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Self-stabilization of 3D walking via vertical oscillations of the hip

Christine Chevallereau and Yannick Aoustin,

Abstract— Actual control of most humanoid robots is based
on the 3D linear inverted pendulum and assumes an horizontal
displacement of the center of mass of the robot while obviously
the center of mass in human walking is characterized by vertical
oscillations. The objective of the paper is to show that these
oscillations have a crucial role for the high level control of the
walk. Based on a controlled length inverted pendulum model
of the walker, it will be shown that vertical oscillations induce
a self stabilization of the walk while this self stabilization is not
observed in the case of a horizontal motion of the center of mass.
The results are essentially based on the evolution of the angular
momentum throughout the walk. The decrease of the angular
momentum during the change of support is determinant to
introduce a dependence between the path of the center of
mass and the walking velocity. For a large set of walking
characteristics (stride, velocity ...) a self synchronization of the
motion in the sagittal and frontal planes appears that allows a
low level control to produce stable cyclic gaits.

I. INTRODUCTION

Human walking is complex and still not well understood.
Learning to walk is a long and arduous process in the
beginning, but once learned, the act of walking across a level
floor is second nature. Thus, it seems that human gait has
self stabilisation property in order than high level control is
not required. This characteristic is not current in humanoid
control and is the object of this study.

The studies concerning walking of robot are very wide
[6], from a passive walking on a slope [3], [11], and [17]
to the complete control of a humanoid robot often based on
3D linear inverted pendulum (LIP3D), and [10], [12] . The
first type of study is interesting due to its energy efficiency
and also because it exploits the mechanical structure of the
robot to avoid control. It is a nice illustration of the concept
of computational morphology [13]. The importance of the
morphology or more precisely of the characteristic of the
walking gait for the self-stabilization is an element that will
be investigated in this study.

Even if the humanoid robots are complex 3D system,
a simplified model is useful to exhibit the main dynamic
effects involved in the walking process. Two important points
are the role of gravity and the limited torque available
at ankle to avoid rotation of the foot. Thus the inverted
pendulum model has been used since long time to study
walking and running [1], [4]. The base of the pendulum
corresponds to the punctual contact with the ground or to
the ZMP (zero moment point or center of pressure) when
a flat foot contact is modeled; the rotation with respect to
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this point is free, no torques are applied. A concentrated
mass is used to include the role of gravity. In bio-mechanical
study an inverted pendulum with a constant length is often
used while in robotics the LIP3D model proposed by Kajita
[9] is popular. This model assumes a constant height of the
CoM, consequently an analytical expression to define the
CoM evolution exists and equations in sagittal and frontal
planes are decoupled.

But in human motion, the height of the CoM is not
constant [8], thus several approaches [5], [7], [14] have been
proposed to extend the LIP to more human-like behavior.
These studies include vertical oscillations of the concentrated
mass and show self-stabilization. They are limited to a planar
sagittal walking while the results presented here are extended
to 3D walking. The control objective is to maintain the
height of the CoM (or concentrated mass) on a prescribed
sub-manifold defined as a function of the position of the
CoM in the sagittal and frontal planes. A walking gait
composed of single supports and changes of stance leg is
considered. Based on an analyze of the evolution of the
angular momentum around the contact point on the ground,
analytical conditions on the self-stabilization for a periodic
gait are deduced for a planar motion in sagittal plane or
frontal plane. Then it will be numerically showed that self-
stabilization of 3D walking appears for many gaits.

The article is structured as follows. In section II, the
simplified inverted pendulum with vertical oscillations is
presented for the 3D case. A normalized model is introduced.
Then the effect of a vertical oscillation is studied, considering
the sagittal plane only in Sect. III. Then, in place balancing in
frontal plane is studied in Sect. IV . Then the synchronization
of these two motions to obtain a 3D walking is addressed in
Sect. V and the stability analysis is conducted. Lastly, this
article ends with some concluding remarks and perspectives
in Sect. VI.

II. INVERTED PENDULUM WITH VERTICAL OSCILLATIONS

A. The gait studied

The robot is modeled as an inverted pendulum with a
concentrated mass. Its gait is composed of successive single
supports and instantaneous changes of support as presented
in Fig. 1. Since the legs are mass-less, the change of support
is achieved without change of the velocity of the CoM.
Periodic symmetric motions, essentially characterized by a
step length denoted S and a step width D, are investigated.
Due to symmetry, only the first single support is studied. The
reference frame is placed at the stance leg tip as shown in
Fig. 1. In the lateral plane the position of the CoM between
both feet corresponds to y = D

2 .
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Fig. 1. The gait of the inverted pendulum is composed of successive single
supports. The red (green) line corresponds to the pendulum at the beginning
(end) of the single support.

B. Proposed evolution of the mass center

In human walking the CoM oscillates in the sagittal plane.
This oscillation can be represented as a sinusoidal function,
the wavelength is obviously the step length. In the frontal
plane, a sinusoidal function can also be used to describe the
dependency between the height z and the lateral position
of the CoM. For the sake of simplicity we can assume that
motions along the sagittal and frontal planes are decoupled
to express z as:

z = z0 + fx(x) + fy(y) (1)

The function fx(x) is chosen as:

fx(x) = −hx cos(
2π(x− (S/2 + dS))

S
+ Φ); (2)

where hx is the amplitude of the oscillation, dS an offset
along x axis, and Φ allows changing of support at a height
different of the minimum height (see Fig. 3).

The function fy(y) is chosen as:

fy(y) = hy cos(
2ayπ(y −D/2)

D
); (3)

where hy is the amplitude of the oscillation and ay defines
the wavelength in frontal plane which is proportional to D.
The maximal height is chosen for y = D/2. Note that in
frontal plane y has only a small excursion around 0 and will
never cross y = 0 or y = D. The step starts at D/2−dD and
finishes at D/2 + dD as illustrated in Fig. 4. The constraint
(1) defines a manifold which is presented in Fig. 2.

Due to our choice to use the length and width of the step to
define the wavelength for fx and fy , we propose to introduce
the dimensionless parameters Sre = dS

S , Dre = dD
D and to

use normalized variables X and Y to express the position of
the CoM in frontal and sagittal planes: X = x

S and Y = y
D .

Using these coordinates the vertical desired evolution of the
CoM can be written, for any step characteristics S and D
as:

z = z0 + fX(X) + fY (Y )
fX(X) = hx cos(2π(X − Sre) + Φ)
fY (Y ) = −hy cos(2ayπY ).

(4)
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Fig. 2. Example of manifold corresponding to z defined by (1)-(3).

C. The dynamic model

The inverted pendulum has a free rotation around the
horizontal axes x and y. Under the assumption that the
vertical evolution of the mass is given by (1) , the evolution
of the angular momentum is given by [9]:

σx = mży −mzẏ
σy = −mżx+mzẋ
σ̇x = −mgy
σ̇y = mgx

(5)

where σx and σy denote the angular momentums along x
and y axes around the stance leg tip (see figure 1).
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Fig. 3. Projection of the motion of the CoM for 2 steps in the sagittal
plane.
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Fig. 4. Zoom on the projection of the motion of the CoM for 2 steps
in the frontal plane. The combination of motion in the sagittal and frontal
planes produces an eight shape motion of the CoM, the evolution of the
CoM during the first single support is shown in solid line, while during the
second step it is shown in dotted line.



Since we have chosen to normalized variables to express
the constraints on z, it is pertinent to use also normalized
variables for the angular momentum. Thus we introduce
εX = σx

mD and εY =
σy

mS . Equation (5) can be rewritten
as: 

εX = Y ∂z
∂X Ẋ + (−z + Y ∂z

∂Y )Ẏ

εY = −X ∂z
∂Y Ẏ + (z −X ∂z

∂X )Ẋ
ε̇X = −gY
ε̇Y = gX

(6)

The change of support is characterized by a change of the
point where the angular momentum is calculated, thus we
have:{

σ+
x = σ−

x −mDż−
σ+
y = σ−

y +mSż−
or

{
ε
+

X = ε
−

X − ż−

ε
+

Y = ε
−

Y + ż−
(7)

where the indices − and + denote the angular momentum
before and after the change of support respectively. Equations
(6) and (7), in normalized space X,Y, εX , and εY , are
invariant with respect to S, D, and m, thus all the following
results will be independent of the step length, the step
width and the mass of the robot. The model has been
derived in the general case of 3D motion. To highlight the
role of the vertical oscillation of the CoM, we will first
study the motion in the sagittal plane only and then in the
frontal plane only because analytical results for these one
degree of underactuation cases can be obtained. Then the
synchronization of the two motions to obtain the 3D case
will be numerically studied.

III. PLANAR WALKING IN SAGITTAL PLANE

When a planar motion in sagittal plane is studied, the robot
motion along y axis is assumed to be zero. The objective of
the control is to produce the vertical evolution of the CoM:

z = z0 + fX(X) (8)

with fX defined in (4), and to insure the change of support
with the swing leg. The reference frame is attached to the
stance foot, during the single support the CoM evolves from
−1/2 + Sre to 1/2 + Sre in normalized dimension and the
swing leg touches the ground at 1 in front of the stance leg.
During the single support, the evolution of the pendulum due
to gravity is described by the following equation (from (6)):{

εY = (z −X ∂z
∂X )Ẋ

ε̇Y = gX.
(9)

The two equations of system (9) can be combined into:

εY
∂εY
∂X

= g(zX −X 2 ∂z

∂X
) (10)

and the integration of (10) gives the evolution of the square
of the angular momentum along the single support phase as
[2], [16]: ε

2

Y (X ) = ε
2

Y (X+) + V (X )

V (X) = 2g

∫ X

X+

(z(µ)µ− µ2 ∂z(µ)

∂µ
)dµ

(11)

When z(X) is given, V (X) can be numerically calculated
and the change of angular momentum along one step (from
X+ to X−) can be deduced: ε

2

Y (X−) = ε
2

Y (X+)+V (X−).
Let us consider the current step k and the previous step

k − 1. Combining (7) and the time derivative of (8), during
the change of support, between step k− 1 and k the angular
momentum varies as:

 εkY (X+) = εk−1
Y (X+) + ∂z(X−)

∂X Ẋ− = δY ε
k−1
Y (X+)

δY =
∂z(X−)

∂X (1−X−)+z(X−)

− ∂z(X−)
∂X X−+z(X−)

(12)
with δY < 1 if ∂z(X−)

∂x < 0 since X− > 0 and z(X−) > 0.
A cyclic motion will be obtained if and only if the angular

momentum has the same value ε∗Y (X+) at the beginning of
following steps thus if:

ε∗Y
2(X+) = δ2

Y (ε∗Y
2(X+) + V (X−)) (13)

or:

ε∗Y
2(X+) =

δ2
Y

1 − δ2
Y

V (X−) (14)

As a consequence, for a step defined by z(X) and Sre such
that X+ = −1/2+Sre, X

− = 1/2+Sre, if a cyclic motion
exists, it is defined by its angular momentum ε∗Y (X+) given
by (14). It can be shown [2], [16] that this cyclic motion is
attractive or stable if δY < 1 i.e. ∂z(X−)

∂X < 0. In this case,
the angular momentum decreases at the change of support
thus the angular momentum has to increase during the single
support. It implies that V (X−) > 0 or roughly speaking that
Sre > 0, the mean value of X during a single support is
positive.

From the definition (4) of fX(X) and since X− = 1/2 +

Sre,
∂z(X−)
∂X depends on hx and Φ only but not on Sre. We

choose Φ = −0.2, to have ∂z(X−)
∂X < 0 and thus to guaranty

stability(see Fig. 3). A positive value of hx produces a stable
walk while for hx=0, the walking is only critically stable.

It has to be noted that if the altitude z is constant hx = 0,
as in LIP, then there is no change of angular momentum
at the change of support, thus δY = 1. As a consequence
to have a cyclic motion, the angular momentum must also
be conserved during the single support. It is conserved if:
X− = −X+ = 1/2, Sre = 0. The same path z(X) = 0 can
be followed at various velocity, no step duration is preferred
or attractive.

The result presented in this section is a rewritten, with
a pendulum model, of results previously obtained for the
control of the robot Rabbit with virtual constraint [2], [16].
This type of control has shown its efficiency in experiments
for several robots [15], [16].

IV. IN PLACE BALANCING IN FRONTAL PLANE

The 3D walking involves a displacement in the sagittal
plane but also a balancing in the frontal plane. The in place
balancing in frontal plane is now studied, assuming that X
is constant. Symmetric motions with respect to the sagittal
plane are assumed when the stance leg is the right or left leg.



We consider here only the support on right leg placed at the
origin of the reference frame (see Fig. 1). The objective of
the control is to produce the vertical evolution of the CoM
as function of the scaled variable Y :

z = z0 + fY (Y ) (15)

and to insure the change of supports. As illustrated in Fig. 4,
the support on the leg starts with the CoM at Y = 1/2−Dre

and finishes at Y = 1/2 +Dre.
During the single support, from (6), the evolution of the

pendulum is: {
εX = (−z + Y ∂z

∂Y )Ẏ
ε̇X = −gY (16)

As in the sagittal case, these two equations can be combined
and the integration of εX

∂εX
∂Y gives the evolution of the

square of the angular momentum along the single support
phase:

ε2
X (Y ) = εX 2(Y +) + W (Y )

W (Y ) = 2g

∫ Y

Y+

(z(µ)µ− µ2 ∂z(µ)

∂µ
)dµ

(17)

Considering a complete step, from Y + = 1/2−Dre to Y − =
1/2+Dre, it can be noticed that Y is generally not monotonic
since Y decreases until Ym < Y −. In the case of the in place
balancing the motion obtained is shown in Fig. 5. Contrarily
to Fig. 4 concerning 3D motion, a round-trip with exactly
the same path can be observed in the frontal plane since
X is fixed. It is remarkable that W (Y −) does not depend
on Ym, thus starting from various initial velocities, the path
followed by the CoM will have different excursions Ym but if
Ym ≥ 0 then the total change of the angular momentum will
be in any case given by: ε2

X (Y −) = ε2
X (Y +) + W (Y −).

If Ym < 0, the robot will fall sideward and the step cannot
be achieved. Considering the current step k and previous
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Fig. 5. Motion of the pendulum for two steps of in place balancing in
the frontal plane, z = 0.86 + 0.1 cos(3πY ) with Dre = 0.1. The red line
corresponds to the pendulum at the beginning of the single support and the
green line to the pendulum at the end of the single support.

k−1, and combining (16) and (7), the transfer of the angular
momentum at the change of support from 0 to Dre can be

written as: εkX (Y +) = εk−1
X (Y +)− ∂z(Y−)

∂Y Y − = δX ε
k−1
X (Y +)

δX =
−z(Y −)+

∂z(Y −)
∂Y (−1+Y −)

−z(Y −)+
∂z(Y −)

∂Y Y −

(18)
with δX < 1 if ∂z(Y −)

∂Y < 0 and Y − > 0 since z(Y −) > 0.
Due to symmetry consideration, a cyclic motion will be

obtained if and only if the angular momentum is the same
in norm at the beginning of the following step, thus if:

ε∗X
2(Y +) =

δ2
X

1 − δ2
X

W (Y −) (19)

As a consequence, for a step defined by z(Y ) and Y −,
if a cyclic motion exists it is defined by its initial angular
momentum ε

∗

X (Y +) given by (19). This cyclic motion is
attractive or stable if δX < 1 i.e. ∂z(Y −)

∂Y < 0. In this case,
the angular momentum decreases at the change of support
thus the angular momentum has to increase during the single
support. It implies that W (Y −) > 0 or roughly speaking that
Dre > 0. During the single support, the pendulum goes away
from the stance leg. The initial angular momentum must be
low enough to avoid falling down over the stance leg.

While in some way similar to the result obtained in the
sagittal plane, to the best of our knowledge, these results are
new. The originality is that the path of the CoM is given
by the function z(Y ) and the initial and final values of Y
namely Y + = 1/2 − Dre and Y − = 1/2 + Dre but Y is
not monotonic and the limit value Ym shown in Fig. 4 is not
prescribed. The influences of hy and Dre on the in place
balancing are presented on Figure 6. For the case studied
ay = 1.5, Dre > 0, minimal amplitude hy > 0.05 is required
to induce cyclic motions, all the cyclic motions are stable.

If the altitude z is constant, as with the LIP model, then
there is no change of angular momentum at the change of
support, thus δX = 1. As a consequence to have a cyclic
motion, the angular momentum must also be conserved dur-
ing the single support. Any low enough angular momentum
can be chosen, it is conserved as long as: Y + = Y − = 1/2.
No step duration is preferred or attractive.
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V. SYNCHRONIZATION IN 3D MOTION

The 3D walking is a combination of a progression in the
sagittal plane and an oscillation in the frontal plane. In case
of walk, with a constant altitude, the motion in the sagittal
and frontal planes are decoupled, as a consequence the initial
velocity in the two planes can be independently adjusted to
achieve the desired time duration. Thus the calculation of
a cyclic motion is easy. But another consequence is that
if a perturbation occurs that modifies the velocity along
one direction, the motions between both planes are dis-
synchronized and periodic walking is lost, thus 3D walking
is not stable. In the presence of vertical oscillation, z =
f(X,Y ) 6= 0 the cycling walking velocity is unique (see
(14), (19)). Does this geometrical coordination via the choice
of z = f(X,Y ) imply a natural self-stabilisation of walking?

A. Existence of cyclic motion

The separate studies of motions in the sagittal and frontal
planes show that for a given vertical evolution of the CoM
(equation (4)), the duration of one step can be adjusted by
the choice of the change of support via Sre and Dre. Thus
the definition of 3D walk will be stated as the choice of Dre

and Sre that gives the expected step duration and solves
through an optimization technique. The coupling of the
dynamic model in the sagittal and frontal planes (equations
(6), (7)) prevent to obtain an analytic expression for a cyclic
motion contrarily to planar case. Due to the invariance of
the equation with respect to S and D, when a normalized
cyclic step is defined, the corresponding cyclic steps for any
step length and step width can be deduced. Since all these
steps correspond to the same duration, the walking velocity
is accordingly adapted.

For a given vertical evolution of the CoM: (4) with z0 =
0.86 m, hy = 0.1 m, ay = 1, hx = 0.06 m, Φ = −0.2,
the values of Dre and Sre corresponding to cyclic motion
are presented as function of the step duration on Fig. 7, Dre

increases almost linearly while Sre decreases like hyperbola.
The evolution of the CoM in the sagittal and frontal planes
are illustrated for several step durations in Fig. 8 in the
sagittal and frontal planes and by a top view.

T

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
S

re

D
re

Fig. 7. For z = z0 + hx cos(2π(X − Sre) + Φ) − hy cos(2πY ) and
z0 = 0.86 m, ay = 1, hy = 0.1 m, hx = 0.06 m, Φ = −0.2, the
values of Dre and Sre corresponding to cyclic 3D motion are presented as
function of the step duration : Dre(T ) and Sre(T ).

0 S
0

0.2

0.4

0.6

0.8

1
sagittal plane

0 D
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
frontal plane

0 S

0

D

top view

Fig. 8. Projection of the motion of the CoM for two steps in the sagittal
and frontal planes and with a top view. The case T = 1 s, T = 0.9 s,
T = 0.7 s and T = 0.5 s are respectively drawn with blue, cyan, magenta
and pink lines.

B. Stability of walking
The stability of the walk is studied using the Poincaré

tools [16], the Poincaré section is defined just after the
change the support that occurs when X reaches the value
X−. The swing foot is placed on the ground at a specified
position (1, 1) wrt the stance foot. Equation (4) is invariant
with respect to the equation of transition chosen. Thus after
change of stance leg equation (4) and its derivative are
satisfied.

The largest modulus of the eigenvalue of the Jacobian of
the Poincaré return map is denoted δmax. The condition of
stability is that δmax is less than 1. The effect of the vertical
oscillations on the stability of the walking is illustrated in
Fig. 9 via the numerically study of δmax as function of
the step duration and of hx when hy = 0.1 m, ay = 1,
z0 = 0.86 m and Φ = −0.2. Stability is obtained for a step
duration less than 0.8 s approximately for hx > 0. When hx
increases, a slower step can be achieved.
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δmax(T, hx), when hy = 0.1 m and z0 = 0.86 m, ay = 1, Φ = −0.1.

Moreover the set of value (hx,hy) providing stability can
be designed for several time duration of the step. The results



are presented on Fig. 10. It appears on this figure that
hy must have a high value around 0.1 m in order that a
stable walk appears. For a fast walking since the lateral
excursion is small, this value does not implies that the
vertical amplitude of the CoM is high. For a slow walking,
there is a compensation between hy and hx that can reduce
the vertical amplitude of the vertical oscillations (see Fig. 8).
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To emphasize the difference of stability of a walking with
and without vertical oscillations, δmax are drawn as function
of the time duration T for hx = hy = 0 and for hy = 0.1 m,
hx = 0.06 m on Fig. 11. In the second case walking gaits
are stable until T = 0.9 s while gaits are unstable for any
step duration in the first case.
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Fig. 11. Comparison of δmax(T ) for a motion with a horizontal evolution
of the CoM and with vertical oscillations (hy = 0.1 m, hx = 0.06 m).

VI. CONCLUSION

Using a model of inverted pendulum with variable length,
it has been shown that the vertical oscillations of the center
of mass may have a crucial role in the self-stabilization of
the walking on flat floor. The role of the control is simply
a coordination of the legs to insure that the vertical position
of the center of mass belongs to a predefined manifold,
(the vertical position of the CoM depends on its position
along the advance axis and lateral axis only, no temporal

evolution are imposed) and the change of supporting foot.
This result appears coherent with the existence of vertical
oscillations in human walk, even if the simplicity of the
model does not allow to integrate the stabilizing effect of
the double support phase, and the rotation of the pelvis.
The normalization by the step length and step width has
already permitted to consider simultaneously various walking
gait. This preliminary study can be continued in different
directions. The choice of functions fX and fY to define
the vertical oscillation may be improved. The extension to a
realistic model of humanoid can probably be done using a
virtual constraint as function of X and Y [16].
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