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Robust stabilization of a fully actuated 3D bipedal locomotion via
nonlinear H∞-control under unilateral constraints

Oscar Montano, Yury Orlov, Yannick Aoustin, Christine Chevallereau

Abstract— The applicability of the H∞ control technique to
a fully actuated 3D biped robot is addressed. In contrast to
previous studies, this investigation contributes to the study of
robustness of bipedal locomotion while assuming an imperfect
knowledge of the restitution rule at the collision time instants
in addition to external disturbance forces applied during the
single support phases. Performance issues are illustrated on
a numerical study performed on the 32-DOF biped robot
ROMEO, of Aldebaran Robotics.

I. INTRODUCTION

The study of mechanical legged locomotion has been
motivated by its potential use as means of locomotion in
rough terrains, but in particular, the interest arises from
diverse sociological and commercial interests, ranging from
the desire to replace humans in hazardous occupations (de-
mining, nuclear power plant inspection, military interven-
tions, etc.), to the restoration of motion in the disabled [1].

For practical implementation, a good mechanical design
and a good modeling, play a very important role in achieving
good performance. However, in real world applications,
bipedal robots are subject to many sources of uncertainty
during walking; these could include a push from a human,
an unexpected gust of wind, geometric perturbations of the
terrain heights, or parametric uncertainties of non-modeled
friction forces [2]. For these reasons, the design of feedback
control systems, capable of attenuating the effect of these
uncertainties is critical to achieve the desired walking gait.

The complete model of the biped robot considered in this
work is simplified as a hybrid system consisting of free-
motion phases separated by impacts. The study of hybrid dy-
namical systems has recently attracted a significant research
interest, basically, due to the wide variety of applications
and the complexity that arises from the analysis of this
type of systems (see, e.g. [3], [4], and references quoted
therein). Particularly, the disturbance attenuation problem for
hybrid dynamical systems has been addressed by [5], [6],
where impulsive control inputs were admitted to counter-
act/compensate disturbances/uncertainties at time instants of
instantaneous changes of the underlying state. It should be
noted, however, that in addition to the complexity of finding
a solution that the equations that allow the synthesis of the
control law, the physical implementation of impulsive control
inputs is impossible in many practical situations, e.g., while
controlling walking biped robots.

Other robust control techniques, such as sliding modes
control, have been designed for this kind of systems (see
e.g., the works by [7], [8], [9], [10]. While providing both
finite-time convergence to a desired reference trajectory and

disturbance rejection, these approaches also entail the well-
known problem of chattering in the actuators. This further
motivates the study of robust control techniques such as the
one presented in this work, which attenuate the effect of
disturbances while avoiding undesirable and harmful effects
on both the actuators, and the joints.

Hence, the present investigation studies the applicability of
the H∞ control technique, recently extended in [11] towards
mechanical systems operating under unilateral constraints, to
the 32 degrees-of-freedom biped robot ROMEO, of Alde-
baran Robotics [12]. In contrast to previous studies, this
investigation contributes to the study of robustness of bipedal
locomotion while assuming an imperfect knowledge of the
restitution rule at the collision time instants in addition to
external disturbance forces applied during the single support
phases.

The paper is outlined as follows. Section 2 presents back-
ground materials on H∞-control under unilateral constraints.
Capabilities of the presented state feedback synthesis are
illustrated in Sect. 3 in a numerical study of the robust
trajectory tracking of a 3D biped robot with feet required
to track a walking gait composed of single support phases
separated by impacts. Finally, conclusions of this work are
presented in Sect. 4.

II. BACKGROUND MATERIALS

In this section, the H∞ control problem under unilateral
constraints is stated, and sufficient conditions for the exis-
tence of a solution are presented. Later on, the applicability
of these results on the biped robot of interest will be studied.

A. Problem Statement

Given a scalar unilateral constraint F(x1, t) ≥ 0, consider
a nonlinear system, evolving within the above constraint,
which is governed by continuous dynamics of the form

ẋ1 = x2

ẋ2 = Φ(x1,x2, t) + Ψ1(x1,x2, t)w + Ψ2(x1,x2, t)u
(1)

z = h1(x1,x2, t) + k12(x1,x2, t)u (2)

beyond the surface F(x1, t) = 0 when the constraint is
inactive, and by the algebraic relations

x1(t+i ) = x1(t−i )

x2(t+i ) = µ0(x1(ti),x2(t−i ), ti) + ω(x1(ti),x2(t−i ), ti)w
i
d

(3)

zd
i = x2(t+i ) (4)



at a priori unknown collision time instants t = ti, i =
1, 2, . . . , when the system trajectory hits the surface
F(x1, t) = 0. In the above relations, x> = [x>1 ,x

>
2 ] ∈ R2n

represents the state vector with components x1 ∈ Rn and
x2 ∈ Rn; u ∈ Rn is the control input of dimension n;
w ∈ Rl and wi

d ∈ Rq collect exogenous signals affecting the
motion of the system (external forces, including impulsive
ones, as well as model imperfections). The variable z ∈
Rs represents a continuous time component of the system
output to be controlled whereas the post-impact value of the
only state component x2(t) subjected to the instantaneous
change is pre-specified as a discrete component zd

i of the
to-be-controlled output. The overall system in the closed-
loop should be dissipative with respect to the output thus
specified. Throughout, the functions Φ, Ψ1, Ψ2, h1, k12,
F, µ0, and ω are of appropriate dimensions, which are
continuously differentiable in their arguments and uniformly
bounded in t. The origin is assumed to be an equilibrium
of the unforced system (1)-(4), which is located beyond
the unilateral constraint, i.e., F (0, t) 6= 0, Φ(0, 0, t) = 0,
h1(0, 0, t) = 0, for all t and µ0(0, 0, 0) = 0.

Admitting the above time-varying representation is partic-
ularly invoked to deal with tracking problems where the plant
description is given in terms of the state deviation from the
reference trajectory to track [13]. Therefore, if interpreted
in terms of mechanical systems, equation (1) describes the
continuous dynamics before the underlying system hits the
reset surface F(x1, t) = 0, depending on the position error
x1 only, whilst the restitution law, given by equation (3), is
a physical law for the instantaneous change of the velocity
error when the resetting surface is hit.

Consider a causal feedback controller

u = κ(x, t) (5)

with the function κ(x, t) of class C1 such that κ(0, t) = 0.
Such a controller is said to be a locally (globally) admissible
controller iff the undisturbed (w,wi

d = 0) closed-loop
system (1)–(4) is uniformly (globally) asymptotically stable.

The H∞-control problem of interest consists in finding an
admissible global controller (if any) such that the L2-gain of
the disturbed system (1)–(4) is less than a certain attenuation
level γ > 0, that is the inequality∫ T

t0

‖z‖2dt+

NT∑
i=1

‖zd
i ‖

2 ≤

γ2

[∫ T

t0

‖w‖2dt+

NT∑
i=1

‖wi
d‖

2

]
+

N∑
j=0

βj(x(t−j ), tj)

(6)

locally holds for some positive definite functions βj(x, t),
j = 0, . . . , NT , for all segments [t0, T ] and a natural NT

such that tNT
≤ T < tNT+1, and for all piecewise continu-

ous disturbances w(t) and discrete ones wi
d, i = 1, 2, . . . . In

turn, a locally admissible controller (5) is said to be a local
solution of the H∞-control problem if there exists a neigh-
borhood U ∈ R2n of the origin, validating inequality (6)
for some positive definite functions βj(x, t), j = 0, . . . , NT ,

for all segments [t0, T ] and a natural NT such that tNT
≤

T < tNT+1, for all piecewise continuous disturbances w(t)
and discrete ones wi

d, i = 1, 2, . . . , for which the state
trajectory of the closed-loop system starting from an initial
point (x(t0) = x0) ∈ U remains in U for all t ∈ [t0, T ].

In mechanical terms, for the disturbed case, even if the
output z is not driven to zero, the L2-gain of the system
is still locally less than the specified value γ, so the output
will be bounded around zero and in consequence the state
trajectories of the plant will evolve around the trajectory to
track.

B. Background on Nonlinear H∞-Control Synthesis under
Unilateral Constraints

For later use, the continuous dynamics (1) are rewritten in
the form

ẋ = f(x, t) + g1(x, t)w + g2(x, t)u (7)

whereas the restitution rule is represented as follows

x(t+i ) = µ(x(t−i ), ti) + Ω(x(t−i ), ti)w
i
d, i = 1, 2, . . . (8)

with x> = [x>1 ,x
>
2 ], f>(x, t) = [x>2 ,Φ

>(x, t)],
g1
>(x, t) = [0,Ψ>1 (x, t)], g>2 (x, t) = [0,Ψ>2 (x, t)],

µ>(x, t) = [x>1 , µ
>
0 (x, t)], and Ω>(x, t) = [0, ω(x, t)].

In order to simplify the synthesis to be developed and to
provide reasonable expressions for the controller design, the
following assumptions

h1
>k12 = 0, k12

>k12 = I (9)

which are standard in the literature (see, e.g., [14]) are made.
Relaxing these assumptions is indeed possible, but it would
substantially complicate the formulas to be worked out.

C. Local state-space solution

To present a local solution to the problem in question the
underlying system is linearized to

ẋ = A(t)x + B1(t)w + B2(t)u, (10)
z = C1(t)x + D12(t)u, (11)

within impact-free time intervals (ti−1, ti) where t0 is the
initial time instant and ti, i = 1, 2, . . . are the collision

time instants, whereas A(t) =
∂f

∂x

∣∣∣∣
x=0

, B1(t) = g1(0, t),

B2(t) = g2(0, t), C(t) =
∂h

∂x

∣∣∣∣
x=0

, D12(t) = k12(0, t).

By the time-varying strict bounded real lemma [15, p.46],
the following condition is necessary and sufficient for the
linear H∞ control problem (10)-(11) to possess a solution:
given γ > 0,
C1) there exists a positive constant ε0 such that the differ-

ential Riccati equation

−Ṗε(t) = Pε(t)A(t) + A>(t)Pε(t) + C1
>(t)C1(t)

+Pε(t)[
1

γ2
B1B1

> −B2B2
>](t)Pε(t) + εI (12)



has a uniformly bounded symmetric positive definite
solution Pε(t) for each ε ∈ (0, ε0);

In order to insure dissipation at the impact times, the
following conditions are also considered:
C2) the norm of the matrix function ω (see (3)) is upper

bounded by
√
2
2 γ, i.e.,

‖ω(x, t)‖ ≤
√

2

2
γ. (13)

C3) the function V (x, t) = x>Pε(t)x decreases along the
direction µ in the sense that inequality

V (x, t) ≥ V (µ(x, t), t), (14)

holds in the domains of V .
Under these conditions, the following theorem is presented.

Theorem 2.1: [11, Theorem 3] Let conditions C1-C3 be
satisfied with some γ > 0. Then the closed-loop system
driven by the state feedback

u = −g2(x, t)
>

Pε(t)x (15)

locally possesses a L2-gain less than γ. Moreover, the
disturbance-free closed-loop system (1)-(4), (15) is uniformly
asymptotically stable.

For the periodic tracking of period T with periodic impact
instants ti+1 = ti + T, i = 1, 2, . . ., Theorem 2.1 admits a
time-periodic synthesis (15) which is based on an appropriate
periodic solution Pε(t) of the periodic differential Riccati
equation (12). It should be noted that Pε(t

+
i+1) = Pε(t

+
i ),

due to the periodicity, and inequality (14) of C3 is then
specified to the boundary condition

x>Pε(t
−
2 )x ≥ µ>(x, t+1 ))Pε(t

+
1 )µ(x, t+1 )), (16)

on the Riccati equation (12).
This result will be used in the following section to robustly

track a reference trajectory for a fully actuated 3D biped
robot.

III. ROBUST TRAJECTORY TRACKING OF A 3D BIPED
ROBOT

In this sections, the results on H∞ control of mechanical
systems under unilateral constraints are implemented on the
32-DOF biped robot ROMEO, from Aldebaran Robotics. In
order to comply with all the conditions for the existence
of the controller, an online trajectory adaptation method is
introduced so as to ensure asymptotic tracking of the biped
dynamics to the desired walking gait.

A. Model of a biped with feet

The bipedal robot considered in this section is walking
on a rigid and horizontal surface. It consists of the 32-DOF
robot Romeo, of Aldebaran Robotics, depicted in Fig. 1. The
walking gait takes place in the sagittal plane and is composed
of single support phases and impacts. The complete model
of the biped robot consists of two parts: the differential
equations describing the dynamics of the robot during the
swing phase, and an impulse model of the contact event.

Fig. 1: 32-DOF Robot Romeo, of Aldebaran Robotics

1) Dynamic model in a single support: In the single
support phase, considering a flat foot contact of the stance
foot with the ground (i.e. there is no take off, no rotation,
and no sliding during this phase), the dynamic model of the
biped can be written as follows:

D(q)q̈ + H(q, q̇) = DΓΓ + w (17)

with q = (q1, q2, . . . , q32)> the 32× 1 vector of generalized
coordinates, D is the symmetric, positive definite 32 × 32
inertia matrix, DΓ is a 32 × 32 constant and nonsingular
matrix; Γ = (Γ1, . . . ,Γ32)> is the 32 × 1 vector of joint
torques; the term H(q, q̇) is the 32 × 1 vector of the
centrifugal, coriolis and gravity forces; and w is the 32× 1
vector of external disturbances.

2) Impact model: Now, assuming a flat foot contact, the
double support phase is instantaneous and it can be modeled
through passive impact equations, i.e. impulsive torques are
applied in the interlink joints ([16]). An impact appears at
a time t = TI when the swing leg touches the ground. We
shall assume that the impact is passive, absolutely inelastic,
and that the legs do not slip ([17]). Given these conditions,
the ground reactions can be viewed as impulsive forces. The
algebraic equations, allowing one to compute the jumps of
the velocities, can be obtained through integration of the
dynamic equations of the motion, taking into account the
ground reactions during an infinitesimal time interval from
T−I to T+

I around an instantaneous impact. The torques sup-
plied by the actuators at the joints, the centrifugal, Coriolis
and gravity forces have finite values, thus not influencing an
impact.

The impact is assumed to be with complete surface of the
foot sole touching the ground. This means that the velocity
of the swing foot impacting the ground is zero after impact.
After an impact, the right foot (previous stance foot) takes off
the ground, so the vertical component of the velocity of the
taking-off foot just after an impact must be directed upwards
and the impulsive ground reaction in this foot equals zeros.
Thus, the impact dynamic model can be represented in the
form ([18]):

q̇+ = φ(q)q̇− + wd (18)

where q̇− is the velocity of the robot before the impact
and q̇+ is the velocity after the impact; φ(q) represents
a restitution law that determines the relations between the
velocities before and after the impacts; q is the position at
the impact. The additive term wd is introduced to account
for inadequacies in this restitution law.



The unilateral constraint can be defined as F(q), which
represents the height of swing foot, as a function of the
generalized coordinates of the implicit-contact model (17).
In the next section, a specific trajectory invoked to generate a
cyclic motion of the undisturbed model (17)-(18), is designed
so it can be used in our tracking problem as a reference
trajectory.

B. Motion Planning

Since a walking biped gait is a periodical phenomenon, the
objective is to design a cyclic biped gait. A complete walking
cycle is composed of two phases: a single support phase, and
an instantaneous support phase, which is modeled through
passive impact equations. The single support phase has a
duration of 0.31 s, and it begins with one foot which stays on
the ground while the other foot swings from the rear to the
front. The double support phase is assumed instantaneous.
This means that when the swing leg touches the ground the
stance leg takes off. The reference trajectories, allowing a
symmetric step, are obtained by an off-line optimization,
minimizing a Sthenic criteria, as presented in the work of
[17]. The restitution law during the impact phase is given
by:

q̇d(t+k ) = φ(qd(tk))q̇d(t−k ), k = 1, 2, . . . . (19)

C. Pre-feedback desing

Our objective is to design a pre-feedback controller of the
form

Γ = DΓ
−1[D(q̈d + u) + H] (20)

that imposes on the undisturbed biped motion desired sta-
bility properties around qd while also locally attenuating
the effect of the disturbances. Thus, the controller to be
constructed consists of the feedback linearizing terms of (20)
subject to u = 0, which are responsible for the trajectory
compensation, and a disturbance attenuator u, internally sta-
bilizing the closed-loop system around the desired trajectory.
In what follows, we confine our research to the trajectory
tracking control problem where the output to be controlled
is given by

z =

 0
ρp(qd − q)
ρv(q̇d − q̇)

+

 1
0
0

u (21)

zd = qd(t+k )− q(t+k ) (22)

with positive weight coefficients ρp, ρv .
Now, let us introduce the state deviation vector x =

(x1,x2)
>, where x1(t) = qd(t)− q(t) is the position devi-

ation from the desired trajectory, and x2(t) = q̇d(t) − q̇(t)
is the velocity deviation from the desired velocity.

Then, rewriting the state equations (17)-(22) in terms of
the errors x1 and x2, we obtain an error system in the form
(1)-(4), being specified with

f(x, t) =

[
x2

0

]
, g1(x, t) =

[
0

D−1(qd − x1)

]
, (23)

g2(x, t) =

[
0
I

]
, h(x) =

 0
ρpx1

ρvx2

 , k12(x) =

 I
0
0

 ,
(24)

µ(x, t) =

[
x1

φ(qd)q̇d − φ(qd − x1)(q̇d − x2)

]
, (25)

ω(x, t) = −I (26)

where as a matter of fact, the zero symbols stand for
zero matrices and I for identity matrices of appropriate
dimensions.

D. State Feedback H∞ Synthesis Using Trajectory Adapta-
tion

To respect Condition C1 of Theorem 2.1 for the error
system (1)-(4), the controlled output (21) is specified with
ρp = 3500 and ρv = 500, and then, following the standard
H∞ design procedure (see, e.g., [15, Section 6.2.1]), the
disturbance attenuation level and the perturbation parameter
are set to γ = 200 and ε = 0.01 to ensure an appropriate
solvability of the perturbed differential Riccati equation (12),
subject to the boundary condition (16). Next, condition C2 of
Theorem 2.1 is then straightforwardly verified with γ, thus
specified, and with ω, being an identity matrix. Finally, to
comply with condition C3 of Theorem 2.1 to be verified at
the impact time instants, the previously defined reference
trajectory, is adapted on-line in such a manner that the
state error dynamics possess no jumps. Thus, inequality (14)
becomes redundant for the adapted trajectory because only
trivial transitions with µ(x,t) = 0 are feasible.
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Fig. 2: Reference velocity adaptation for the first joint, with
an impact at tl = 0.5 . After the impact, the initial value of
the adapted velocity is such that the pre-impact (x21(tl−) =
q̇1(tl−)− q̇r1(tl−)) and post-impact (x21(tl+) = q̇1(tl+)−
q̇r1(tl+)) tracking errors are the same, and at the middle of
the step, the adapted reference velocity reaches the nominal
one.

For hybrid systems with state-triggered jumps, the jump
times of the plant and the reference trajectory are in general
not coinciding. During the time interval caused by this



jump-time mismatch, the tracking error is large, even in the
undisturbed case. Since this behavior also occurs for arbitrar-
ily small initial errors, the error dynamic displays unstable
behavior in the sense of Lyapunov. This behavior is known
in the literature as ”peaking”. It is expected to occur in all
hybrid systems with state-triggered jumps when considering
tracking or observer design problems [19], and imposes a
difficulty in guaranteeing that the norm of the tracking error
converges to zero. In order to achieve synchronization in
our biped application, the reference trajectory is adapted,
as illustrated in Fig.2 for the first joint q1. Provided that
the impact is detectable (e.g., by using a force or touch
sensor) it happens that either the reference trajectory hits
the constraint before the plant does, or the plant hits the
constraint before the reference trajectory does. In the former
scenario, the reference trajectory is continuously extrapolated
until the plant collision occurs whereas in the latter scenario,
the reference trajectory is restarted on-line once the plant
collision is detected. Either way, both the plant trajectory and
the adapted reference trajectory exhibit impacts at the same
time instants. By adaptation, the nominal reference trajectory,
and the adapted one, are equivalent before a collision. The
position and velocity tracking errors are measured, and once
the impact of the plant is detected, the adapted trajectory
is updated on-line in such a manner that the new post-
impact error, x+21 in Fig.2, coincides with the error measured
before the impact (x21(tl−) in Fig.2), thereby rendering
the evolution of the error to exhibit no jump, so as to
ensure a smooth control action. Following the idea of [20],
a new polynomial is defined for the adapted trajectory, that
starts from this imposed condition, and will join the nominal
reference trajectory at the middle of the step with the same
velocity, and will continue to be the same until the end of
the step. While the reference trajectory is recalculated after
the impact, the perturbed differential Riccati equation (12) is
also updated, and its corresponding solution is recomputed
on-line.

E. Numerical study

To illustrate the performance issues of the developed
stable bipedal gait synthesis numerical simulations were
performed for a laboratory prototype whose parameters were
drawn from the Aldebaran’s ROMEO documentation. The
contact constraints (no-take off, no rotation, and no sliding
during the single support phase) are verified on-line to
confirm the validity of (17), (18). The well-known constraint
(complementarity)-based approach [21], [22], [23] is utilized
to simulate the biped contact with the ground. The latter
approach belongs to the family of time-stepping approaches
and it is often invoked for biped dynamics simulations (see,
e.g., the works by [24], [25], [26]).

It can be seen that these joints possess a periodic trajectory.
Figure 3 depicts the resulting heights of the feet for the undis-
turbed case, when the plant initial conditions are deviated a
5% from the reference gait’s initial conditions. As presented
for the planar biped, the periodicity of these heights is a good
indicator of a stable motion for the walking gait. In Fig.3,

legends ”P1” and ”P4” represent the corners corresponding
to the ”toe” of the foot, whereas ”P2” and ”P3” represent the
corners of the ”heel” of the foot. As predicted by the theory,
Figure 4 depicts the Lyapunov function V (x, t), decreasing
smoothly and asymptotically towards zero, so the robot gait
converges asymptotically to the desired gait. Furthermore,
Figs. 5-6 depict the zero moment point (ZMP) locations and
ground reactions for both feet, which are verified to comply
with the contact constraints.

As a next step, a persistent disturbance of Fw =
10 sin(t) Nm was applied to the hip (therefore vector w is
given by the joint torques generated by this external force),
while the velocities after the impact are deviated 5 % from
their nominal values (given by (19), so wd = 0.05φ(q)q̇−),
thus considering disturbances on both the single support and
impact phases. Six joints among the 32 were selected to
clearly illustrate the effect of this disturbance (both ankles,
knees, and hip joints). This is depicted in Fig. 7, where the
error is small and bounded, and the robot maintains a stable
walking gait. The torques for these joints are shown in Fig.
8, where they stay between the buondaries of ±150 Nm.
Despite the disturbances, good performance of the closed-
loop error dynamics, driven by the proposed nonlinear H∞
state feedback, is still achieved.
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Fig. 3: Feet heights for 6 steps for Romeo, representing a
stable motion

Finally, the performance of the H∞ controller was com-
pared against the performance of a PD controller. In order
to do a fair comparison, the same pre-feedback (20) was
used, and just the disturbance attenuator (15) was replaced by
the PD controller u = −Kpx1 −Kvx2, with the constant
matrices [Kp,Kv] = B>2 Pε where Pε is the solution of the
algebraic version of the Riccati equation (12) with Ṗε = 0.

The comparison results with the time-varying disturbance
force 10 sin(t)+10 N , applied to the hip are shown in Fig.9,
where it can be seen that after 6.13 s, the cumulative position
tracking error, generated by the developed nonlinear periodic
H∞ tracking controller, is approximately 26% less than that
generated by the PD controller. Thus, a better performance
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Fig. 4: Lyapunov function for the undisturbed system, with
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Fig. 5: Zero moment point locations for both feet during the
disturbance free walking gait. The dashed lines represent the
feet geometrical limits and the ZMP always rests inside of
them, thus illustrating no rotation of the support foot at each
step.

of the proposed synthesis is concluded in comparison to the
standard linear H∞ PD design coupled to the pre-feedback
linearization.

IV. CONCLUSION

In this paper, the state feedback H∞-control synthesis un-
der unilateral constraints was implemented on a 3D fully ac-
tuated biped robot. In order to guarantee asymptotic stability
of the hybrid error dynamics, an online trajectory adaptation
scheme was utilized, so as to prevent the peaking phenomena
that appears in the tracking of hybrid systems with state-
triggered jumps. The combination of the robust synthesis
with the trajectory adaptation constitutes the contribution of
the paper. Effectiveness of the resulting design procedure
is supported by numerical tests on the 32-DOF biped robot
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Fig. 6: Ground reactions during the disturbance free walking
gait.
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Fig. 7: Joints errors for left and right hips, knees, and ankles,
under a persistent continuous disturbance (10 sin(t) Nm)
applied on the hip.

ROMEO, exhibiting the desired disturbance attenuation in
the presence of disturbances in the single support phase and
uncertainty in the impact phase.
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