bound on the443

bottom of the spectrum444

inf |Λ| ≥ κ−θ.445

Our goal is not only to study the controllability properties of our system but also to446

obtain estimates that are uniform in a way to be precised. To do so, we define the447

following class of sequences: let p ∈ N∗, ϱ, τ, κ > 0, θ ∈ (0, 1) and consider the class448

(2.11) Lw(p, ϱ, τ, θ, κ) := {Λ ⊂ Sτ ; Λ satisfies (2.4), (2.9) and (2.10)} .449

⋆ Multiplicity of eigenvalues.450

In our study we allow both algebraic and geometric multiplicities for the eigenval-451

ues. We assume that these multiplicities are finite and that the algebraic multiplicity452

is globally bounded. More precisely, we assume that453

(2.12) γλ := dimKer(A∗ − λ) < +∞, ∀λ ∈ Λ,454

and that there exists η ∈ N∗ such that455

(2.13) Ker(A∗ − λ)η = Ker(A∗ − λ)η+1, ∀λ ∈ Λ.456

For any λ ∈ Λ we denote by αλ the smallest integer such that457

Ker(A∗ − λ)αλ = Ker(A∗ − λ)αλ+1
458

and set459

Eλ := Ker(A∗ − λ)αλ .460

⋆ (Generalized) eigenvectors.461

To study null-controllability, we assume that the Fattorini-Hautus criterion is462

satisfied463

(2.14) Ker(A∗ − λ) ∩KerB∗ = {0}, ∀λ ∈ Λ.464

It is a necessary condition for approximate controllability. Note that, under additional465

assumptions on A and B it is also a sufficient condition for approximate controllability466

(see for instance [20, 34]). However, when studying null controllability of system (1.1)467

for initial conditions in a closed strict subspace Y0 of X−⋄ the condition (2.14) can be468

too strong, see for instance Sections 7.1.2 and 7.1.3.469

We assume that the family of generalized eigenvectors of A∗470

Φ = {ϕ ∈ Eλ ; λ ∈ Λ} =
⋃
λ∈Λ

Eλ471

is complete in X∗
⋄ i.e. for any y ∈ X−⋄,472

(2.15)
(
⟨y, ϕ⟩−⋄,⋄ = 0, ∀ϕ ∈ Φ

)
=⇒ y = 0.473
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In the following, to simplify the writing, we gather these assumptions and say474

that the operators A and B satisfy (H) if there exists p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1)475

such that476

(H)


A and B satisfy the assumptions of Section 2.1.1;

Λ = Sp(A∗) belongs to Lw(p, ϱ, τ, θ, κ) and satisfies (2.12) and (2.13) ;

the associated (generalized) eigenvectors satisfy (2.14) and (2.15).

477

2.1.3. Notation.478

We give here some notation that will be used throughout this article.479

• For any a, b ∈ R, we define the following subsets of N:480

Ja, bK := [a, b] ∩ N, Ja, bJ:= [a, b) ∩ N.481

• In all the present paper, ⟨•, •⟩ denotes the usual inner product in finite di-482

mension i.e.483

⟨f, g⟩ = tfg.484

• For any t ∈ R we denote by et the exponential function485

et : C → C
z 7→ e−tz.

486

• We shall denote by Cν1,...,νl > 0 a constant possibly varying from one line to487

another but depending only on the parameters ν1, . . . , νl.488

• For any non empty subset Γ ⊂ Λ, we set489

(2.16) rΓ := inf
λ∈Γ

ℜλ.490

Notice that assumptions (2.3) and (2.4) imply that rΓ > 0 for any Γ ⊂ Λ.491

• For any multi-index α ∈ Nn, we denote its length by |α| =
∑n
j=1 αj and its492

maximum by |α|∞ = maxj∈J1,nK αj .493

For α, µ ∈ Nn, we say that µ ≤ α if and only if µj ≤ αj for any j ∈ J1, nK.494

• In all this article the notation f [· · · ] stands for (generalized) divided dif-495

ferences of a set of values (xj , fj). Let us recall that, for pairwise distinct496

x1, . . . , xn ∈ C and f1, . . . , fn in any vector space, the divided differences are497

defined by498

f [xj ] = fj , f [x1, . . . , xj ] =
f [x2, . . . , xj ]− f [x1, . . . , xj−1]

xj − x1
.499

The two results that will be the most used in this article concerning divided500

differences are the Leibniz formula501

(gf)[x1, . . . , xj ] =

j∑
k=1

g[x1, . . . , xk]f [xk, . . . , xj ],502

and Jensen inequality stating that, when fj = f(xj) for an holomorphic503

function f , we have504

|f [x1, . . . , xj ]| ≤
∣∣f (j−1)(z)

∣∣
(j − 1)!

,505
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with z ∈ Conv{x1, . . . , xj}. For more detailed statements and other useful506

properties as well as their generalizations when x1, . . . , xn are not assumed to507

be pairwise distinct we refer the reader to [12, Appendix A.2] This general-508

ization is used in the present article whenever there are algebraically multiple509

eigenvalues.510

• For any closed subspace Y of X−⋄ we denote by PY the orthogonal projection511

in X−⋄ onto Y . We denote by P ∗
Y ∈ L(X∗

⋄ ) its adjoint in the duality X−⋄,512

X∗
⋄ .513

2.2. Resolution of block moment problems.514

⋆ Definition of block moment problems.515

Using the notion of solution given in Proposition 2.1 and the assumption (2.15),516

null controllability from y0 in time T reduces to the resolution of the following problem:517

find u ∈ L2(0, T ;U) such that518

(2.17)

∫ T

0

〈
u(t),B∗e−(T−t)A∗

ϕ
〉
U
dt = −

〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

, ∀ϕ ∈ Eλ, ∀λ ∈ Λ.519

Following the strategy initiated in [9] for scalar controls, we decompose this problem520

into block moment problems. Hence we look for a control of the form521

(2.18) u = −
∑
G∈G

vG(T − •)522

where G is a grouping (as stated in Proposition 2.2) and, for every G ∈ G, vG ∈523

L2(0, T ;U) solves the moment problem in the group G i.e.524 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

, ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.19a)525 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = 0, ∀ϕ ∈ Eλ, ∀λ ∈ Λ\G.(2.19b)526

527

In fact it is sufficient to solve the following block moment problem528 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.20a)529 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ(2.20b)530

531

where e−TAy0 is defined in (2.2).532

Indeed, for any ϕ ∈ Eλ, from [9, (1.22)], it comes that533

(2.21) e−tA
∗
ϕ = e−λt

∑
r≥0

(−t)r

r!
(A∗ − λ)rϕ =

∑
r≥0

et

[
λ(r+1)

]
(A∗ − λ)rϕ,534

where the sums are finite (and contains at most the first αλ terms). Thus, every535

solution of (2.20) solves (2.19). The orthogonality condition (2.20b) is more restrictive536

than (2.19b) but leads to negligible terms in the estimates.537
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⋆ Resolution of block moment problems.538

In our setting, the block moment problem (2.20) is proved to be solvable for any539

T > 0. The resolution will follow from the scalar study done in [9] and refined in [12]540

(see Theorem A.1).541

Due to (2.18), the main issue to prove null controllability of (1.1) is thus to sum542

those contributions to obtain a solution of (2.17). This is justified thanks to a precise543

estimate of the cost of the resolution of (2.20) for each group G which is the quantity544

inf
{
∥vG∥L2(0,T ;U) ; vG solution of (2.20)

}
.545

To state this result, we introduce some additional notation.546

To solve the moment problem (2.20) we propose to lift it into a ‘vectorial block547

moment problem’ of the following form (see (3.1))548 
∫ T

0

vG(t)
(−t)l

l!
e−λtdt = Ωl

λ
, ∀λ ∈ G, ∀l ∈ J0, αλJ,∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,

549

where Ωl
λ
belongs to U . Following (2.21), to recover a solution of (2.20), we need550

to impose some constraints on the right-hand side that are given in the following551

definition.552

Definition 2.2. For any λ ∈ Λ and any z ∈ X−⋄, we set553

554

(2.22) O(λ, z) =

{
(Ω0, . . . ,Ωαλ−1) ∈ Uαλ ;555

αλ−1∑
l=0

〈
Ωl,B∗(A∗ − λ)lϕ

〉
U
= ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ

}
.556

557

For a given group G, we set558

(2.23) O(G, z) =
∏
λ∈G

O(λ, z) ⊂ U |α|
559

where α is the multi-index of the algebraic multiplicities of the eigenvalues.560

Consider any sequence of multi-indices (µl)l∈J0,|α|K such that561

(2.24)


µl−1 ≤ µl, ∀l ∈ J1, |α|K,∣∣µl∣∣ = l, ∀l ∈ J0, |α|K,
µ|α| = α.

562

To measure the cost associated to the group G = {λ1, . . . , λg} let us define the fol-563

lowing functional564

(2.25) F : Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α| 7→

|α|∑
l=1

∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥2
U

565

with the convention566

Ω
[
λj

(l+1)
]
= Ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.567
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The use of such functional to measure the cost comes from the analysis conducted for568

scalar controls in [9] (see Proposition 3.3). It appears in the following lower bound569

for solutions of block moment problems.570

proposition 2.3. Assume that the operators A and B satisfy the assumption (H)571

(see Section 2.1.2). Let T ∈ (0,+∞), and G ⊂ Λ be a group satisfying (2.7).572

There exists Cp,η,rΛ > 0 such that, for any z ∈ X−⋄, any vG ∈ L2(0, T ;U) solving573 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G574

satisfies575

(2.26) ∥vG∥2L2(0,T ;U) ≥ Cp,η,rΛC(G, z)576

where577

(2.27) C(G, z) := inf {F (Ω) ; Ω ∈ O(G, z)}578

with F defined in (2.25) and O(G, z) defined in Definition 2.2.579

The first main result of this article concerns the resolution of block moment580

problems of the form (2.20). It roughly states that, up to terms that turns out to be581

negligible, the lower bound obtained in Proposition 2.3 is optimal.582

theorem 2.4. Assume that the operators A and B satisfy the assumption (H)583

(see Section 2.1.2). Let T ∈ (0,+∞), and G ⊂ Λ be a group satisfying (2.6)–(2.8).584

For any z ∈ X−⋄, there exists vG ∈ L2(0, T ;U) solution of585 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,(2.28a)586 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,(2.28b)587

588

satisfying the following estimate589

(2.29) ∥vG∥2L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
CrθG

)
C(G, z).590

In this estimate, C(G, z) is defined in (2.27) and rG is defined in (2.16). The constant591

C > 0 appearing in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.592

Before giving the application of this resolution of block moment problems to the593

null controllability of our initial system (1.1), let us give some comments.594

• As it was the case in [9], the considered setting allows for a wide variety595

of applications. In (2.15) the generalized eigenvectors are only assumed to596

form a complete family (and not a Riesz basis as in many previous works)597

which is the minimal assumption to use a moment method-like strategy. The598

weak gap condition (2.4) is also well adapted to study systems of coupled one599

dimensional parabolic equations (see Section 7).600

• The main restriction is the assumption (2.9). As detailed in Section 1.1, this601

assumption is common to most of the results based on a moment-like method.602

Though restrictive, let us underline that the moment method is, to the best603

of our knowledge, the most suitable method to capture very sensitive features604

such as a minimal null control time for parabolic control problems without605

constraints.606
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• The main novelty of this theorem is to ensure solvability of block moment607

problems coming from control problems with control operators that are only608

assumed to be admissible. In particular, the space U can be of infinite di-609

mension. Results concerning block moment problems with more general right-610

hand sides, that is not necessarily coming from a controllability problem, are611

stated in Appendix C612

• The estimate (2.29) does not explicitly depend on the sequence of eigenval-613

ues Λ but rather on some parameters such as the weak-gap parameters and614

the asymptotic of the counting function. As presented in Section 1.1, the615

uniformity of such bounds can be used to deal with parameter dependent616

problems.617

• Let us also underline that the obtained estimate (2.29) tracks the depen-618

dency of the constants with respect to the controllability time T . This will619

be crucial to estimate the cost of controllability in Proposition 2.11. We re-620

fer to Remark 2.8 for possible applications of such estimates of the cost of621

controllability.622

• Though quite general and useful for the theoretical characterization of the623

minimal null control time, the obtained estimate (2.29) still requires to be able624

to evaluate quantities of the form C(G, z), which can be intricate. We provide625

in Section 2.4 some explicit formulas that makes this estimation possible in626

many actual examples.627

2.3. Determination of the minimal null control time.628

The resolution of block moment problems stated in Theorem 2.4 allows to obtain629

the following characterization of the minimal null control time of our abstract control630

problem from a given initial condition.631

theorem 2.5. Assume that the operators A and B satisfy the assumption (H)632

(see Section 2.1.2) and let G be an associated grouping as stated in Proposition 2.2.633

Then, for any y0 ∈ X−⋄, the minimal null control time of (1.1) from y0 is given by634

(2.30) T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

635

where C(G, y0) is defined in (2.27).636

In this statement we have used the notation ln+ s = max(0, ln s), for any s ≥ 0.637

If one considers a space of initial conditions (instead of a single initial condition),638

the characterization of the minimal null control time is given in the following corollary.639

Corollary 2.6. Let Y0 be a closed subspace of X−⋄. Then, under the assump-640

tions of Theorem 2.5, the minimal null control time from Y0 is given by641

T0(Y0) = lim sup
G∈G

ln+ C(G, Y0)
2rG

642

with643

C(G, Y0) := sup
y0∈Y0

∥y0∥−⋄=1

C(G, y0).644
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2.4. More explicit formulas.645

Assume that the operators A and B satisfy the assumption (H). Let G ⊂ Λ be646

such that ♯G ≤ p and diamG ≤ ϱ. We have seen in Theorem 2.5 that the key quantity647

to compute the minimal null control time from y0 is648

C(G, y0) = inf {F (Ω) ; Ω ∈ O(G, y0)} .649

where the function F is defined in (2.25) and the constraints O(G, y0) are defined650

in (2.23). Let us give more explicit formulas to compute such costs.651

Notice that, for any z ∈ X−⋄, the quantity C(G, z) can be expressed as a finite652

dimensional constrained problem. Indeed, for a given group G we consider the finite653

dimensional subspace654

(2.31) UG = B∗ Span {ϕ ∈ Eλ ; λ ∈ G}655

and PUG the orthogonal projection in U onto UG. Then, for any Ω ∈ O(G, z) it656

comes that PUGΩ ∈ O(G, z) and F (PUGΩ) ≤ F (Ω). Thus, the optimization problem657

defining C(G, z) reduces to658

C(G, z) = inf
{
F (Ω) ; Ω ∈ O(G, z) ∩ U |α|

G

}
,659

which is a finite dimensional optimization problem. From [9, Proposition 7.15], the660

function F is coercive which implies that the infimum is actually attained:661

(2.32) C(G, z) = min
{
F (Ω) ; Ω ∈ O(G, z) ∩ U |α|

G

}
.662

In this section, solving the optimization problem (2.32), we provide more explicit663

formulas for this cost for some particular configurations for the multiplicities of the664

eigenvalues in the group G (and only in that particular group).665

⋆ A group G of geometrically simple eigenvalues.666

First, assume that the eigenvalues in G = {λ1, . . . , λg} are all geometrically simple667

i.e. γλ = 1 for every λ ∈ G where γλ is defined in (2.12).668

For any j ∈ J1, gK we denote by ϕ0j an eigenvector of A∗ associated to the eigen-669

value λj and by (ϕlj)l∈J0,αjJ an associated Jordan chain i.e.670

(A∗ − λj)ϕ
l
j = ϕl−1

j , ∀l ∈ J1, αjJ.671

To simplify the writing, we set672

blj := B∗ϕlj ∈ U, ∀l ∈ J0, αjJ, ∀j ∈ J1, gK.673

Recall that the sequence of multi-index (µl)l∈J0,|α|K satisfy (2.24) and let674

(2.33) M :=

|α|∑
l=1

Γlµ675

with676

Γlµ := GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b

[
λ
(µl−µl−1)
•

]
, . . . , b

[
λ
(µ|α|−µl−1)
•

]677
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where for every u1, . . . , un ∈ U , GramU (u1, . . . , un) denotes the Gram matrix whose678

entry on the i-th row and j-th column is ⟨uj , ui⟩U . To explicit the cost C(G, y0), we679

will use the inverse of this matrix. Its invertibility is guaranteed by the following680

proposition which is proved in Section 5.2.681

proposition 2.7. Under condition (2.14), the matrix M defined in (2.33) is in-682

vertible.683

The matrix M plays a crucial role in the computation of the cost C(G, y0). Let us684

give some comments. It is a sum of Gram matrices whose construction is summarized685

in Figure 1 on an example with G = {λ1, λ2} with α1 = 3 and α2 = 2. Each of these686

matrices is of size |α| which is the number of eigenvalues (counted with their algebraic687

multiplicities) that belong to the group G. Thus, on actual examples (see Section 7),688

the size of these matrices is usually reasonably small.689

b01

b01

b01

b02

b02

b11

b11

b[λ1, λ2]

b12

b21

b[λ
(2)
1 , λ2]

b[λ1, λ
(2)
2 ]

b[λ
(3)
1 , λ2]

b[λ
(2)
1 , λ

(2)
2 ]

b[λ
(3)
1 , λ

(2)
2 ]

0

0

0

0

0

0

0

0

0

0

Gram matrix Γ1
µ

Gram matrix Γ2
µ

Gram matrix Γ3
µ

Gram matrix Γ4
µ

Gram matrix Γ5
µ

Figure 1. Construction of the Gram matrices Γl
µ in the case of a group G = {λ1, λ2} with

multiplicities α = (3, 2) and the sequence of multi-indices µ =
(
(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2)

)
Then, we obtain the following formula for the cost of a group of geometrically690

simple eigenvalues.691

theorem 2.8. Assume that the operators A and B satisfy the assumption (H)692

(see Section 2.1.2). Let G = {λ1, . . . , λg} ⊂ Λ be such that ♯G ≤ p and diamG ≤ ϱ693

and assume that γλ = 1 for every λ ∈ G. Then, for any y0 ∈ X−⋄, we have694

C(G, y0) =
〈
M−1ξ, ξ

〉
, where ξ =



〈
y0, ϕ

[
λ
(µ1)
•

]〉
−⋄,⋄

...〈
y0, ϕ

[
λ
(µ|α|)
•

]〉
−⋄,⋄

 ∈ C|α|
695
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and M is defined in (2.33).696

Moreover, if Y0 is a closed subspace of X−⋄,697

(2.34) C(G, Y0) = ρ
(
GramX∗

⋄
(ψ1, . . . , ψ|α|)M

−1
)

698

where ψj := P ∗
Y0
ϕ

[
λ
(µj)
•

]
and, for any matrix M, the notation ρ(M) denotes the699

spectral radius of the matrix M.700

Remark 2.4. Notice that we do not choose any particular eigenvector or Jordan701

chain. To compute explicitly the cost C(G, y0) on actual examples, we will often choose702

them to satisfy703

∥b0j∥U = 1,
〈
b0j , b

l
j

〉
U
= 0, ∀l ∈ J1, αjJ,704

to simplify the Gram matrices. Obviously, as the quantity C(G, y0) is independent of705

this choice, we can choose any other specific Jordan chains or eigenvectors that are706

more suitable to each problem.707

Remark 2.5. In the case where the eigenvalues of the considered group G are708

also algebraically simple, then the expression of M given in (2.33) reduces to709

(2.35) M =

g∑
l=1

Γl with Γl = GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b[λl], . . . , b[λl, . . . , λg]

710

and the expression of ξ reduces to711

ξ =

 ⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λ1, . . . , λg]⟩−⋄,⋄

 .712

⋆ A group G of semi-simple eigenvalues.713

We now assume that all the eigenvalues in G are semi-simple i.e. for any λ ∈ G714

we have αλ = 1 where αλ is defined in (2.13).715

For any j ∈ J1, gK, we denote by (ϕj,i)i∈J1,γjK a basis of Ker(A∗−λj). To simplify716

the writing, we set717

bj,i := B∗ϕj,i, ∀j ∈ J1, gK, ∀i ∈ J1, γjK718

and γG := γ1 + · · ·+ γg.719

For any i ∈ J1, gK, we set δi1 := 1 and720

(2.36) δij :=

j−1∏
k=1

(
λi − λk

)
, ∀j ∈ J2, gK.721

Notice that δij = 0 as soon as j > i.722

Let723

(2.37) M =

g∑
l=1

Γl with Γl = GramU

(
δ1l b1,1, . . . , δ

1
l b1,γ1 , . . . , δ

g
l bg,1, . . . , δ

g
l bg,γg

)
.724

Here again, to explicit the cost C(G, y0) we will use the inverse of this matrix. Its725

invertibility is guaranteed by the following proposition which is proved in Section 5.3.726
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proposition 2.9. Under condition (2.14), the matrix M defined in (2.37) is in-727

vertible.728

Notice that the square matrix Γl is of size γG and can be seen as a block matrix where729

the block (i, j) with γi rows and γj columns is730 
〈
δjl bj,1, δ

i
lbi,1

〉
U

· · ·
〈
δjl bj,γj , δ

i
lbi,1

〉
U

...
...〈

δjl bj,1, δ
i
lbi,γi

〉
U

· · ·
〈
δjl bj,γj , δ

i
lbi,γi

〉
U

 .731

Thus, the block (i, j) of Γl is identically 0 for i, j ∈ J1, lJ.732

Then, we obtain the following formula for the cost of a group made of semi-simple733

eigenvalues.734

theorem 2.10. Assume that the operators A and B satisfy the assumption (H)735

(see Section 2.1.2). Let G = {λ1, . . . , λg} ⊂ Λ be such that ♯G ≤ p and diamG ≤ ϱ736

and assume that αλ = 1 for every λ ∈ G. Then, for any y0 ∈ X−⋄, we have737

C(G, y0) =
〈
M−1ξ, ξ

〉
738

where739

ξ =



⟨y0, ϕ1,1⟩−⋄,⋄
...

⟨y0, ϕ1,γ1⟩−⋄,⋄
...

⟨y0, ϕg,1⟩−⋄,⋄
...〈

y0, ϕg,γg
〉
−⋄,⋄


740

and M is defined in (2.37).741

Moreover, if Y0 is a closed subspace of X−⋄,742

(2.38) C(G, Y0) = ρ
(
GramX∗

⋄
(ψ1,1, . . . , ψ1,γ1 , . . . , ψg,1, . . . , ψg,γg )M

−1
)

743

where ψj,i := P ∗
Y0
ϕj,i and, for any matrix M, the notation ρ(M) denotes its spectral744

radius.745

Remark 2.6. When the eigenvalues of the group G are geometrically and alge-746

braically simple, Theorem 2.10 gives a characterization of the cost of the block C(G, y0)747

which is different from the one coming from Theorem 2.8 and detailed in Remark 2.5.748

A direct proof of this equivalence (stated in Proposition D.3) using algebraic manipu-749

lations is given in Appendix D.750

⋆ Dealing simultaneously with geometric and algebraic multiplicity.751

Combining Theorems 2.8 and 2.10, we can deal with operators A∗ which have752

both groups of geometrically simple eigenvalues and groups of semi-simple eigenval-753

ues. However, for technical reasons, in the case where both algebraic and geometric754

multiplicities need to be taken into account into a group G we do obtain a general755

formula for the cost of this group C(G, y0). Nevertheless, if this situation occurs in756

actual examples, computing this cost is a finite dimensional constrained optimization757
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problem which can be solved ‘by hand ’. We present in Section 5.4 an example of such758

resolution for a group G that does not satisfies the assumptions of Theorem 2.8 nor759

of Theorem 2.10.760

2.5. Estimate of the cost of null controllability.761

When system (1.1) is null controllable, we obtain the following bound on the cost762

of controllability.763

proposition 2.11. Assume that the operators A and B satisfy the assumption (H)764

(see Section 2.1.2) and let G be an associated grouping a as stated in Proposition 2.2.765

Let y0 ∈ X−⋄ and let T > T0(y0). There exists a control u ∈ L2(0, T ;U) such766

that the associated solution of (1.1) initiated from y0 satisfies y(T ) = 0 and767

∥u∥2L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
θ

1−θ

)
(1+T )2η

∑
G∈G

e−(T−T0(y0))rGe−2rGT0(y0)C(G, Y0).768

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,769

ϱ, η, θ and κ.770

Though quite general the above formula is not very explicit. More importantly,771

it is proved in [29, Theorem 1.1] that, with a suitable choice of A and B satisfying772

our assumptions, any blow-up of the cost of controllability can occur. We give below773

a setting (inspired from [29, Theorem 1.2]) in which this upper bound on the cost of774

controllability is simpler and can have some applications (see Remark 2.8).775

Corollary 2.12. Assume that the operators A and B satisfy the assumption (H)776

(see Section 2.1.2) and let G be an associated grouping as stated in Proposition 2.2.777

Let β > 0. For any y0 ∈ X−⋄ satisfying,778

(2.39) C(G, y0) ≤ βe2rGT0(y0) ∥y0∥2−⋄ , ∀G ∈ G,779

for any T > T0(y0) close enough to T0(y0), there exists a control u ∈ L2(0, T ;U) such780

that the associated solution of (1.1) satisfies y(T ) = 0 and781

∥u∥L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
θ

1−θ

)
∥y0∥−⋄ ,782

where the constant C > 0 only depends on the parameters β, τ , p, ϱ, η, θ and κ.783

Remark 2.7. In the setting of Corollary 2.12, replacing the assumption (2.39)784

by785

C(G, y0) ≤ βeβr
σ
Ge2rGT0(y0) ∥y0∥2−⋄ , ∀G ∈ G,786

with σ ∈ (0, 1) leads to the following estimate787

∥u∥L2(0,T ;U) ≤ C exp

(
C

(T − T0(y0))
max(θ,σ)

1−max(θ,σ)

)
∥y0∥−⋄ .788

Remark 2.8. Giving the best possible estimate on the cost of small time null789

controllability is a question that has drawn a lot of interest in the past years.790

In classical cases, for instance for heat-like equations, null controllability holds791

in any positive time and the cost of controllability in small time behaves like exp
(
C
T

)
792

(see for instance [37]). There are two main applications of such estimate.793
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• Controllability in cylindrical domains.794

It is proved in [8] that null controllability of parabolic problems in cylindrical795

geometries (with operators compatible with this geometry) with a boundary796

control located on the top of the cylinder can be proved thanks to null con-797

trollability of the associated problem in the transverse variable together with798

suitable estimates of the cost of controllability. Their proof relies on an adap-799

tation of the classical strategy of Lebeau and Robbiano [28] and thus uses800

an estimate of the cost of controllability in small time of the form exp
(
C
T

)
.801

These ideas were already present in [10] and later generalized in an abstract802

setting in [1].803

• Nonlinear control problems.804

The source term method has been introduced in [30] to prove controllability805

of a nonlinear fluid-structure system (see also [7, Section 2] for a general806

presentation of this strategy). Roughly speaking it amounts to prove null con-807

trollability with a source term in suitable weighted spaces and then use a fixed808

point argument. The null controllability with a source term is here proved by809

an iterative process which strongly uses that the cost of controllability of the810

linearized system behaves like exp
(
C
T

)
.811

Notice that from the upper bound given in Corollary 2.12, the cost of controllability812

in small time can explode faster than exp
(
C
T

)
. Yet, as studied in [33] and in [35,813

Chapter 4], the arguments of the two previous applications can be adapted with an814

explosion of the cost of the form exp

(
C

T
θ

1−θ

)
with θ ∈ (0, 1).815

However, these two applications uses a decomposition of the time interval [0, T ]816

into an infinite number of sub-intervals (which explains the use of the asymptotic of817

the cost of controllability when the time goes to zero). Thus their extension in the818

case of a minimal null control time is an open problem.819

3. Resolution of block moment problems.820

In this section we prove Theorem 2.4 that is we solve the block moment prob-821

lem (2.28). To do so, we first consider a vectorial block moment problem (see (3.1)822

below) which is proved to be equivalent to the block moment problem (2.28) in Propo-823

sition 3.1. This equivalence strongly relies on the constraints (2.22). Then we prove824

the lower bound for solutions of block moment problems stated in Proposition 2.3.825

Finally, in Section 3.2, we solve the vectorial block moment problem (3.1) which826

will conclude the proof of Theorem 2.4.827

3.1. An auxiliary equivalent vectorial block moment problem.828

Let Λ ⊂ Sτ , G = {λ1, . . . , λg} ⊂ Λ, η ∈ N∗ and α = (α1, . . . , αg) ∈ Ng with829

|α|∞ ≤ η. For any830

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α|,831

we consider the following auxiliary vectorial block moment problem : find vG ∈832

L2(0, T ;U) such that833 ∫ T

0

vG(t)
(−t)l

l!
e−λjtdt = Ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(3.1a)834 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(3.1b)835

836
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This block moment problem is said to be vectorial : the right-hand side Ω belongs837

to U |α| and its solution vG(t) belongs to the control space U for almost every t. Its838

resolution with (almost) sharp estimates is given in Proposition 3.3.839

Through (2.21), when the right-hand side Ω of (3.1) satisfy the constraints (2.23),840

solving this vectorial block moment problem provides a solution of the original block841

moment problem (2.28). More precisely we have the following proposition842

proposition 3.1. Let T > 0 and z ∈ X−⋄. The following two statements are843

equivalent:844

i. there exists Ω ∈ O(G, z) such that the function vG ∈ L2(0, T ;U) solves (3.1);845

ii. the function vG ∈ L2(0, T ;U) solves (2.28).846

Proof. Assume first that there exists Ω ∈ O(G, z) and let v ∈ L2(0, T ;U) be such847

that (3.1) holds.848

Then, using (2.21), for any j ∈ J1, gK and any ϕ ∈ Eλj we have849 ∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt =

∫ T

0

〈
v(t), e−λjt

αj−1∑
l=0

(−t)l

l!
B∗(A∗ − λj)

lϕ

〉
U

dt850

=

αj−1∑
l=0

〈∫ T

0

v(t)
(−t)l

l!
e−λjtdt,B∗(A∗ − λj)

lϕ

〉
U

851

=

αj−1∑
l=0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
.852

853

Since
(
Ω0
j , . . . ,Ω

αj−1
j

)
∈ O(λj , z) (see (2.22)) , this leads to854 ∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀j ∈ J1, gK,∀ϕ ∈ Eλj ,855

which proves that v solves (2.28).856

Assume now that v ∈ L2(0, T ;U) solves (2.28). Setting857

Ωlj :=

∫ T

0

v(t)
(−t)l

l!
e−λjtdt858

we obtain that v solves (3.1). As in the previous step, the identity (2.21) implies that859

Ω ∈ O(G, z).860

Using this vectorial block moment problem allows to prove the lower bound stated861

in Proposition 2.3.862

Proof (of Proposition 2.3). Let vG ∈ L2(0, T ;U) be any solution of (2.28a). Let863

Ωlj :=

∫ T

0

vG(t)
(−t)l

l!
e−λjtdt =

∫ T

0

vG(t)et

[
λj

(l+1)
]
dt, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.864

As in the proof of Proposition 3.1, the use of (2.21) implies that865

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ O(G, z).866

Thus,867

(3.2) C(G, z) ≤ F (Ω) =

|α|∑
l=1

∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥2
U

.868
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Notice that869

Ω

[
λ
(µl)

•

]
=

∫ T

0

vG(t)et

[
λ
(µl)

•

]
dt, ∀l ∈ J0, |α|K.870

Using Jensen inequality [9, Proposition 6.1] yields,871 ∣∣∣∣et [λ(µl)

•

]∣∣∣∣ = ∣∣∣et [λ(µl)•

]∣∣∣ ≤ tl−1e−rGt

(l − 1)!
.872

Together with Cauchy-Schwarz inequality this implies873 ∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥
U

≤
(∫ +∞

0

tl−1e−rGt

(l − 1)!
dt

) 1
2

∥vG∥L2(0,T ;U).874

Then, as rG ≥ rΛ and |α| ≤ pη, estimate (3.2) ends the proof of Theorem 2.4.875

3.2. Solving the original moment problem.876

In view of Proposition 3.1, to solve (2.28), we prove that there exists at least one877

Ω satisfying the constraints (2.22).878

proposition 3.2. Let λ ∈ Λ and z ∈ X−⋄. Then, under assumption (2.14), we879

have880

O(λ, z) ̸= ∅.881

Proof. Let T > 0. The finite dimensional space Eλ is stable by the semi-882

group e−•A∗
(see for instance (2.21)). Using the approximate controllability assump-883

tion (2.14) we have that884

ϕ ∈ Eλ 7→
∥∥∥B∗e−•A∗

ϕ
∥∥∥
L2(0,T,U)

885

is a norm on Eλ. Then, the equivalence of norms in finite dimension implies that the886

following HUM-type functional887

J : ϕ ∈ Eλ 7→ 1

2

∥∥∥B∗e−•A∗
ϕ
∥∥∥2
L2(0,T,U)

−ℜ⟨z, ϕ⟩−⋄,⋄888

is coercive. Let ϕ̃ ∈ Eλ be such that889

J
(
ϕ̃
)
= inf
ϕ∈Eλ

J(ϕ)890

and v := B∗e−•A∗
ϕ̃. The optimality condition gives (paying attention to the fact that891

Eλ is a complex vector space)892

(3.3)

∫ T

0

〈
v(t),B∗e−tA

∗
ϕ
〉
U
dt = ⟨z, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Eλ.893

Finally, we set Ω :=
(
Ω0, . . . ,Ωαλ−1

)
with894

Ωl :=

∫ T

0

v(t)
(−t)l

l!
e−λtdt, ∀l ∈ J0, αλJ.895

Using (3.3) and following the computations of Proposition 3.1 we obtain that Ω ∈896

O(λ, z).897

26

This manuscript is for review purposes only.



We now turn to the resolution of the vectorial block moment problem (3.1).898

proposition 3.3. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that899

Λ ∈ Lw(p, ϱ, τ, θ, κ).900

Let G = {λ1, . . . , λg} ⊂ Λ be a group satisfying (2.6)–(2.8). Let T ∈ (0,+∞) and901

η ∈ N∗. For any multi-index α ∈ Ng with |α|∞ ≤ η and any902

Ω =
(
Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g

)
∈ U |α|,903

there exists vG ∈ L2(0, T ;U) solution of (3.1) such that904

∥vG∥2L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
CrθG

)
F (Ω),905

where F is defined in (2.25) and rG is defined in (2.16). The constant C > 0 appearing906

in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.907

Proof. Let (ej)j∈J1,dK be an orthonormal basis of the finite dimensional subspace908

of U given by909

Span
{
Ωlj ; j ∈ J1, gK, l ∈ J0, αjJ

}
.910

Then, for any j ∈ J1, gK and l ∈ J0, αjJ, there exists
(
ai

[
λj

(l+1)
])

i∈J1,dK
∈ C|α| such911

that the decomposition of Ωlj reads912

Ωlj =

d∑
i=1

ai

[
λj

(l+1)
]
ei.913

From Theorem A.1, for any i ∈ J1, dK, there exists vi ∈ L2(0, T ;C) such that914 
∫ T

0

vi(t)
(−t)l

l!
e−λjtdt = ai

[
λj

(l+1)
]
, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,∫ T

0

vi(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ,

915

and916

∥vi∥2L2(0,T ;C) ≤ CeCT
− θ

1−θ
eCr

θ
G max
µ∈Ng
µ≤α

∣∣∣ai [λ1(µ1)
, . . . , λg

(µg)
]∣∣∣2 .917

Setting918

v :=

d∑
i=1

viei,919
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we get that v solves (3.1) and using [9, Proposition 7.15]920

∥v∥2L2(0,T ;U) =

d∑
i=1

∥vi∥2L2(0,T ;C)921

≤ CeCT
− θ

1−θ
eCr

θ
G

d∑
i=1

max
µ∈Ng
µ≤α

∣∣∣ai [λ1(µ1)
, . . . , λg

(µg)
]∣∣∣2922

≤ Cp,ϱ,ηCe
CT

− θ
1−θ

eCr
θ
G

|α|∑
p=1

(
d∑
i=1

∣∣∣ai [λ(µp)

•

]∣∣∣2)923

= CeCT
− θ

1−θ
eCr

θ
G

|α|∑
p=1

∥∥∥Ω [λ(µp)

•

]∥∥∥2 .924

925

This ends the proof of Proposition 3.3.926

We now have all the ingredients to prove Theorem 2.4.927

Proof (of Theorem 2.4). From Proposition 3.2, we have O(G, z) ̸= ∅. Recall928

that, from (2.32), the optimization problem defining C(G, z) can be reduced to a929

finite dimensional optimization problem for which the infimum is attained. Thus, let930

Ω ∈ O(G, z) be such that931

F (Ω) = C(G, z).932

Let vG ∈ L2(0, T ;U) be the solution of (3.1) given by Proposition 3.3 with Ω as right-933

hand side. As Ω ∈ O(G, z), from Proposition 3.1 we deduce that vG solves (2.28).934

The upper bound (2.29) on ∥vG∥L2(0,T ;U) is given by Proposition 3.3.935

4. Application to the determination of the minimal null control time.936

This section is dedicated to the consequences of Theorem 2.4 on the null control-937

lability properties of system (1.1).938

From Theorem 2.4, the resolution of block moment problems (2.20) associated939

with null controllability of (1.1) will involve the quantity C(G, e−TAy0). To formulate940

the minimal null control time we isolate the dependency with respect to the variable941

T leading to quantities involving C(G, y0). The comparison between these two costs942

is detailed in Section 4.1.943

Then, this leads to the formulation of the minimal null control time stated in944

Theorem 2.5. We then prove the estimates on the cost of null controllability stated945

in Proposition 2.11 and Corollary 2.12. This is detailed in Section 4.2.946

4.1. Relating the different costs.947

Let us prove that the cost C(G, e−TAz) appearing in Theorem 2.4 roughly behaves948

like e−2rGTC(G, z). More precisely, we have the following estimates.949

Lemma 4.1. Assume that the operators A and B satisfy the assumption (H) (see950

Section 2.1.2). There exists Cp,ϱ,η > 0 such that for any G ⊂ Λ with ♯G ≤ p and951

diamG ≤ ϱ, for any T > 0 and any z ∈ X−⋄,952

(4.1) C(G, e−TAz) ≤ Cp,ϱ,η(1 + T )2|α|e−2rGTC(G, z)953

and954

(4.2) e−2rGTC(G, z) ≤ Cp,ϱ,η(1 + T )2|α|e2ϱTC(G, e−TAz).955
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Proof. Recall that from (2.2) we have956 〈
y0, e

−TA∗
ϕ
〉
−⋄,⋄

=
〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ X∗

⋄ .957

We set G = {λ1, . . . , λg}.958

• We start with the proof of (4.1).959

From (2.32), let Ω̃ ∈ O(G, z) be such that F (Ω̃) = C(G, z). We define Ω by960

Ωlj := (eT Ω̃)
[
λj

(l+1)
]
, ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,961

with the convention962

Ω̃
[
λj

(l+1)
]
= Ω̃lj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.963

Let us prove that Ω ∈ O(G, e−TAz). For any j ∈ J1, gK and any ϕ ∈ Eλj , using [9,964

Definition 7.12] we obtain965

∑
l≥0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
=
∑
l≥0

l∑
r=0

eT

[
λj

(r+1)
] 〈

Ω̃l−rj ,B∗(A∗ − λj)
lϕ
〉
U

966

=
∑
r≥0

eT

[
λj

(r+1)
]∑
l≥r

〈
Ω̃l−rj ,B∗(A∗ − λj)

lϕ
〉
U

967

=
∑
r≥0

eT

[
λj

(r+1)
]∑
l≥0

〈
Ω̃lj ,B∗(A∗ − λj)

l+rϕ
〉
U
.968

969

Since Ω̃ ∈ O(G, z) and eT

[
λj

(r+1)
]
= eT

[
λ
(r+1)
j

]
for any r ≥ 0, using (2.21) this970

yields971 ∑
l≥0

〈
Ωlj ,B∗(A∗ − λj)

lϕ
〉
U
=
∑
r≥0

eT

[
λ
(r+1)
j

]
⟨z, ((A∗ − λj)

rϕ)⟩−⋄,⋄972

=
〈
z, e−TA∗

ϕ
〉
−⋄,⋄

=
〈
e−TAz, ϕ

〉
−⋄,⋄ .(4.3)973

974

This proves the claim.975

Applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9, Propo-976

sition 6.1] we obtain,977 ∥∥∥∥Ω [λ(µl)

•

]∥∥∥∥
U

=

∥∥∥∥∥
l∑

q=1

eT

[
λ
(µl−µq−1)

•

]
Ω̃
[
λ
(µq)

•

]∥∥∥∥∥978

≤ Cp,ϱ,η(1 + T )|α|e−rGT

(
l∑

q=1

∥∥∥Ω̃ [λ(µq)

•

]∥∥∥2)
1
2

.979

980

Thus,981

F (Ω) ≤ Cp,ϱ,η(1 + T )2|α|e−2rGTF (Ω̃) = Cp,ϱ,η(1 + T )2|α|e−2rGTC(G, z).982

As Ω ∈ O(G, e−TAz), this proves (4.1).983
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• The proof of (4.2) uses the same ingredients.984

From (2.32), let Ω ∈ O(G, e−TAz) be such that F (Ω) = C(G, e−TAz). For any985

j ∈ J1, gK and any l ∈ J0, αjJ, let986

Ω̃lj := (e−TΩ)
[
λj

(l+1)
]

987

where988

Ω
[
λj

(l+1)
]
:= Ωlj .989

As previously, applying Leibniz formula [9, Proposition 7.13] and Jensen inequality [9,990

Proposition 6.1], since λj satisfies ℜλj ≤ rG + ϱ for any j ∈ J1, gK, we obtain991

∥∥∥∥Ω̃ [λ(µl)

•

]∥∥∥∥
U

≤ Cp,ϱ,η(1 + T )2|α|e(rG+ϱ)T

(
l∑

q=1

∥∥∥Ω [λ(µq)

•

]∥∥∥2)
1
2

.992

The same computations as in (4.3) give that Ω ∈ O(G, z). Thus993

C(G, z) ≤ F (Ω̃) ≤ Cp,ϱ,η(1 + T )2|α|e2(rG+ϱ)TF (Ω)994

= Cp,ϱ,η(1 + T )2|α|e2(rG+ϱ)TC(G, e−TAz)995996

and (4.2) is proved.997

4.2. The minimal null control time.998

This section is dedicated to the proof of Theorem 2.5 and Corollary 2.6 concerning999

the minimal null control time. Proposition 2.11 and Corollary 2.12 concerning the1000

cost of null controllability will follow from the estimates obtained in the proof of1001

Theorem 2.5. This is discussed at the end of the current section.1002

Proof (of Theorem 2.5).1003

• We start with the proof of null controllability in time T > T0(y0).1004

We set ε = T − T0(y0) > 0. Let G ∈ G and let vG ∈ L2(0, ε;U) be the solution1005

of the block moment problem (2.28) in time ε associated with z = e−TAy0 given by1006

Theorem 2.4 i.e.1007 ∫ ε

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,1008 ∫ ε

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.1009

1010

We still denote by vG ∈ L2(0, T ;U) the extension of vG by 0. Thus, vG satisfies1011 ∫ T

0

〈
vG(t),B∗e−tA

∗
ϕ
〉
U
dt =

〈
e−TAy0, ϕ

〉
−⋄,⋄ , ∀ϕ ∈ Eλ, ∀λ ∈ G,1012 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.1013

1014

From (2.21), this implies that vG solves (2.19). Thus, the only point left is to prove1015

that the series (2.18) defining the control u converges in L2(0, T ;U).1016

From Theorem 2.4 we have that1017

∥vG∥2L2(0,T ;U) = ∥vG∥2L2(0,ε;U) ≤ CeCε
− θ

1−θ
eCr

θ
GC(G, e−TAy0).1018
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By the Young inequality we get1019

eCr
θ
G ≤ eCε

− θ
1−θ

eεrG1020

where in the right-hand side the constant C > 0 has changed but still depend on the1021

same parameters. Thus,1022

∥vG∥2L2(0,T ;U) ≤ CeCε
− θ

1−θ
eεrGC(G, e−TAy0).1023

Using (4.1) we obtain1024

∥vG∥2L2(0,T ;U) ≤ CeCε
− θ

1−θ
(1 + T )2|α|e−εrGe−2rG(T−ε) C(G, y0).1025

Recalling that ε = T − T0(y0) this gives1026

(4.4)

∥vG∥2L2(0,T ;U) ≤ C exp

 C(
T − T0(y0)

) θ
1−θ

 (1+T )2|α|e−(T−T0(y0))rGe−2rGT0(y0)C(G, y0).1027

Recall that in (2.30) we have defined T0(y0) by1028

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1029

Thus, when rG is sufficiently large, we have1030

e−2rGT0(y0) C(G, y0) ≤ exp

(
T − T0(y0)

2
rG

)
.1031

Together with (4.4) this implies, for rG sufficiently large,1032

∥vG∥2L2(0,T ;U) ≤ C exp

 C(
T − T0(y0)

) θ
1−θ

 (1 + T )2|α| exp

(
−T − T0(y0)

2
rG

)
1033

and proves that the series1034

(4.5) u =
∑
G∈G

vG(T − •)1035

converges in L2(0, T ;U). This proves null controllability of (1.1) from y0 in any time1036

T > T0(y0).1037

• We now end the proof of Theorem 2.5 by proving that null controllability does not1038

hold in time T < T0(y0). The proof mainly relies on the optimality of the resolution1039

of the block moment problems given in Proposition 2.3 (see (2.26)).1040

Let T > 0. Assume that problem (1.1) is null controllable from y0 in time T .1041

Thus there exists u ∈ L2(0, T ;U) such that y(T ) = 0 and1042

∥u∥L2(0,T ;U) ≤ CT ∥y0∥−⋄ .1043

Let v := −u(T − •). Then, for any G ∈ G, v satisfies (2.28a) with z = e−TAy0.1044

From (2.26), this implies1045

(4.6) C2
T ∥y0∥2−⋄ ≥ ∥u∥2L2(0,T ;U) = ∥v∥2L2(0,T ;U) ≥ Cp,η,rΛC(G, e−TAy0).1046
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Applying (4.2) we obtain1047

C(G, y0) ≤ CT,p,ϱ,ηe
2rGTC(G, e−TAy0).1048

Together with (4.6) this implies1049

(4.7) C(G, y0) ≤ CT,p,ϱ,η,rΛ ∥y0∥2−⋄ e
2rGT .1050

Getting back to the definition of T0(y0) given in (2.30), this implies that T ≥ T0(y0)1051

and ends the proof of Theorem 2.5.1052

Remark 4.1. It is worth noticing that the solution vG constructed is only active1053

on the time interval (0, T − T0(y0)). Thus, whenever T0(y0) > 0, the series (4.5)1054

defining the control u proves that it is possible to control y0 to 0 in any time T > T0(y0)1055

with a control that is identically vanishing on the time interval
(
0, T0(y0)

)
.1056

We now turn to the proof of Corollary 2.6.1057

Proof (of Corollary 2.6). By definition, we have T0(Y0) = supy0∈Y0
T0(y0). Using1058

the definition of C(G, Y0) and Theorem 2.5, it directly comes that1059

T0(Y0) ≤ lim sup
G∈G

ln+ C(G, Y0)
2rG

.1060

We now focus on the converse inequality. Let T > 0 such that1061

T < lim sup
G∈G

ln+ C(G, Y0)
2rG

1062

and let us prove that T ≤ T0(Y0).1063

There exists ε > 0 and a sequence of groups (Gk)k∈N ∈ GN such that for any1064

k ∈ N∗, there exists y0,k ∈ Y0 with ∥y0,k∥−⋄ = 1 satisfying1065

(4.8) T + ε <
ln C(Gk, y0,k)

2rGk
.1066

By contradiction, assume that for any y0 ∈ Y0, we have T > T0(y0). Thus,1067

from (4.7), there exists CT,p,ϱ,η,rΛ > 0 such that for any k ∈ N∗1068

ln C(Gk, y0,k)
2rGk

≤ lnCT,p,ϱ,η,rΛ
2rGk

+ T.1069

Taking k sufficiently large, this is in contradiction with (4.8).1070

We end this section with the proof of Proposition 2.11 and Corollary 2.12 con-1071

cerning the cost of null controllability.1072

A careful inspection of the proof of null controllability in time T > T0(y0) detailed1073

in Section 4.2 allows to give a bound on the cost of controllability.1074

Proof (of Proposition 2.11 and Corollary 2.12). The proof of Proposition 2.11 fol-1075

lows directly from (2.18) and (4.4).1076

The proof of Corollary 2.12 then follows directly from Proposition 2.11, assump-1077

tion (2.39) and the estimate1078 ∑
G∈G

e−rGx ≤ Cθ,κ
xθ

, ∀x > 0,1079

proved in [12, Proposition A.5.38].1080
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5. Computation of the cost of a block.1081

In this section we prove more explicit formulas to estimate the cost C(G, y0)1082

of the resolution of a block moment problem depending on the assumptions on the1083

eigenvalues in the group G. More precisely, we prove here Theorems 2.8 and 2.10.1084

For pedagogical purpose, we start in Section 5.1 with Theorem 2.8 for algebraically1085

(and geometrically) simple eigenvalues i.e. when αλ = γλ = 1 for any λ ∈ G. Then,1086

in Section 5.2, we prove the general statement of Theorem 2.8 that is when all the1087

eigenvalues in the group are geometrically simple i.e. γλ = 1 for any λ ∈ G.1088

The formula for the cost C(G, y0) when all the eigenvalues in the group G are1089

semi-simple (i.e. αλ = 1 for any λ ∈ G) stated in Theorem 2.10 is then proved in1090

Section 5.3. The extension to spaces of initial conditions (2.34) and (2.38) does not1091

depend on the matrix M and follows directly from Lemma B.1. Thus, their proofs1092

are not detailed here.1093

When both algebraic and geometric multiplicities appear in the same group we1094

do not get a general formula but describe the procedure on an example in Section 5.4.1095

Recall that from (2.32), computing C(G, y0) is a finite dimensional optimization1096

problem given by1097

C(G, y0) = min
{
F (Ω) ; Ω ∈ O(G, y0) ∩ U |α|

G

}
1098

where the function F is defined in (2.25), the constraints associated with O(G, y0) are1099

defined in (2.23) and UG is defined in (2.31).1100

5.1. The case of simple eigenvalues.1101

In all this section, we consider the simpler case where αλ = γλ = 1 for every1102

λ ∈ G. Thus, in the rest of this section, we drop the superscript 0 associated to1103

eigenvectors.1104

We start with the proof of the invertibility of the matrix M stated in Proposi-1105

tion 2.7.1106

Proof. Recall that, as αλ = γλ = 1, the positive semi-definite matrixM is defined1107

in (2.35). Let τ ∈ Cg be such that ⟨Mτ, τ⟩ = 0. Then, for each l ∈ J1, gK, we have1108 〈
Γlτ, τ

〉
= 0.1109

We prove that τ = 0. By contradiction let1110

l = max{j ∈ J1, gK ; τj ̸= 0}.1111

Then from (2.35) this leads to
〈
Γlτ, τ

〉
= ∥b[λl]∥2U |τl|2. Using (2.14) implies τl = 0.1112

This is in contradiction with the definition of l which proves the invertibility of M .1113

We now prove Theorem 2.8.1114

Proof. First of all, notice that the function F to minimize reduces to1115

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥21116

and, as γλ = αλ = 1, the constraints defining the set O(λj , y0) reduce to1117

⟨Ωj , bj⟩U = ⟨y0, ϕj⟩−⋄,⋄ .1118
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Thus, the minimization problem reduces to1119

1120

(5.1) C(G, y0) = min
{
F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG such that1121

⟨Ωj , bj⟩U = ⟨y0, ϕj⟩−⋄,⋄ , ∀j ∈ J1, gK
}
.1122

1123

For the sake of generality, let us consider for this proof any ω1, . . . , ωg ∈ C and the1124

more general constraints1125

(5.2) ⟨Ωj , bj⟩U = ωj , ∀j ∈ J1, gK.1126

Using the formalism of divided differences, this is equivalent to the family of con-1127

straints1128

(5.3) ⟨Ω, b⟩U [λ1, . . . , λj ] = ω[λ1, . . . , λj ], ∀j ∈ J1, gK.1129

We consider the constrained complex minimization problem1130

min {F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG such that (5.3) holds} .1131

It has a unique solution, which is characterised by the existence of multipliers (mj)j∈J1,gK ⊂1132

C such that1133

(5.4)

g∑
j=1

〈
H[λ1, . . . , λj ],Ω[λ1, . . . , λj ]

〉
U
=

g∑
j=1

mj ⟨H, b⟩U [λ1, . . . , λj ],1134

for any H1, . . . ,Hg ∈ UG.1135

Then, for a given q ∈ J1, gK, using Leibniz formula [12, Proposition A.2.11], the1136

constraints (5.3) can be rewritten as1137

(5.5) ω[λ1, . . . , λq] = ⟨Ω, b⟩U [λ1, . . . , λq] =

q∑
j=1

〈
Ω[λ1, . . . , λj ], b[λj , . . . , λq]

〉
U

1138

To relate (5.5) and (5.4), we look for H1, . . . ,Hg ∈ UG such that, for a given q ∈ J1, gK1139

we have1140

H[λ1, . . . , λj ] =

{
b[λj , . . . , λq], for j ≤ q,

0, for j > q.
1141

This can be done by setting H1 = b[λ1, . . . , λq] and, from the interpolation formula [9,1142

Proposition 7.6], by defining Hj by the formula1143

Hj =

j∑
i=1

(
j−1∏
k=1

(λi − λk)

)
H[λ1, . . . , λi], ∀j ∈ J2, gK.1144

Then, from (5.5) we obtain1145

ω[λ1, . . . , λq] =

g∑
j=1

〈
Ω[λ1, . . . , λj ], H[λ1, . . . , λj ]

〉
U
.1146
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Now relation (5.4) leads, after conjugation, to1147

ω[λ1, . . . , λq] =

g∑
j=1

mj ⟨H, b⟩U [λ1, . . . , λj ].1148

The application of Leibniz formula [12, Proposition A.2.11] yields1149

ω[λ1, . . . , λq] =

g∑
j=1

mj

(
j∑
l=1

〈
H[λ1, . . . , λl], b[λl, . . . , λj ]

〉
U

)
1150

=

g∑
j=1

mj

min(j,q)∑
l=1

⟨b[λl, . . . , λq], b[λl, . . . , λj ]⟩U

 .1151

1152

Conjugating this relation leads to1153

ω[λ1, . . . , λq] =

g∑
j=1

mj

min(j,q)∑
l=1

⟨b[λl, . . . , λj ], b[λl, . . . , λq]⟩U

1154

=

g∑
l=1

g∑
j=1

mjΓ
l
q,j = (Mm)q,1155

1156

where Γl and M are defined in (2.35).1157

Let1158

ξ :=

 ω[λ1]
...

ω[λ1, . . . , λg]

 ∈ Cg.1159

We have just proved that m = M−1ξ. Getting back to (5.4) with H = Ω together1160

with the constraints (5.3), we obtain1161

F (Ω) =

g∑
j=1

mj ⟨Ω, b⟩U [λ1, . . . , λj ] =
〈
M−1ξ, ξ

〉
.1162

With the specific choice, ωj = ⟨y0, ϕj⟩−⋄,⋄, this ends the proof of Theorem 2.8 with1163

the extra assumption that αλ = 1 for all λ ∈ G. Indeed, by anti-linearity we have1164

ω[λ1, . . . , λj ] = ⟨y0, ϕ[λ1, . . . , λj ]⟩−⋄,⋄ , ∀j ∈ J1, gK.1165

Remark 5.1. As mentioned in Remark 2.4, estimate (5.1) implies that the cost1166

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any eigenvectors:1167

there is no normalization condition.1168

Remark 5.2. Rewriting the constraints in the form (5.3) is not mandatory but,1169

as the function to minimize involves divided differences, it leads to more exploitable1170

formulas and will ease the writing when dealing with algebraic multiplicity of eigen-1171

values. Dealing directly with (5.2) would lead to the expression (D.9) for the cost of1172

the block G as it will appear in the proof of Theorem 2.10.1173
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5.2. The case of geometrically simple eigenvalues.1174

The proof of Proposition 2.7 and Theorem 2.8 under the sole assumption γλ = 11175

for any λ ∈ G follows closely the proof done in Section 5.1. The main difference is the1176

use of generalized divided differences (see [9, Section 7.3]) instead of classical divided1177

differences as detailed below.1178

Proof (of Proposition 2.7). Due to (2.24), for any l ∈ J1, |α|K the multi-index1179

µl − µl−1 is composed of only one 1 and g − 1 zeros. Thus,1180

b
[
λ
(µl−µl−1)
•

]
= b0j1181

for a certain j ∈ J1, gK. From (2.14) it comes that1182

b
[
λ
(µl−µl−1)
•

]
̸= 0, ∀l ∈ J1, |α|K.1183

The rest of the proof follows as in Section 5.1.1184

Proof (of Theorem 2.8). As γλ = 1, the constraints defining the set O(λj , y0)1185

reduce to1186

l∑
r=0

〈
Ωrj , b

l−r
j

〉
U
=

l∑
r=0

〈
Ωrj ,B∗(A∗ − λj)

rϕlj
〉
U

1187

=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀l ∈ J0, αjJ.1188

1189

By definition of ⟨Ω, b⟩U
[
λj

(l+1)
]
, this is equivalent to1190

⟨Ω, b⟩U
[
λj

(l+1)
]
=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀l ∈ J0, αjJ.1191

Thus,1192
1193

(5.6) C(G, y0) = min
{
F (Ω) ; Ω = (Ω0

1, . . . ,Ω
α1−1
1 , . . . ,Ω0

g, . . . ,Ω
αg−1
g ) ∈ U

|α|
G1194

such that ⟨Ω, b⟩U
[
λj

(l+1)
]
=
〈
y0, ϕ

l
j

〉
−⋄,⋄ , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ

}
.1195

1196

For the sake of generality, let us consider for this proof any1197 (
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|

1198

and the more general constraints1199

⟨Ω, b⟩U
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1200

From (2.24), this is equivalent to the family of constraints1201

⟨Ω, b⟩U
[
λ•

(µp)
]
= ω

[
λ•

(µp)
]
, ∀p ∈ J1, |α|K,1202

and we proceed as in Section 5.1. The only difference is the use of generalized divided1203

differences. For instance, the equation (5.4) now reads1204

|α|∑
l=1

〈
H[λ•

(µl)
],Ω[λ•

(µl)
]

〉
U

=

|α|∑
l=1

ml ⟨H, b⟩U [λ•
(µl)

], ∀H = (H l
j) ∈ U

|α|
G .1205

The rest of the proof remains unchanged.1206
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Remark 5.3. As mentioned in Remark 2.4, estimate (5.6) implies that the cost1207

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any eigenvectors1208

and any associated Jordan chains.1209

5.3. The case of semi-simple eigenvalues.1210

We start with the proof of Proposition 2.9.1211

Proof (of Proposition 2.9). Recall that the positive semi-definite matrix M is de-1212

fined in (2.37). Let τ ∈ CγG be such that ⟨Mτ, τ⟩ = 0. Then, for any l ∈ J1, gK,1213 〈
Γlτ, τ

〉
= 0. We prove that τ = 0. By contradiction let1214

l̃ = max{j ∈ J1, γGK ; τj ̸= 0}1215

and l ∈ J1, gK be such that1216

γ1 + · · ·+ γl−1 < l̃ ≤ γ1 + · · ·+ γl1217

with the convention that l = 1 when l̃ ≤ γ1. We denote by σ ∈ Cγl the lth block of τ1218

i.e.1219

σ =

τγ1+···+γl−1+1

...
τγ1+···+γl

 .1220

From (2.36) we have δil = 0 when i < l. Thus all the blocks (i, j) of Γl are equal to 01221

when i, j ∈ J1, lJ. This leads to1222 〈
Γlτ, τ

〉
=
∣∣δll∣∣2 ⟨GramU (bl,1, . . . , bl,γl)σ, σ⟩ .1223

As the eigenvalues λ1, . . . , λg are distinct it comes that δll ̸= 0 (see (2.36)) which1224

implies1225

⟨GramU (bl,1, . . . , bl,γl)σ, σ⟩ = 0.1226

From (2.14), we have that bl,1, . . . , bl,γl are linearly independent. This proves the1227

invertibility of GramU (bl,1, . . . , bl,γl) and gives σ = 0. This is in contradiction with1228

the definition of l̃ which proves the invertibility of M .1229

We now turn to the proof of Theorem 2.10.1230

Proof (of Theorem 2.10). First of all, notice that the function F to minimize1231

reduces to1232

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥21233

and, as αλ = 1, the constraints defining the set O(λj , y0) reduce to1234

⟨Ωj ,B∗ϕ⟩U = ⟨y0, ϕ⟩−⋄,⋄ , ∀ϕ ∈ Ker(A∗ − λj).1235

To simplify the writing, let us consider the linear maps1236

Bj :=

 ⟨•,B∗ϕj,1⟩U
...〈

•,B∗ϕj,γj
〉
U

 ∈ L(U,Cγj ).1237
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Then the constraints defining O(λj , y0) can be rewritten as the equality1238

(5.7) BjΩj =

 ⟨y0, ϕj,1⟩−⋄,⋄
...〈

y0, ϕj,γj
〉
−⋄,⋄

 .1239

Thus,1240

1241

(5.8) C(G, y0) = min
{
F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG1242

such that (5.7) holds for any j ∈ J1, gK
}
.1243

1244

For the sake of generality, let us consider for this proof, for any j ∈ J1, gK, any ωj ∈ Cγj1245

and the more general constraints1246

(5.9) BjΩj = ωj , ∀j ∈ J1, gK.1247

As the ωj ’s have different sizes we avoid in this proof the use of divided differences1248

to rewrite the constraints. This is why we end up with the formula (2.37) rather than1249

an adaptation of (2.35) (see also the discussion in Remark 5.2).1250

Arguing as before, the solution of our optimisation problem satisfies1251

(5.10)

g∑
j=1

〈
H[λ1, . . . , λj ],Ω[λ1, . . . , λj ]

〉
U
=

g∑
j=1

⟨BjHj ,mj⟩ , ∀H1, . . . ,Hg ∈ UG,1252

for some mj ∈ Cγj , j = 1, . . . , g.1253

Recall that in (2.36) we defined the numbers1254

δij =
∏

k∈J1,jJ

(
λi − λk

)
, ∀j ∈ J2, gK.1255

Then, from the interpolation formula [9, Proposition 7.6], we obtain that1256

(5.11) Ωi =

i∑
l=1

δilΩ[λ1, . . . , λl].1257

For any H ∈ UG and i ∈ J1, gK, let us design H(i)
1 , . . . ,H

(i)
g ∈ UG such that1258

(5.12) H(i)[λ1, . . . , λl] = δilH, ∀l ∈ J1, iK.1259

To do so, we set H
(i)
1 = H then, using the interpolation formula [9, Proposition 7.6],1260

we define recursively1261

H
(i)
j =

j∑
l=1

δjlH
(i)[λ1, . . . , λl] =

(
j∑
l=1

δilδ
j
l

)
H = a

(i)
j H1262

with1263

(5.13) a
(i)
j :=

g∑
l=1

δilδ
j
l =

min(i,j)∑
l=1

δilδ
j
l .1264
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This ensures (5.12). Plugging this set of values H
(i)
j , j = 1, . . . , g in (5.10) and taking1265

into account (5.11), leads to1266

g∑
j=1

a
(i)
j ⟨BjH,mj⟩ =

g∑
j=1

〈
BjH

(i)
j ,mj

〉
1267

=

g∑
j=1

δij
〈
H,Ω[λ1, . . . , λj ]

〉
U

1268

=

〈
H,

g∑
j=1

δijΩ[λ1, . . . , λj ]

〉
U

1269

= ⟨H,Ωi⟩U .12701271

This being true for any H ∈ UG, we end up with1272

(5.14) Ωi =

g∑
j=1

a
(i)
j B∗

jmj .1273

Together with (5.9), using (5.13), we obtain that1274

ωi =

g∑
j=1

a
(i)
j BiB

∗
jmj1275

=

g∑
l=1

g∑
j=1

(
δilBi

)(
δjlBj

)∗
mj1276

= (Mm)i12771278

where M is defined in (2.37) and (Mm)i ∈ Cγi denotes the ith block of Mm ∈ CγG .1279

Finally, if we set1280

(5.15) ξ :=

ω1

...
ωg

 ∈ CγG ,1281

we have proved that the multiplier is given by m = M−1ξ. Applying (5.10) with1282

Hj = Ωj and using the constraints (5.7) leads to1283

F (Ω) =

g∑
j=1

∥∥Ω[λ1, . . . , λj ]∥∥2 =
〈
M−1ξ, ξ

〉
,1284

which proves the claim.1285

Remark 5.4. From (5.14) and the equality m =M−1ξ it comes that1286

1287

C(G, y0) = min
{
F (Ω) ; Ω = (Ω1, . . . ,Ωg) ∈ UgG1288

such that (5.9) holds for any j ∈ J1, gK
}

1289
1290
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where the minimum is attained for1291

Ωi =

g∑
j=1

(
g∑
l=1

δilδ
j
l

)
B∗
j (M

−1ξ)j1292

with ξ defined by (5.15).1293

Remark 5.5. As mentioned in Remark 2.4, estimate (5.8) implies that the cost1294

of the block G (i.e. the quantity
〈
M−1ξ, ξ

〉
) can be estimated using any basis of1295

eigenvectors.1296

5.4. Dealing simultaneously with algebraic and geometric multiplici-1297

ties.1298

The proof of Theorem 2.8 strongly relies on the use of divided differences to rewrite1299

the constraints whereas the proof of Theorem 2.10 is based on the vectorial writing1300

of the constraints through the operators Bj ∈ L(U ;Cγj ). As the target spaces of1301

these operators do not have the same dimension, one cannot directly compute divided1302

differences. Thus, the setting we developed to compute the cost of a given block does1303

not lead to a general formula when both kind of multiplicities need to be taken into1304

account in the same group. However, for actual problems, the computation of this1305

cost is a finite dimensional constrained optimization problem which can be explicitly1306

solved.1307

Let us give an example of such a group that does not fit into Theorem 2.8 nor1308

into Theorem 2.10 but for which we manage to compute the cost by hand. To simplify1309

a little the presentation, we give this example in the case of real Hilbert spaces and1310

real eigenvalues.1311

We consider a group G = {λ1, λ2} of two distinct eigenvalues such that γλ1 =1312

αλ1 = 2 and γλ2 = αλ2 = 1. Let (ϕ01,1, ϕ
0
1,2) be a basis of Ker(A∗ − λ1) and ϕ02,1 be1313

an eigenvector of A∗ associated to the eigenvalue λ2. Assume that the generalized1314

eigenvector ϕ11,1 is such that1315

(A∗ − λ1)ϕ
1
1,1 = ϕ01,1,1316

and that {ϕ01,1, ϕ11,1, ϕ01,2} forms a basis of Ker(A∗ − λ1)
2.1317

For this group, in the same spirit as in Theorems 2.8 and 2.10, we obtain the1318

following result.1319

proposition 5.1. For any y0 ∈ X−⋄, we have1320

C(G, y0) =
〈
M−1ξ, ξ

〉
where ξ =


〈
y0, ϕ

0
1,1

〉
−⋄,⋄〈

y0, ϕ
0
1,2

〉
−⋄,⋄〈

y0, ϕ
1
1,1

〉
−⋄,⋄〈

y0, ϕ
0
2,1

〉
−⋄,⋄

1321

and M is the invertible matrix defined by1322

M = GramU

(
b01,1, b

0
1,2, b

1
1,1, b

0
2,1

)
1323

+ GramU

(
0, 0, b01,1, δb

0
2,1

)
1324

+ GramU

(
0, 0, 0, δ2b02,1

)
13251326

with δ = λ2 − λ1.1327
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Proof. Let1328 (
ω0
1,1, ω

0
1,2, ω

1
1,1, ω

0
2,1

)t ∈ R4.1329

As in the proofs of Theorems 2.8 and 2.10, the goal is to compute the minimum of1330

the function1331

F :
(
Ω0

1,Ω
1
1,Ω

0
2

)
∈ U3

G 7→ ∥Ω0
1∥2 + ∥Ω1

1∥2 + ∥Ω[λ(2)1 , λ2]∥2,1332

under the 4 constraints1333 〈
Ω0
j , b

0
j,i

〉
U
= ω0

j,i, ∀i ∈ J1, γjK, ∀j ∈ J1, 2K,1334 〈
Ω0

1, b
1
1,1

〉
U
+
〈
Ω1

1, b
0
1,1

〉
U
= ω1

1,1.1335
1336

Then, the Lagrange multipliers m0
1,1,m

0
1,2,m

1
1,1 and m0

2,1 satisfy the equations1337

1338

(5.16)
〈
Ω0

1, H
0
1

〉
U
+
〈
Ω1

1, H
1
1

〉
U
+
〈
Ω[λ

(2)
1 , λ2], H[λ

(2)
1 , λ2]

〉
U
= m0

1,1

〈
H0

1 , b
0
1,1

〉
U

1339

+m0
1,2

〈
H0

1 , b
0
1,2

〉
U
+m1

1,1

(〈
H0

1 , b
1
1,1

〉
U
+
〈
H1

1 , b
0
1,1

〉
U

)
+m0

2,1

〈
H0

2 , b
0
2,1

〉
U
,1340

1341

for every H0
1 , H

1
1 , H

0
2 ∈ UG. Considering successively1342

H0
1 = b01,1, H1

1 = 0, H0
2 = b01,1,1343

1344
H0

1 = b01,2, H1
1 = 0, H0

2 = b01,2,1345
1346

H0
1 = b11,1, H1

1 = b01,1, H0
2 = b11,1 + (λ2 − λ1)b

0
1,1,1347

and1348

H0
1 = b02,1, H1

1 = (λ2 − λ1)b
0
2,1, H0

2 =
(
1 + (λ2 − λ1)

2 + (λ2 − λ1)
4
)
b02,1,1349

and plugging it into (5.16), we obtain that


ω0
1,1

ω0
1,2

ω1
1,1

ω0
2,1

 = M


m0

1,1

m0
1,2

m1
1,1

m0
2,1

 . Then, the same1350

argument as in the proofs of Theorems 2.8 and 2.10 ends the proof.1351

6. Application to the study of null controllability of academic exam-1352

ples.1353

In this section we provide examples to illustrate how to use the formulas obtained1354

in Theorems 2.5, 2.8 and 2.10 in order to compute the minimal null control time.1355

We start with academic examples for which computations are simpler. Then, in1356

Section 7, we study coupled systems of actual partial differential equations of parabolic1357

type.1358

6.1. Setting and notations.1359

Let A be the unbounded Sturm-Liouville operator defined in L2(0, 1;R) by1360

(6.1) D(A) = H2(0, 1;R) ∩H1
0 (0, 1;R), A = −∂x

(
γ∂x •

)
+ c•,1361

with c ∈ L∞(0, 1;R) satisfying c ≥ 0 and γ ∈ C1([0, 1];R) satisfying inf
[0,1]

γ > 0.1362

The operator A admits an increasing sequence of eigenvalues denoted by (νk)k∈N∗ .1363

The associated normalized eigenvectors (φk)k∈N∗ form a Hilbert basis of L2(0, 1;R).1364
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Remark 6.1. The assumption c ≥ 0 ensures that for any k ≥ 1, the eigenvalues1365

satisfies νk > 0. From Remark 2.2, the controllability results proved in the present1366

article still hold when the function c is bounded from below.1367

To lighten the notations, for any I ⊂ (0, 1) we set ∥ • ∥I = ∥ • ∥L2(I).1368

Let f : Sp(A) → R be a bounded function. Associated to this function we consider1369

the operator f(A) defined on D(A) by the spectral theorem by1370

(6.2) f(A) =
∑
k≥1

f(νk) ⟨•, φk⟩L2(0,1;R) φk.1371

6.2. Spectral properties of Sturm-Liouville operators.1372

Let A be the Sturm-Liouville operator defined in (6.1). All the examples studied1373

in this article are based on this operator. We recall here some spectral properties that1374

will be used in our study.1375

From [2, Theorem 1.1 and Remark 2.1], there exist ϱ > 0 and C > 0 such that1376

(6.3) ϱ < νk+1 − νk, ∀k ≥ 1,1377

1378

(6.4)
1

C

√
νk ≤ |φ′

k(x)| ≤ C
√
νk, ∀x ∈ {0, 1}, ∀k ≥ 1,1379

and, for any non-empty open set ω ⊂ (0, 1),1380

(6.5) inf
k≥1

∥φk∥ω > 0.1381

Moreover, using [12, Theorem IV.1.3], the associated counting function satisfies1382

(6.6) N(νk)k(r) ≤ C
√
r, ∀r > 0,1383

and1384

(6.7)
∣∣N(νk)k(r)−N(νk)k(s)

∣∣ ≤ C
(
1 +

√
|r − s|

)
, ∀r, s > 0.1385

We also recall the classical Lebeau-Robbiano spectral inequality1386

(6.8)

∥∥∥∥∥∥
∑
k≤K

akφk

∥∥∥∥∥∥
Ω

≤ CeC
√
νK

∥∥∥∥∥∥
∑
k≤K

akφk

∥∥∥∥∥∥
ω

, ∀K ≥ 1,∀(ak)k ⊂ R.1387

Indeed, as detailed for instance in [12, Theorem IV.2.19], the proof of this spectral1388

inequality given in [27] directly extends to the low regularity coefficients considered1389

here.1390

6.3. Perturbation of a 2x2 Jordan block.1391

Let ω ⊂ (0, 1) be a non-empty open set and U = L2(Ω). Let A be the Sturm-1392

Liouville operator defined in (6.1) and f(A) be the operator defined in (6.2) with1393

f : Sp(A) → R satisfying1394

|f(νk)| <
ϱ

2
, ∀k ≥ 1.1395
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We consider the operator A on X = L2(0, 1;R)2 defined by1396

(6.9) A =

(
A I
0 A+ f(A)

)
, D(A) = D(A)×D(A),1397

and1398

(6.10) B : u ∈ U 7→
(

0
1ωu

)
.1399

Then,1400

B∗ :

(
φ1

φ2

)
∈ X 7→ 1ωφ2.1401

It is easy to see that (−A, D(A)) generates a C0-semigroup on X and that B : U → X1402

is bounded. Thus we consider for this example that X∗
⋄ = X = X−⋄.1403

proposition 6.1. Let us consider the control system (1.1) with A and B given1404

by (6.9)-(6.10). Then, null-controllability from X−⋄ holds in any time i.e. T0(X−⋄) =1405

0.1406

Proof. The spectrum of (A∗, D(A)) is given by1407

Λ = {νk ; k ≥ 1} ∪ {νk + f(νk) ; k ≥ 1}.1408

Recall that (νk)k≥1 satisfies (6.3), (6.6) and (6.7). From [12, Lemma V.4.20] it comes1409

that there exists κ > 0 such that Λ ∈ Lw
(
2, ϱ2 ,

1
2 , κ
)
.1410

An associated grouping is given by1411 {
Gk := {λk,1 := νk, λk,2 := νk + f(νk)}, if f(νk) ̸= 0,

Gk := {λk,1 := νk}, if f(νk) = 0.
1412

If f(νk) ̸= 0 the eigenvalues λk,1 and λk,2 are simple and we consider the associated1413

eigenvectors1414

ϕ0k,1 =

(
−f(νk)

1

)
φk, ϕ0k,2 =

(
0
1

)
φk.1415

If f(νk) = 0 the eigenvalue λk,1 is algebraically double and we consider the associated1416

Jordan chain1417

ϕ0k,1 =

(
0
1

)
φk, ϕ1k,1 =

(
1
0

)
φk.1418

From (6.5) it comes that (2.14) and (2.15) are satisfied. Thus, from Theorem 2.5, we1419

obtain that for any y0 ∈ X−⋄,1420

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

.1421

Let us now conclude by estimating C(Gk, y0).1422

• Consider first that f(νk) ̸= 0. Then, ϕ[λk,1, λk,2] =

(
1
0

)
φk and1423

b[λk,1, λk,2] = B∗ϕ[λk,1, λk,2] =
1ωφk − 1ωφk

f(νk)
= 0.1424
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From Theorem 2.8 it comes that1425

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1426

with1427

M = Gram(b[λk,1], b[λk,1, λk,2]) + Gram(0, b[λk,2]) =

(
∥φk∥2ω 0

0 ∥φk∥2ω

)
1428
1429

and1430

ξ =

(
⟨y0, ϕ[λk,1]⟩−⋄,⋄

⟨y0, ϕ[λk,1, λk,2]⟩−⋄,⋄

)
=


〈
y0,

(
−f(νk)

1

)
φk

〉
−⋄,⋄〈

y0,

(
1
0

)
φk

〉
−⋄,⋄

 .1431

Thus,1432

C(Gk, y0) =
〈
y0,

(
−f(νk)

1

)
φk

∥φk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
φk

∥φk∥ω

〉2

−⋄,⋄
.1433

• Consider now that f(νk) = 0. Then, b[λ
(2)
k,1] = 0. From Theorem 2.8 it comes1434

that1435

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1436

with1437

Mk = Gram(b[λk,1], b[λ
(2)
k,1]) + Gram(0, b[λk,1]) =

(
∥φk∥2ω 0

0 ∥φk∥2ω

)
.1438

1439

and1440

ξ =

( ⟨y0, ϕ[λk,1]⟩−⋄,⋄〈
y0, ϕ[λ

(2)
k,1]
〉
−⋄,⋄

)
=


〈
y0,

(
0
1

)
φk

〉
−⋄,⋄〈

y0,

(
1
0

)
φk

〉
−⋄,⋄

 .1441

As previously,1442

C(Gk, y0) =
〈
y0,

(
0
1

)
φk

∥φk∥ω

〉2

−⋄,⋄
+

〈
y0,

(
1
0

)
φk

∥φk∥ω

〉2

−⋄,⋄
.1443

Gathering both cases and using estimate (6.5) we obtain, for any y0 ∈ X−⋄,1444

C(Gk, y0) ≤ C ∥y0∥2−⋄ , ∀k ≥ 1.1445

Thus,1446

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

= 0.
1447
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6.4. Competition between different perturbations.1448

Let ω1, ω2 ⊂ (0, 1) be two open sets with ω1 ̸= ∅ and U = L2(Ω)2. Let B1, B2 ∈1449

R3. To simplify the computations, we assume that1450

Bi =

 0
Bi,2
Bi,3

 .1451

Let α, β > 0 with α ̸= β and f, g : Sp(A) → R be defined by1452

f(νk) =
ϱ

2
e−ανk , g(νk) =

ϱ

2
e−βνk .1453

As previously, we consider the associated operators f(A) and g(A) defined by the1454

spectral theorem and we define the evolution operator A on X = L2(0, 1;R)3 by1455

(6.11) A =

A I 0
0 A+ f(A) 0
0 0 A+ g(A)

 , D(A) = D(A)3,1456

and the control operator by1457

(6.12) B :

(
u1
u2

)
∈ U 7→ 1ω1

u1B1 + 1ω2
u2B2.1458

Then, the observation operator reads1459

B∗ :

φ1

φ2

φ3

 ∈ X 7→
(
1ω1

(B1,2φ2 +B1,3φ3)
1ω2

(B2,2φ2 +B2,3φ3)

)
.1460

1461

proposition 6.2. Let us consider the control system (1.1) with A and B given1462

by (6.11)-(6.12).1463

i. If ω2 = ∅, we assume that1464

(6.13) B1,2B1,3 ̸= 0.1465

Then,1466

T0(X−⋄) = β +min{α, β}.1467

ii. If ω2 ̸= ∅, we assume that1468

(6.14)
(
B2

1,2 +B2
2,2

) (
B2

1,3 +B2
2,3

)
̸= 0.1469

(a) If B1 and B2 are linearly independent, then,1470

T0(X−⋄) = 0.1471

(b) If B1 and B2 are not linearly independent, then,1472

T0(X−⋄) = β +min{α, β}.1473
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Proof. It is easy to see that (−A, D(A)) generates a C0-semigroup on X and that1474

B : U → X is bounded. Thus we consider for this example that X∗
⋄ = X = X−⋄ and1475

Y0 = X−⋄.1476

The spectrum of (A∗, D(A)) is given by Λ =
⋃
k≥1Gk where1477

Gk := {λk,1 := νk, λk,2 := νk + f(νk), λk,3 := νk + g(νk)}.1478

Again, since (νk)k≥1 satisfies (6.3), (6.6) and (6.7), the application of [12, Lemma1479

V.4.20] yields the existence of κ > 0 such that Λ ∈ Lw
(
3, ϱ2 ,

1
2 , κ
)
. The sequence1480

(Gk)k≥1 is an associated grouping.1481

The eigenvalues are simple and the corresponding eigenvectors are given by1482

ϕ0k,1 =

−f(νk)
1
0

φk, ϕ0k,2 =

0
1
0

φk, ϕ0k,3 =

0
0
1

φk.1483

Thus, the assumption (2.15) hold. Moreover,1484

(6.15) b1 = b2 =

(
1ω1

φkB1,2

1ω2
φkB2,2

)
, b3 =

(
1ω1

φkB1,3

1ω2
φkB2,3

)
1485

From (6.5) and (6.13) or (6.14) (depending on the assumption on ω2) it comes1486

that (2.14) is satisfied. Thus, from Theorem 2.5, it comes that for any y0 ∈ X−⋄,1487

T0(y0) = lim sup
k→+∞

ln+ C(Gk, y0)
2minGk

.1488

Let us now estimate C(Gk, y0). From Theorem 2.8 it comes that1489

C(Gk, y0) =
〈
M−1ξ, ξ

〉
1490

with1491

M =Gram
(
b[λk,1], b[λk,1, λk,2], b[λk,1, λk,2, λk,3]

)
1492

+Gram
(
0, b[λk,2], b[λk,2, λk,3]

)
+Gram

(
0, 0, b[λk,3]

)
14931494

and1495

ξ =

 ⟨y0, ϕ[λk,1]⟩−⋄,⋄
⟨y0, ϕ[λk,1, λk,2]⟩−⋄,⋄

⟨y0, ϕ[λk,1, λk,2, λk,3]⟩−⋄,⋄

 .1496

Explicit computations yield1497

ϕ[λk,1] =

−f(νk)
1
0

φk, ϕ[λk,1, λk,2] =

1
0
0

φk,1498

and1499

ϕ[λk,1, λk,2, λk,3] =
1

g(νk)
(
g(νk)− f(νk)

)
f(νk)− g(νk)

−1
1

φk.1500
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i. Assume that ω2 = ∅.1501

After the change of variables1502

z = diag

(
1

B1,2
,

1

B1,2
,

1

B1,3

)
y,1503

the system under study reads1504 
∂tz +

A I 0
0 A+ f(A) 0
0 0 A+ g(A)

 z = 1ω1
u1(t, x)

0
1
1

 ,

z(t, 0) = z(t, 1) = 0.

1505

This leads to1506

b[λk,1] = b[λk,2] = b[λk,3] = 1ω1
φk.1507

Thus, M = ∥φk∥2ω1
I3 and1508

1509

C(Gk, y0) =

〈
y0,

−f(νk)
1
0

 φk
∥φk∥ω1

〉2

−⋄,⋄

+

〈
y0,

1
0
0

 φk
∥φk∥ω1

〉2

−⋄,⋄

1510

+

(
1

g(νk)
(
g(νk)− f(νk)

))2〈
y0,

f(νk)− g(νk)
−1
1

 φk
∥φk∥ω1

〉2

−⋄,⋄

.1511

1512

From (6.5), we obtain for any y0 ∈ X−⋄,1513

C(Gk, y0) ≤ C ∥y0∥2−⋄

1 +

(
1

g(νk)
(
g(νk)− f(νk)

))2
 .1514

This leads to1515

T0(X−⋄) ≤ lim sup
k→+∞

− ln+
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

.1516

Conversely, with the particular choice1517

y0 =
∑
k≥1

1

νk

0
0
1

φk,1518

we have1519

C(Gk, y0) =
1

ν2k∥φk∥2ω1

(
1

g(νk)
(
g(νk)− f(νk)

))2

.1520

Thus, from (6.5), we obtain1521

T0(X−⋄) ≥ T0(y0) = lim sup
k→+∞

− ln
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

1522

47

This manuscript is for review purposes only.



which gives1523

T0(X−⋄) = lim sup
k→+∞

− ln
∣∣g(νk)(g(νk)− f(νk)

)∣∣
νk

.1524

Then, the same computations as [9, Section 5.1.3] yield1525

T0(X−⋄) = β +min{α, β}.1526

ii. We now consider the case ω2 ̸= ∅.1527

(a) Assume that B1 and B2 are linearly independent. If necessary, we con-1528

sider smaller control sets so that ω1 ∩ ω2 = ∅. As we will prove that1529

T0(X−⋄) = 0, this is not a restrictive assumption.1530

To ease the reading we drop the index k in what follows. As pre-1531

viously, the vector ξ is not bounded. Let us consider the dilatation1532

Dϵ = diag(1, 1, ϵ) with1533

ϵ = g(ν)
(
g(ν)− f(ν)

)
1534

and ξ̃ = Dϵξ. Then, from Section D.1, it comes that1535

C(G, y0) =
〈
M̃−1ξ̃, ξ̃

〉
1536

with1537

M̃ =Gram
(
b[λ1], b[λ1, λ2], ϵb[λ1, λ2, λ3]

)
1538

+Gram
(
0, b[λ2], ϵb[λ2, λ3]

)
+Gram

(
0, 0, ϵb[λ3]

)
.15391540

As
∥∥∥ξ̃∥∥∥ is bounded, we simply give a lower bound on the smallest eigen-1541

value of M̃ . Using (6.15), it comes that1542

b[λ1, λ2] = 0, b[λ2, λ3] =
b3 − b1

g(ν)− f(ν)
, b[λ1, λ2, λ3] =

1

ϵ
(b3 − b1).1543

Thus,1544

M̃ =Gram
(
b1, 0, b3 − b1

)
+Gram

(
0, b1, g(ν)(b3 − b1)

)
1545

+Gram
(
0, 0, ϵb3

)
.15461547

This gives that, for any τ ∈ R3, we have1548

1549

(6.16)
〈
M̃τ, τ

〉
= ∥τ1b1 + τ3(b3 − b1)∥2U + ∥τ2b1 + g(ν)τ3(b3 − b1)∥2U1550

+ ϵ2 ∥τ3b3∥2U .15511552

To obtain a lower bound on this quantity we use the following lemma.1553

Lemma 6.3. There exists C > 0 (independent of k) such that for any1554

θ1, θ3 ∈ R,1555

∥θ1b1 + θ3b3∥2U ≥ C
(
θ21 + θ23

)
.1556
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Proof. As ω1 ∩ ω2 = ∅,1557

∥θ1b1 + θ3b3∥2U =(B1,2θ1 +B1,3θ3)
2 ∥φk∥2ω1

1558

+ (B2,2θ1 +B2,3θ3)
2 ∥φk∥2ω2

.15591560

Using (6.5) it comes that1561

∥θ1b1 + θ3b3∥2U ≥ C
(
(B1,2θ1 +B1,3θ3)

2
+ (B2,2θ1 +B2,3θ3)

2
)

1562

=

∥∥∥∥(B1,2 B1,3

B2,2 B2,3

)(
θ1
θ3

)∥∥∥∥2 .1563
1564

Since B1 and B2 are linearly independent, this ends the proof.1565

Applying this lemma twice to (6.16) yield1566 〈
M̃τ, τ

〉
≥ C

(
(τ1 − τ3)

2 + τ23 + (τ2 − g(ν)τ3)
2 + g(ν)2τ23 + ϵ2τ23

)
1567

≥ C
(
(τ1 − τ3)

2 + τ23 + (τ2 − g(ν)τ3)
2
)
.15681569

Taking into account that 0 < g(ν) < 1
2 for ν large enough, the study of1570

this quadratic form in R3 leads to1571 〈
M̃τ, τ

〉
≥ C

(
τ21 + τ22 + τ23

)
.1572

Thus the smallest eigenvalue of M̃ is bounded from below. This leads to1573

the boundedness of
〈
M̃−1ξ̃, ξ̃

〉
which concludes the proof of case ii (a).1574

(b) Assume now that B1 and B2 are not linearly independent. Then, there1575

exist x1, x2 ∈ R such that1576 {
x1B1,2 + x2B1,3 = 0

x1B2,2 + x2B2,3 = 0.
1577

Up to a change of normalization of the eigenvectors (independent of k)1578

we obtain1579

b1 = b2 = b3 =

(
1ω1φkx1B1,2

1ω2
φkx1B2,2

)
1580

and this amounts to case i.1581

7. Analysis of controllability for systems of partial differential equa-1582

tions.1583

We now turn to the analysis of null controllability of actual partial differential1584

equations. We consider here coupled systems of two linear one dimensional parabolic1585

equations.1586

7.1. Coupled heat equations with different diffusion coefficients.1587

In this application, we consider the Sturm-Liouville operator A defined in (6.1)1588

and we define in X = L2(0, 1;R)2 the operator1589

A =

(
A I
0 dA

)
, D(A) = D(A)2,1590
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with d > 0. We will assume d ̸= 1, since the case d = 1 is much simpler and already1591

studied in the literature: see the computations of Section 6.3 in the case f = 0 or, for1592

instance, [23] for a more general study based on Carleman estimates.1593

We will consider two cases : the case where two boundary controls are applied to1594

the system, and the case where we consider the same distributed control in the two1595

equations of the system.1596

7.1.1. Spectrum of A∗. Let Λ1 := Sp(A) = {νk ; k ≥ 1} and Λ2 := dΛ1.1597

The spectrum of A∗ is given by Λ = Λ1 ∪ Λ2 which belongs to Lw
(
2, ϱ, 12 , κ

)
for1598

some ϱ, κ > 0 (see [12, Lemma V.4.20]).1599

For any λ ∈ Λ, there are two non mutually exclusive cases:1600

• If λ = νk ∈ Λ1, then we can associate an eigenvector given by1601

ϕλ,1 =

(
1
εk

)
φk,1602

with εk = 1
νk(1−d) . Note that εk tends to zero when k goes to infinity.1603

• If λ = dνl ∈ Λ2, then we can associate an eigenvector given by1604

ϕλ,2 =

(
0
1

)
φl.1605

It clearly appears that the elements in Λ1 ∩ Λ2 (if this set is not empty) are ge-1606

ometrically double eigenvalues of A∗, since in that case ϕλ,1 and ϕλ,2 are linearly1607

independent.1608

Note that (2.15) holds for the choices of X∗
⋄ that we will make in the sequel, since1609

(φk)k≥1 is a Hilbert basis of L2(0, 1;R).1610

7.1.2. Two boundary controls. In this section, we study the following bound-1611

ary control system1612

(7.1)

{
∂ty +Ay = 0, t ∈ (0, T ),

y(t, 0) = B0u0(t), y(t, 1) = B1u1(t), t ∈ (0, T ),
1613

with1614

(7.2) B0 =

(
1
1

)
and B1 =

(
0
1

)
.1615

The control operator B is defined in a weak sense as in [38]. The expression of its1616

adjoint is given by1617

B∗ :

(
f
g

)
∈ X∗

1 7→

−B∗
0

(
f ′(0)
g′(0)

)
B∗

1

(
f ′(1)
g′(1)

)
 =

(
−(f ′(0) + g′(0))

g′(1)

)
.1618

Considering X∗
⋄ = H1

0 (0, 1;R)2, we obtain that B is admissible with respect to X−⋄ =1619

H−1(0, 1;R)2.1620

proposition 7.1. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0, 1;R)21621

of finite codimension such that1622

• for any y0 ̸∈ Y0, system (7.1) is not approximately controllable;1623
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• for any y0 ∈ Y0, system (7.1) is null controllable in any time T > 0.1624

Remark 7.1. The situation with a single control is quite different. Indeed, con-1625

sidering B0 =

(
0
1

)
and B1 = 0, it is proved in [5] that, when A is the Dirichlet1626

Laplace operator, approximate controllability holds if and only
√
d ̸∈ Q and in this1627

case that1628

T0(X−⋄) = lim sup
λ→∞
λ∈Λ

ln+

(
1

dist
(
λ,Λ\{λ}

))
λ

.1629

With this formula the authors prove that, for any τ ∈ [0,+∞], there exists a diffusion1630

ratio d > 0 such that the minimal null control time of system (7.1) satisfies T0(X−⋄) =1631

τ .1632

Remark 7.2. From the definition of Y0 in the following proof, we directly obtain1633

that in the case where A is the Dirichlet Laplace operator on the interval (0, 1), then1634

Y0 = H−1(0, 1;R)2.1635

Remark 7.3. The particular choice of B0 and B1 is done to simplify the com-1636

putations. Notice that with this choice, it is not possible to steer to zero the second1637

equation and then control the first equation. This would be the case with the simpler1638

choice1639

B0 =

(
0
1

)
and B1 =

(
1
0

)
.1640

Proof. Let us compute the observations associated to the eigenvectors of A∗.1641

For any k ≥ 1, we define sk ∈ R be such that φ′
k(1) = skφ

′
k(0). From (6.4), there1642

exists C > 0 such that1643

(7.3)
1

C
≤ |sk| ≤ C, ∀k ≥ 1.1644

• For any λ = νk ∈ Λ1, we have1645

(7.4) B∗ϕλ,1 = −φ′
k(0)

(
1 + εk
−skεk

)
.1646

• For any λ = dνl ∈ Λ2, we have1647

(7.5) B∗ϕλ,2 = −φ′
l(0)

(
1

−sl

)
.1648

Due to (6.4) and (7.3), it comes that (2.14) holds for any simple eigenvalue λ ∈1649

(Λ1 \ Λ2) ∪ (Λ2 \ Λ1).1650

However, for a geometrically double eigenvalue λ ∈ Λ1 ∩ Λ2, there can be non-1651

observable modes. Indeed, let k and l such that λ = νk = dνl. Then, the condition1652

Ker(A∗ − λ) ∩KerB∗ ̸= {0}1653

is equivalent to the fact that B∗ϕλ,1 and B∗ϕλ,2 given by (7.4)-(7.5) are linearly1654

independent, which is itself equivalent to the condition1655

(7.6) skεk = sl(1 + εk).1656
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Due to the asymptotics εk −→
k→+∞

0 it turns out that the set1657

Θ := {λ = νk = dνl ∈ Λ1 ∩ Λ2 ; (7.6) holds} ,1658

is finite.1659

For any λ ∈ Θ, we can find ψλ ∈ Span(ϕλ,1, ϕλ2) such that B∗ψλ = 0 and ψλ ̸= 0,1660

that is a non observable mode.1661

Finally, we introduce the set1662

Y0 :=
{
y0 ∈ X−⋄ ; ⟨y0, ψλ⟩−⋄,⋄ = 0, ∀λ ∈ Θ

}
1663

which is, by construction, of finite codimension. For y0 ∈ Y0, the associated moment1664

problem reduces to the one where the geometrically double eigenvalues λ ∈ Θ are now1665

considered as simple eigenvalues with associated eigenvector ϕλ,2, since the moment1666

equation is automatically satisfied for the other eigenvector ψλ.1667

We consider now a grouping G as given by Proposition 2.2, with p = 2 and ϱ > 01668

small enough such that for i ∈ {1, 2} we have1669

(7.7) |λ− µ| > ϱ, ∀λ, µ ∈ Λi, λ ̸= µ.1670

Hence, Theorem 2.5 gives the formula1671

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1672

We will prove in the sequel, analyzing the different possible blocks, that1673

(7.8) sup
G∈G

C(G, y0) < +∞,1674

which will let us conclude the claim, that is T0(y0) = 0.1675

• Blocks of a simple eigenvalue.1676

We immediately obtain

C(G, y0) =



∣∣∣⟨y0, ϕλ,1⟩−⋄,⋄

∣∣∣2
((1 + εk)2 + s2kε

2
k) |φ′

k(0)|2
, if λ = νk,∣∣∣⟨y0, ϕλ,2⟩−⋄,⋄

∣∣∣2
(1 + s2l ) |φ′

l(0)|2
, if λ = dνl.

Using again (6.4) the estimate (7.3) and the fact that (εk)k goes to 0 as k goes1677

to infinity, we observe that the blocks consisting of a single simple eigenvalue1678

do not contribute to the minimal time: the quantity C(G, y0) is bounded1679

independently of G.1680

Moreover, by the discussion above, the blocks consisting of a single double1681

eigenvalue belonging to Θ do not contribute either.1682

• Blocks of two simple eigenvalues: G = {λ1 := νk} ∪ {λ2 := dνl}.1683

From Theorem 2.10 we obtain1684

C(G, y0) =
〈
M−1ξ, ξ

〉
1685

with1686

M = Gram
(
b[λ1], b[λ2]

)
+Gram

(
0, (λ2 − λ1)b[λ2]

)
1687
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and1688

ξ =

(
⟨y0, ϕλ1,1⟩−⋄,⋄
⟨y0, ϕλ2,2⟩−⋄,⋄

)
.1689

To ease the reading, we use the following change of normalization for the1690

eigenvectors1691

ϕ̃λ1
:=

ϕλ1,1

−φ′
k(0)

, ϕ̃λ2
:=

ϕλ2,2

−φ′
l(0)

,1692

and we denote by M̃ and ξ̃ the associated quantities. Notice that, due to (6.4),1693

the quantity
∥∥∥ξ̃∥∥∥ is bounded. Thus, to estimate C(G, y0) we give a lower bound1694

on the smallest eigenvalue of M̃ . We have1695

M̃ = Gram
(
b̃[λ1], b̃[λ2]

)
+Gram

(
0, (λ2 − λ1)b̃[λ2]

)
1696

=

(
ϵ2ks

2
k + (1 + εk)

2
1 + εk + εksksl

1 + εk + εksksl 1 + s2l

)
︸ ︷︷ ︸

=Γ1

+

(
0 0
0 (λ2 − λ1)

2(1 + s2l )

)
.1697

1698

For any τ ∈ R2,
〈
M̃τ, τ

〉
≥
〈
Γ1τ, τ

〉
. Then,1699

min Sp(Γ1) ≥ det(Γ1)

tr(Γ1)
=

((1 + εk)sl − εksk)
2

1 + (1 + ϵk)2 + ε2ks
2
k + s2l

1700

From (7.3), it comes that, for k large enough, min Sp(Γ1) is bounded from1701

below by a positive constant independent of G.1702

• Blocks made of a geometrically double eigenvalue which does not belong to1703

Θ:1704

Consider G = {λ} with λ = νk = dνl ∈ Λ1 ∩ Λ2. With the same notations as1705

previously, Theorem 2.10 implies that1706

C(G, y0) =
〈
M̃−1ξ̃, ξ̃

〉
1707

where1708

ξ̃ =


〈
y0,

ϕλ,1
−φ′

k(0)

〉
−⋄,⋄〈

y0,
ϕλ,2

−φ′
l(0)

〉
−⋄,⋄

1709

and1710

M̃ = Gram

(
B∗ϕλ,1
−φ′

k(0)
,
B∗ϕλ,2
−φ′

l(0)

)
= Γ1.1711

1712

Notice that since λ ̸∈ Θ, we have det(Γ1) = ((1 + εk)sl − εksk)
2 > 0.1713

Thus, the study of the previous item proves that, for λ large enough, min Sp(Γ1)1714

is bounded from below by a positive constant independent of λ.1715

Gathering all cases, we deduce (7.8) and the proof is complete.1716
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7.1.3. Simultaneous distributed control. Let us now consider the following1717

control problem1718

(7.9)

∂ty +Ay = 1ω

(
1
1

)
u(t, x), t ∈ (0, T ),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ).

1719

In that case, the observation operator B∗ is given by1720

B∗ :

(
f
g

)
∈ X∗

1 7→ 1ω(f + g),1721

and is clearly admissible with respect to the pivot space X. Our result concerning1722

this example is very similar to Proposition 7.1 and reads as follows.1723

proposition 7.2. For any d ̸= 1, there exists Y0 a closed subspace of H−1(0, 1;R)21724

of codimension less or equal than 1 such that1725

• for any y0 ̸∈ Y0, system (7.9) is not approximately controllable;1726

• for any y0 ∈ Y0, system (7.9) is null controllable in any time T > 0.1727

Remark 7.4. During the proof it will appear that there exists a countable set1728

D ⊂ (1,+∞) such that for any d ̸∈ D ∪ {1}, we have Y0 = H−1(0, 1;R)2, which1729

means that our system is null-controllable at any time T > 0 for any initial data. In1730

particular, it is noticeable that this property holds for any d < 1, that is in the case1731

where the diffusion coefficient is lower in the second equation (the one which does not1732

contain coupling terms).1733

Proof. We start by computing the observations related to the eigenelements of1734

A∗1735

• For any λ = νk ∈ Λ1, we have1736

(7.10) B∗ϕλ,1 = (1 + εk)φk1ω.1737

• For any λ = dνl ∈ Λ2, we have1738

(7.11) B∗ϕλ,2 = φl1ω.1739

If for some k we have 1 + εk = 0, then we clearly get chat (2.14) does not hold. We
can thus introduce the set

Θ := {λ = νk ; 1 + εk = 0},

which is of cardinal less or equal than 1 (by definition of the sequence (εk)k, see1740

Section 7.1.1). Note also that for d < 1, we always have εk > 0, so that Θ = ∅, see1741

Remark 7.4.1742

We notice however that, for any λ = dνl, we have B∗ϕλ,2 ̸= 0 and that if λ =1743

νk = dνl ∈ Λ1 ∩ Λ2, with λ ̸∈ Θ, then B∗ϕλ,1 and B∗ϕλ,2 are linearly independent.1744

Let us introduce

Y0 :=
{
y0 ∈ X; s.t. ⟨y0, ϕλ,1⟩X = 0,∀λ ∈ Θ

}
.

By definition of this set, for any initial data in Y0, the moment equation (1.2) related1745

to the eigenvector ϕλ,1 for λ ∈ Θ is automatically satisfied for any control since both1746

members are equal to zero.1747
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As in the proof of Proposition 7.1, we consider a grouping G as given by Propo-1748

sition 2.2, with p = 2 and ϱ > 0 small enough such that for i ∈ {1, 2} we have1749

|λ− µ| > ϱ, ∀λ, µ ∈ Λi, λ ̸= µ.1750

Hence, Theorem 2.5 gives the formula1751

T0(y0) = lim sup
G∈G

ln+ C(G, y0)
2rG

.1752

Let us now evaluate the quantities C(G, y0) for every possible block.1753

• Blocks made of a simple eigenvalue that does not belong to Θ.1754

We immediately obtain

C(G, y0) =


∣∣⟨y0, ϕλ,1⟩X ∣∣2
(1 + εk)2∥φk∥2ω

, if λ = νk,∣∣⟨y0, ϕλ,2⟩X ∣∣2
∥φl∥2ω

, if λ = dνl,

which is a bounded quantity thanks to (6.5) and the fact that (εk)k tends to1755

zero at infinity.1756

• Blocks made of two eigenvalues: G = {λ1 := νk} ∪ {λ2 := dνl}. Note that1757

the proof below works exactly the same in the case where λ1 ̸= λ2, that is if1758

the two eigenvalues are simple, or in the case where λ1 = λ2, that is if there1759

is only a geometrically double eigenvalue.1760

By the discussion above, we can assume that λ1 does not belong to Θ (if1761

not, this block has to be considered as a block containing only the simple1762

eigenvalue λ2).1763

Thanks to Theorem 2.10 we have C(G, y0) ≤ ⟨M̃−1ξ, ξ⟩ where

M̃ = Gram(1ωφk,1ωφl),

ξ =

 ⟨y0, ϕλ1,1⟩X
1 + εk

⟨y0, ϕλ2,2⟩X .


By using the Lebeau-Robbiano inequality (6.8), and the fact that |λ1−λ2| ≤
ϱ, we have that

⟨M̃−1ξ, ξ⟩ ≤ C1e
C1

√
rG∥ξ∥2 ≤ C2e

C1
√
rG ∥y0∥2X ,

where C1, C2 only depends on ϱ, ω and on the operator A.1764

All in all, we have obtained that

ln+ C(G, y0) ≤ C (1 +
√
rG) .

Gathering all cases, we conclude that T0(y0) = 0.1765
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7.2. Other applications.1766

Let us consider the following control system1767

(7.12)
∂ty +

(
−∂xx + c1(x) 1

0 −∂xx + c2(x)

)
y =

(
0

1ωu(t, x)

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

1768

where c1, c2 ∈ L2(0, 1;R).1769

With the technics developed in this article, one can prove the following control-1770

lability result.1771

proposition 7.3. For any non-negative potentials c1, c2, system (7.12) is null1772

controllable in any time T > 0 from L2(0, 1;R)2.1773

The proof follows closely the computations done for the same system with a boundary1774

control in [9, Section 5.2.1]. The only difference is that the contributions of terms of1775

the form ∥B∗•∥U = ∥ • ∥ω are estimated using (6.5).1776

As the result stated in Proposition 7.3 is already known (it is for instance an1777

application of [23] with a proof based on Carleman estimates), we do not detail the1778

proof here to lighten this article.1779

With the technics developed in this article we can also analyze null controllability1780

for the following control system1781

(7.13)


∂ty +

(
A q(x)
0 A

)
y =

(
0

1ωu(t, x)

)
, (t, x) ∈ (0, T )× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x),

1782

where the coupling function q belongs to L∞(0, 1;R) and ω ⊂ (0, 1) is a non empty1783

open set. We manage to characterize the value of the minimal null-control time1784

without any other assumption on q and ω.1785

This analysis extends previous results of [14] where approximate controllability1786

was studied and those of [6] where null controllability was studied in the particular1787

case where A is the Dirichlet Laplace operator and ω is an interval disjoint of Supp q.1788

Our formalism also allows us to recover null controllability in any time when q has a1789

strict sign on a subdomain of ω as proved in [23] by means of Carleman estimates.1790

Since the analysis of this example makes use of refined spectral properties of1791

the underlying operator whose proofs are rather intricate, we will develop it in the1792

forthcoming paper [13].1793

Appendix A. Some refinements in the case of scalar controls.1794

In [9], the block moment method was introduced to solve null controllability1795

problems with scalar controls (U = R). With respect to block moment problems, the1796

main result of this paper is [9, Theorem 4.1]. In this work there were no assumptions1797

on the counting function. The spectrum Λ was only assumed to satisfy Λ ⊂ [1,+∞)1798

and1799 ∑
λ∈Λ

1

λ
< +∞.1800

Using the slightly more restrictive condition (2.9) on the asymptotics of the count-1801

ing function we allow the eigenvalues to be complex valued and we obtain sharper1802
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estimates together with the explicit dependency of the constants with respect to the1803

final time T (see Remark 2.8 for possible applications of such estimates). This im-1804

proved resolution of scalar block moment problems reads as follow and is proved in [12,1805

Theorem V.4.26].1806

theorem A.1. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1807

Λ ∈ Lw(p, ϱ, τ, θ, κ).1808

Let G = {λ1, . . . , λg} ⊂ Λ be a group satisfying (2.6)–(2.8). Let T ∈ (0,+∞) and1809

η ∈ N∗. For any multi-index α ∈ Ng with |α|∞ ≤ η and any1810

ω =
(
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|,1811

there exists vG ∈ L2(0, T ;C) satisfying1812 ∫ T

0

vG(t)
(−t)l

l!
e−λjtdt = ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(A.1a)1813 ∫ T

0

vG(t)
(−t)l

l!
e−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(A.1b)1814

1815

The solution vG satisfies the following estimate1816

(A.2) ∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
CrθG

)
max
µ∈Ng
µ≤α

∣∣∣ω [λ(µ)

•

]∣∣∣ ,1817

where rG is defined in (2.16) and with the convention1818

ω
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1819

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,1820

ϱ, η, θ and κ.1821

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1822

solution of (A.1a) satisfy1823

(A.3) ∥vG∥L2(0,T ;C) ≥ Cp,η,rΛ max
µ∈Ng
µ≤α

∣∣∣ω [λ(µ)

•

]∣∣∣ .1824

Remark A.1. If every assumption hold except (2.10) in the definition of the class1825

Lw(p, ϱ, τ, θ, κ), Theorem A.1 remains valid replacing θ in estimate (A.2) by any1826

θ′ ∈ (θ, 1) (see [12, Theorem V.4.26]).1827

Since every estimate on the resolution of block moment problems proved in this1828

paper follows from (A.2), this remark holds in the whole current paper. Notably it1829

applies to Theorem 2.4 and to the estimates of the cost of controllability stated in1830

Proposition 2.11 and Corollary 2.12.1831

Appendix B. An auxiliary optimization argument.1832

Lemma B.1. Let Y be a closed subspace of X−⋄. Let g ∈ N∗ and ψ1, . . . , ψg ∈1833

P ∗
YX

∗
⋄ . For any y ∈ Y , let1834

ξy =

⟨y, ψ1⟩−⋄,⋄
...

⟨y, ψg⟩−⋄,⋄

 .1835
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Then, for any positive semi-definite hermitian square matrix M ∈ Mg(C), we have1836

(B.1) sup
y∈Y

∥y∥−⋄=1

⟨Mξy, ξy⟩ = ρ(GψM)1837

with Gψ = GramX∗
⋄
(ψ1, . . . , ψg).1838

In the course of the proof we will use that there exists an isometric linear bijection
I : X−⋄ 7→ X∗

⋄ such that

⟨y, φ⟩−⋄,⋄ = (Iy, φ)⋄∗ , ∀y ∈ X−⋄,∀φ ∈ X∗
⋄ .

Note that it satisfies

(Iy, φ)⋄∗ =
(
y, I−1φ

)
−⋄ , ∀y ∈ X−⋄,∀φ ∈ X∗

⋄ .

Proof. Let S be the value of the supremum in the left-hand side of (B.1). By
assumption on the (ψi)i, we first observe that the supremum can be taken on the
whole space X−⋄ instead of Y without changing its value. Then, for any 1 ≤ i ≤ g,
we have

⟨y, ψi⟩−⋄,⋄ =
(
y, I−1ψi

)
−⋄ ,

and therefore the value of S does not change if we take the supremum over the set

Ψ̃ = Span(ψ̃1, . . . , ψ̃g) ⊂ X−⋄,

with1839

(B.2) ψ̃i = I−1ψi.1840

We write any element y ∈ Ψ̃ as follows y =
∑g
i=1 xiψ̃i, with x = (xj)j∈J1,gK ∈ Cg

so that we can compute

(
y, ψ̃i

)
−⋄

=

g∑
j=1

xj

(
ψ̃j , ψ̃i

)
−⋄

= (Gψ̃x)i, ∀i ∈ J1, gK,

(y, y)−⋄ =

g∑
i=1

g∑
j=1

x̄ixj

(
ψ̃j , ψ̃i

)
−⋄

=
〈
Gψ̃x, x

〉
,

where Gψ̃ is the Gram matrix in X−⋄ of the family {ψ̃1, ..., ψ̃g}. Using that I is an
isometry from X−⋄ onto X∗

⋄ it actually appears that

Gψ̃ = Gψ.

Finally, we have proved that

ξy = Gψx, and ∥y∥2−⋄ = ⟨Gψx, x⟩ .

The supremum we are looking for thus reads

S = sup
x∈Cg

⟨Gψx,x⟩=1

⟨MGψx,Gψx⟩ .
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• By compactness, we know that this supremum is actually achieved at some
point x0 ∈ Cg, that is

⟨MGψx0,Gψx0⟩ = S, and ⟨Gψx0, x0⟩ = 1.

The Lagrange multiplier theorem gives that there exists λ ∈ C such that1841

(B.3) ⟨MGψx0,Gψh⟩ = λ ⟨Gψx0, h⟩ , ∀h ∈ Cg.1842

Taking h = x0 in this equation, we get

⟨MGψx0,Gψx0⟩ = λ ⟨Gψx0, x0⟩ = λ,

and thus λ = S, in particular λ is a non negative real number.1843

From (B.3), we deduce
GψMGψx0 = λGψx0.

and since Gψx0 ̸= 0 (we recall that ⟨Gψx0, x0⟩ = 1), we conclude that λ is an
eigenvalue of GψM and therefore

S = λ ≤ ρ(GψM).

We have thus proved that
S ≤ ρ(GψM).

• If ρ(GψM) = 0, the claim is proved. If not, we set

λ = ρ(GψM) = ρ(MGψ) = ρ
(
G

1
2

ψMG
1
2

ψ

)
,

which is a positive number which is an eigenvalue of the three matrices above.
In particular, there exists x0 ∈ Cg \ {0} such that

MGψx0 = λx0.

Taking the inner product with Gψx0 we obtain

⟨MGψx0,Gψx0⟩ = λ ⟨x0,Gψx0⟩ ,

and since ⟨x0,Gψx0⟩ =
∥∥∥G 1

2

ψx0

∥∥∥2 cannot be equal to zero, we deduce that

λ ≤ S,

and the proof is complete.1844

Appendix C. Solving general block moment problems.1845

As this paper is oriented towards control theory we do not deal with the most1846

general block moment problems. Indeed, in Theorem 2.4, the considered block mo-1847

ment problems have a specific right-hand side which is a linear form. This formalism1848

is chosen in order to avoid exhibiting a particular basis of the generalized eigenspaces.1849

The price to pay is this restriction on the considered right-hand sides. However the1850

proofs detailed in Sections 3 and 5 directly lead to the following more general results.1851

The study with a group composed of geometrically simple eigenvalues (see Sec-1852

tions 5.1 and 5.2) leads to the following theorem.1853
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theorem C.1. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1854

Λ ∈ Lw(p, ϱ, τ, θ, κ).1855

Recall that this class of sequences is defined in (2.11). Let G = {λ1, . . . , λg} ⊂ Λ be1856

a group satisfying (2.6)–(2.8). Let T ∈ (0,+∞) and η ∈ N∗. For any multi-index1857

α ∈ Ng with |α|∞ ≤ η, any1858

ω =
(
ω0
1 , . . . , ω

α1−1
1 , . . . , ω0

g , . . . , ω
αg−1
g

)
∈ C|α|,1859

and any b ∈ U |α| with1860

b0j ̸= 0, ∀j ∈ J1, gK,1861

there exists vG ∈ L2(0, T ;U) satisfying1862 ∫ T

0

〈
vG(t), (etb)

[
λj

(l+1)
]〉

U
dt = ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ,(C.1a)1863 ∫ T

0

vG(t)t
le−λt dt = 0, ∀λ ∈ Λ \G,∀l ∈ J0, ηJ.(C.1b)1864

1865

The solution vG satisfies the following estimate1866

∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
CrθG

) 〈
M−1ξ, ξ

〉
,1867

where1868

ξ :=


ω

[
λ
(µ1)

•

]
...

ω

[
λ

(
µ|α|
)

•

]
 ,1869

the sequence (µp)p∈J0,|α|K is defined in (2.24), the associated matrix M is defined1870

in (2.33), rG is defined in (2.16) and with the convention1871

ω
[
λj

(l+1)
]
= ωlj , ∀j ∈ J1, gK, ∀l ∈ J0, αjJ.1872

The constant C > 0 appearing in the estimate only depends on the parameters τ , p,1873

ϱ, η, θ and κ.1874

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1875

solution of (C.1a) satisfy1876

∥vG∥L2(0,T ;U) ≥ Cp,η,rΛ
〈
M−1ξ, ξ

〉
.1877

Remark C.1. As detailed in Remark 2.5, when the eigenvalues in G are also1878

algebraically simple, i.e. αλ = γλ = 1 for any λ ∈ G, the expression of ξ reduces to1879

ξ :=

 ω
[
λ1
]

...

ω
[
λ1, . . . , λg

]
 ,1880

and the expression of M reduces to the one given in (2.35).1881
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The study with a group composed of semi-simple eigenvalues (see Section 5.3)1882

leads to the following theorem.1883

theorem C.2. Let p ∈ N∗, ϱ, τ, κ > 0 and θ ∈ (0, 1). Assume that1884

Λ ∈ Lw(p, ϱ, τ, θ, κ).1885

Recall that this class of sequences is defined in (2.11). Let G = {λ1, . . . , λg} ⊂ Λ be a1886

group satisfying (2.6)–(2.8). Let γ1, . . . , γg ∈ N∗ and γG = γ1 + · · ·+ γg. Let η ∈ N∗1887

and T ∈ (0,+∞).1888

For any
(
ωj,i
)
j∈J1,gK,i∈J1,γjK

∈ CγG and any
(
bj,i
)
j∈J1,gK,i∈J1,γjK

∈ UγG such1889

that bj,1, . . . , bj,γj are linearly independent for every j ∈ J1, gK, there exists vG ∈1890

L2(0, T ;U) satisfying1891 ∫ T

0

〈
vG(t), e

−λjtbj,i

〉
U
dt = ωj,i, ∀j ∈ J1, gK, ∀i ∈ J1, γjK,(C.2a)1892 ∫ T

0

vG(t)t
le−λtdt = 0, ∀λ ∈ Λ\G, ∀l ∈ J0, ηJ.(C.2b)1893

1894

The solution vG satisfies the following estimate1895

∥vG∥L2(0,T ;U) ≤ C exp

(
C

T
θ

1−θ

)
exp

(
CrθG

) 〈
M−1ξ, ξ

〉
,1896

where ξ ∈ CγG is defined by blocks with1897

ξj :=

ωj,1...
ωj,g

 ,1898

the associated matrix M is defined in (2.37) and rG is defined in (2.16). The constant1899

C > 0 appearing in the estimate only depends on the parameters τ , p, ϱ, η, θ and κ.1900

Moreover, there exists a constant Cp,η,rΛ > 0 such that any vG ∈ L2(0, T ;U)1901

solution of (C.2a) satisfy1902

∥vG∥L2(0,T ;U) ≥ Cp,η,rΛ
〈
M−1ξ, ξ

〉
.1903

Appendix D. Post-processing formulas.1904

The minimal null control time given in Theorem 2.5, together with the compu-1905

tation of the contribution of each group given in Theorems 2.8 and 2.10, allow to1906

answer the question of minimal null control time for a wide variety of one dimensional1907

parabolic control problems. However, for a given problem, the precise estimate of the1908

quantity of interest
〈
M−1ξ, ξ

〉
can remain a tricky question.1909

There is no normalization condition on the eigenvectors and no uniqueness of1910

the considered Jordan chains. Thus, it happens that there are choices for which the1911

quantity of interest
〈
M−1ξ, ξ

〉
is easier to compute (see for instance Remark 2.4). We1912

gather here some results that are used in Sections 6 and 7 to estimate such quantities.1913

We will make an intensive use of the following reformulation. Let n ∈ N∗ and let1914

T,M ∈ GLn(C). For any ξ ∈ Cn, let ξ̃ := Tξ. Then,1915

(D.1)
〈
M−1ξ, ξ

〉
=
〈
M−1T−1ξ̃, T−1ξ̃

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1916
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where1917

(D.2) M̃ := TMT ∗.1918

As the matrixM is a sum of Gram matrices we will also use the following lemma.1919

Lemma D.1. Let X be a Hilbert space. Let n ∈ N∗ and e = (e1, . . . , en) ∈ Xn.1920

Let T ∈ Mn(C). Then,1921

TGramX(e1, . . . , en)T
∗ = GramX

(
(Te)1, . . . , (Te)n

)
1922

where, for any i ∈ J1, nK, (Te)i is defined by1923

(Te)i :=

n∑
j=1

Ti,jej .1924

Proof. For any ω ∈ Cn, it comes that1925

⟨TGramX(e1, . . . , en)T
∗ω, ω⟩ = ⟨GramX(e1, . . . , en) (T

∗ω) , (T ∗ω)⟩(D.3)1926

=

∥∥∥∥∥
n∑
i=1

(T ∗ω)iei

∥∥∥∥∥
2

(D.4)1927

=

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

Tj,iωjei

∥∥∥∥∥∥
2

(D.5)1928

=

∥∥∥∥∥∥
n∑
j=1

ωj(Te)j

∥∥∥∥∥∥
2

(D.6)1929

=
〈
GramX

(
(Te)1, . . . , (Te)n

)
ω, ω

〉
.(D.7)19301931

Depending on the phenomenon at stake on actual examples, with a suitable choice of1932

ξ̃ (i.e. of T ), the quantity
〈
M̃−1ξ̃, ξ̃

〉
can be easier to estimate than

〈
M−1ξ, ξ

〉
.1933

D.1. Dilatations.1934

Notice that1935 〈
M̃−1ξ̃, ξ̃

〉
≤ ∥M̃−1∥ ∥ξ̃∥2.1936

When the minimal null control time can be estimated with rough estimates (this can1937

only characterize the minimal time when T0 = 0), it can simplify the computations1938

to have a bounded ∥ξ̃∥. To do so, it is convenient to consider dilatations of ξ.1939

Let X be a Hilbert space. Let n ∈ N∗ and e1, . . . , en ∈ X. Let ξ ∈ Cn and β ∈ Cn1940

with non-zero entries. Let1941

T = Dβ := diag(β) ∈ GLn(C), and ξ̃ = Tξ.1942

Then, from Lemma D.1, it comes that1943

TGramX(e1, . . . , en)T
∗ = GramX

(
β1e1, . . . , βnen

)
.1944
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D.2. Invariance by scale change.1945

In our assumptions there is no normalization condition on the eigenvectors (see1946

Remark 2.4). This allows to have simpler expressions for these eigenvectors. Actually,1947

the computation of
〈
M−1ξ, ξ

〉
can be done with a different scale change on every1948

generalized eigenvector as detailed in the following proposition.1949

proposition D.2. Let M and ξ be as defined in Theorem 2.8. Let β ∈ C|α| be1950

such that β0
j ̸= 0 for all j ∈ J1, gK. Set1951

ξ̃ =


〈
y0, (βϕ)

[
λ(µ

1)
]〉

−⋄,⋄
...〈

y0, (βϕ)
[
λ(µ

|α|)
]〉

−⋄,⋄
.

1952

Then,1953 〈
M−1ξ, ξ

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1954

where1955

(D.8) M̃ :=

|α|∑
l=1

GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, (βb)
[
λ(µ

l−µl−1)
]
, . . . , (βb)

[
λ(µ

|αk|−µl−1)
] .1956

Proof. From Leibniz formula [9, Proposition 7.13], it comes that for any p ∈1957

J1, |α|K,1958

(βϕ)
[
λ(µ

p)
]
=

|µp|∑
q=1

β
[
λ(µ

p−µq−1)
]
ϕ
[
λ(µ

q)
]
.1959

Thus, ξ̃ = Tξ where T is the following lower triangular matrix1960

T =
(
1q≤pβ

[
λ(µp−µq−1)

])
p,q∈J1,|α|K

.1961

The diagonal entries of this lower triangular matrix are β0
j and thus T ∈ GL|α|(C).1962

From (D.2), the associated matrix is1963

M̃ :=

|α|∑
l=1

TGramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b
[
λ(µ

l−µl−1)
]
, . . . , b

[
λ(µ

|α|−µl−1)
]T ∗.1964

Let l ∈ J1, |α|K and1965

e1 = · · · = el−1 = 0,1966

ep = b
[
λ(µ

p−µl−1)
]
, ∀p ∈ Jl, |α|K.1967

1968

Then, for any p ∈ J1, |α|K,1969

(Te)p =

|α|∑
q=1

1q≤pβ
[
λ(µ

p−µq−1)
]
eq.1970
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Thus, (Te)1 = · · · = (Te)l−1 = 0 and, for any p ∈ Jl, |α|K,1971

(Te)p =

|α|∑
q=1

1q≤pβ
[
λ(µ

p−µq−1)
]
eq =

p∑
q=l

β
[
λ(µ

p−µq−1)
]
b
[
λ(µ

q−µl−1)
]
.1972

Then, using again Leibniz formula [9, Proposition 7.13], we obtain1973

(Te)p = (βb)
[
λ(µ

p−µl−1)
]
.1974

Finally, applying (D.1) and Lemma D.1 ends the proof of Proposition D.2.1975

Remark D.1. As there is no normalization condition on the eigenvectors a sim-1976

ilar statement automatically holds with M and ξ defined in Theorem 2.10.1977

D.3. An equivalent formula for simple eigenvalues.1978

In this section, we consider the case of a group of simple eigenvalues i.e. αλ =1979

γλ = 1 for every λ ∈ G. In that case, the cost of the group G can be computed either1980

using the formula of Theorem 2.8 for geometrically simple eigenvalues or the formula1981

of Theorem 2.10 for semi-simple eigenvalues. Even though these theorems imply that1982

those two formulas coincide (as they are both the cost of the group) we give a direct1983

proof of this statement.1984

proposition D.3. LetM and ξ be the matrix and the vector given in Theorem 2.81985

i.e.1986

M :=

g∑
l=1

GramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b[λl], . . . , b[λl, . . . , λg]

1987

and1988

ξ =

 ⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λ1, . . . , λg]⟩−⋄,⋄

 .1989

Let M̃ and ξ̃ be the matrix and the vector given in Theorem 2.10 i.e.1990

(D.9) M̃ :=

g∑
l=1

GramU

(
δ1l b[λ1], . . . , δ

g
l b[λg]

)
and ξ̃ :=

⟨y0, ϕ[λ1]⟩−⋄,⋄
...

⟨y0, ϕ[λg]⟩−⋄,⋄

 .1991

Then,1992 〈
M−1ξ, ξ

〉
=
〈
M̃−1ξ̃, ξ̃

〉
1993

Proof. The usual interpolation formula [9, Proposition 7.6] gives1994

(D.10) ϕ[λi] =

i∑
j=1

(
j−1∏
k=1

(λi − λk)

)
ϕ[λ1, . . . , λj ].1995
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Recall that the notation δij has been introduced in (2.36). With these notations,1996

ξ̃ = Tξ where T is the following lower triangular matrix1997

T =
(
δij

)
i,j∈J1,gK

∈ GLg(C).1998

From (D.2), we define1999

M̂ :=

g∑
l=1

TGramU

0, . . . , 0︸ ︷︷ ︸
l−1

, b [λl] , . . . , b [λl, . . . , λg]

T ∗,2000

so that we have
〈
M−1ξ, ξ

〉
=
〈
M̂−1ξ̃, ξ̃

〉
. We will now prove that M̂ = M̃ .2001

Let l ∈ J1, gK and2002

e1 = · · · = el−1 = 0,2003

ej = b[λl, . . . , λj ], ∀j ∈ Jl, gK.20042005

Then, (Te)1 = · · · = (Te)l−1 = 0 and for i ∈ Jl, gK, using again the interpolation2006

property [9, Proposition 7.6], we obtain2007

(Te)i =

g∑
j=l

δijb[λl, . . . , λj ]2008

=

i∑
j=l

δijb[λl, . . . , λj ]2009

= δil

i∑
j=l

(
j−1∏
k=l

(λi − λk)

)
b[λl, . . . , λj ]2010

= δilb[λi].20112012

Recalling that δ1l = · · · = δl−1
l = 0, we thus obtain2013

(Te)i = δilb[λi], ∀i ∈ J1, gK.2014

Finally, from Lemma D.1, we deduce that M̂ = M̃ which ends the proof of Proposi-2015

tion D.3.2016
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