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Abstract: We consider experimentally three–wave resonant nonlinear
interactions of fields propagating in nonlinear media. We investigate the
spatial dynamics of two diffractionless beams at frequencyω1, ω2 which
mix to generate a field at the sum frequencyω3. If the generated field
at ω3 can sustain a soliton, it decays into solitons atω1, ω2. We report
the experimental evidence of the transition from steady frequency wave
generation to solitonic decay in nonlinear optics.
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1. Introduction

Three–wave resonant interaction (TWRI) is a universal modelthat recurs in various branches
of science, such as plasma physics, optics, fluid dynamics and acoustics, as it describes the
mixing of waves with different frequencies in weakly nonlinear and dispersive media [1].
In general, TWRI is typically encountered in the descriptionof any conservative nonlinear
medium where the nonlinear dynamics can be considered as a perturbation of the linear wave
solution, the lowest–order nonlinearity is quadratic in the field amplitudes and the three–wave
resonance can be satisfied. Indeed TWRI is the lowest–order nonlinear effect for a system ap-
proximately described by a linear superposition of discrete (i.e. quasi monochromatic) waves.
TWRI has been extensively studied alongside with the development of nonlinear optics, since it
describes stimulated Raman and Brillouin scattering, parametric amplification, frequency con-
version [2, 3, 4, 5, 6]. In the domain of plasma physics, TWRI applies to the saturation of
parametric decay instabilities, nonlinear collisions of large–amplitude wave packets, radio fre-
quency heating, and laser–plasma interactions [7, 8, 9]. TWRIs have also been studied in the
context of interactions of water waves [10, 11], interactions of bulk acoustic waves and surface
acoustic waves [12]. In recent years, soliton waves in quadratic materials have been the subject
of an intense renewal of interest from both theoretical and experimental viewpoints because of
their particle–like behavior, which enables the coherent energy transport and processing. Two
types of soliton waves that were both predicted in the early 1970s have been studied. On the one
hand, one finds solitary waves that result from a balance between nonlinearity and dispersion
(or diffraction) as first predicted by Karamzin and Sukhorukov [13]. This type of soliton waves
have been intensively investigated experimentally over the past few years [14]. On the other
hand, quadratic media were shown to support soliton waves that result from energy exchanges
between dispersionless (or diffractionless) waves of different velocities as first predicted by
Zakharov and Manakov [15] and Nozaki [16].

Here we investigate the TWRI dynamics of two input beams at frequenciesω1 andω2 which
mix to generate a field at the sum frequencyω3, in absence of diffraction. Depending on the
input intensities, three different regimes exist. Linear regime: the beams at frequencyω1 andω2

don’t interact. Frequency conversion: the beams at frequenciesω1 andω2 interact and generate
a steady field at the sum frequencyω3. Solitonic regime: the beams at frequenciesω1 and
ω2 interact and generate a field at the sum frequencyω3; the generated field atω3 sustains
a Zakharov–Manakov soliton which decays into solitons at frequenciesω1 andω2 [15]. Here
we report the experimental evidence of the transition from steady sum frequency generation
to solitonic decay in optics. To our knowledge, this is the first experimental observation of
diffractionless soliton dynamics.

2. Frequency conversion and Solitonic Decay: Theoretical Concepts

Three quasi–monochromatic waves with wave–numbersk1 , k2 , k3 and frequenciesω1 , ω2 , ω3,
which propagate in a dispersive nonlinear medium with quadratic nonlinearity, interact effi-
ciently with each other and exchange energy if the resonanceconditionsk1 + k2 = k3, ω1 +
ω2 = ω3, are satisfied. The evolution equations for the waves in a two dimensional medium,
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after a multiscale expansion of Maxwell equations, turn outto be:
(

∂
∂z

+V1
∂
∂x

)

φ1 = η1K∗ φ ∗
2 φ3,

(

∂
∂z

+V2
∂
∂x

)

φ2 = η2K∗ φ ∗
1 φ3, (1)

(

∂
∂z

+V3
∂
∂x

)

φ3 = η3K φ1 φ2.

Hereφn are complex wave-packet amplitudes at frequenciesωn, Vn are characteristic velocities,
ηn are signs, andK is a complex coupling coefficient. The variablesx andz stand for trans-
verse and longitudinal coordinate, respectively. Here, weconsider the three–wave exchange
type interaction [1], which means(η1 , η2 , η3) = (+ , + , −) andV1 < V3 < V2. It should be
pointed out that the physical meaning of the wavesφn, and of the variablex andz depends
on the particular physical domain that one has in mind (plasma physics, nonlinear optics, fluid
dynamics).

The physical model describing TWRI is completely integrable[15, 17]. The integrability of
the equations (1) follows from the fact that these equationsare the compatibility conditions of
two 3×3 matrix Ordinary Differential Equations (ODEs), one in thevariablex and the other
one inz (the Zakharov–Manakov (ZM) eigenvalue problem [18]). Thisfact gives a way to set
up a nonlinear generalization of the Fourier analysis of solutions of the associated initial value
problem, namely the Inverse Scattering Technique (IST). Inparticular, this generalization leads
to decompose a given solutionφ1(x,z) ,φ2(x,z) , φ3(x,z) as functions ofx at a given fixedz in
its continuum spectrum component (radiation) and in discrete spectrum component (solitons).

Fig. 1. Numericalx− z TWRI dynamics of waves at frequencyω1 andω2 which mix to
generate a field at the sum frequencyω3. (a) Linear, (b) frequency conversion, and (c)
solitonic regime.

Here, we consider the TWRI dynamics of two arbitrary, almost equal and overlapping in-
put beams at frequencyω1 and ω2 which mix to generate a field at the sum frequencyω3.
Depending on the input intensities, three different regimes exist, which we define as linear, fre-
quency conversion, and solitonic regime (Fig. 1). Figure 1 shows numerical simulations, with
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V1 = −V2 andV3 = 0, of the typical wave dynamics in thex− z plane, corresponding to the
initial data atz= 0: φ1(x,0) 6= 0, φ2(x,0) 6= 0, φ3(x,0) = 0. In particular, figure 1.a shows the
low–intensity linear regime: the beams at frequencyω1 andω2 do not interact and propagate
with their own characteristic velocitiesV1 andV2. Note that, from a theoretical IST perspec-
tive, the decomposition of the initial dataφ1(x,z= 0) ,φ2(x,z= 0) , φ3(x,z= 0) in a continuum
spectrum component (radiation) and a discrete spectrum component (solitons) is irrelevant in
this case since the wave–wave interaction is quite negligible. Figure 1.b shows that, at mod-
erate input intensity, the beams at frequencyω1 and ω2 interact and generate a steady field
at the sum frequencyω3. When the faster wave overtakes the slower one, we observe energy
conversion to the sum frequency waveφ3; next the three waves propagate alone with their own
characteristic velocities. In this case, the initial dataφ1(x,z= 0) ,φ2(x,z= 0) , φ3(x,z= 0) are
composed of a continuum spectrum component (radiation) andno discrete spectrum compo-
nent (solitons). Figure 1.c shows that, at relatively high input intensity, the beams at frequency
ω1 andω2 interact and generate a field at the sum frequencyω3. The sum frequency waveφ3

has enough energy to sustain at least one soliton. After the non–collinear nonlinear interaction
the radiation parts of the waves atω1 andω2 and the wave atω3 propagate alone with their
own characteristic velocities; furthermore, the component at ω3 decays into two waves atω1

andω2. This decay process may be described in terms of the analytical solutions of equations
(1) which were discovered in the 70s [15] (the ZM TWRI solitons). From a theoretical IST
perspective, the initial dataφ1(x,z= 0) ,φ2(x,z= 0) , φ3(x,z= 0) are composed of both a con-
tinuum spectrum component (radiation) and a discrete spectrum component (solitons). Indeed
the input wavesφ1 andφ2 contain one soliton each plus radiation. The solitons in thewaves
φ1 andφ2 interact and generate a soliton in waveφ3 which, due to its finite lifetime, eventually
decays into solitons in the wavesφ1 andφ2.

3. Frequency conversion and Solitonic Decay: Experiments

In order to provide the experimental demonstration of the above discussed nonlinear dynamics,
we considered the optical spatial non–collinear scheme with type II second harmonic generation
(SHG) in a birefringent KTP crystal. Two orthogonally polarized beams at frequencyω1 =
ω2 = ω, Ee

ω andEo
ω , were injected into the nonlinear birefringent medium to cross and overlap

at the input face of the crystal (see Fig. 2). Each field is linearly polarized and aligned with
a polarization eigenstate of the crystal. In the present scheme the two input waves required
for the parametric processes to occur, and for the subsequent observation of solitonic decay,
had tilted wave–fronts. In the overlapping area the harmonic Ee

2ω at ω3 = 2ω is generated
along a direction which maximized the conversion efficiencyas it was fixed by the noncollinear
phase–matching conditions. The sum–frequency harmonic propagation direction was found in
between the directions of the two input waves.

Fig. 2. Schematic representation of the optical non collinear TWRI interaction in a KTP
crystal.
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In details, the experiments were performed with a Q-switched, mode-locked Nd:YAG laser
that delivered 40pspulses atλ = 1064nm. Then laser light passed through a spatial telescope
made from two lenses,L1 andL2. We introduced a Glan polarizer to obtain, after passage of
the light throughL2, two independent beams with perpendicular linear polarization states. A
half-wave plate placed before the prism served to adjust theintensityI1 andI2 of the two beams
at an equal levelI . By means of two highly reflecting mirrors, a beam splitter and a third lens
L3, both beams were focused and spatially superimposed in the plane of their beam waist with
a circular shape of 120µm width (FWHMI). A 3cm long type II KTP crystal cut for second
harmonic generation was positioned such that its input facecorresponds to the plane of su-
perposition of the two input beams. The crystal was orientedfor perfect phase matching. The
directions of the linear polarization state of the two beamswere adjusted to coincide with the
ordinary and the extraordinary axes, respectively, of the KTP crystal. The wave vectors of the
input fields were tilted at angles ofθ1 = 0.7o andθ2 = −0.7o (in the crystal) with respect to
the direction of perfect collinear phase matching for the extraordinary and the ordinary compo-
nents, respectively. These parameters corresponded inside the crystal to a tilt between the input
beams equal to 3.7 times the natural walk–off angle but introduced along the ordinary noncrit-
ical plane. The sum frequency direction lies in between the input waves directions. With these
values of parameters, spatial diffraction and temporal dispersion were negligible. Therefore, the
dynamics of the waves could be well described by the TWRI(1+1)D spatial model equations
(1) in the ordinary plane. The spatial waves’ patterns at theoutput of the crystal were imaged
with magnification onto a CCD camera and analyzed. We used alternately different filters and
polarizers to select either the IR or the green output. As theintensities of the input fields were

Fig. 3. Experimental results at the exit face of the KTP crystal presenting the spatial output
profile of Eω , E2ω , Ee

ω andEo
ω . (a) Linear regime,I = 1MW/cm2; (b) frequency conver-

sion, I = 0.1GW/cm2; (c) solitonic decayI = 2.5GW/cm2. The white line in the panels
labeledEω represents the intersection between the exit face of the crystal and the ordinary
plane. The inset in panel (c) refers to the output profile ofE2ω without attenuation filters.

varied in a suitable range, we observed the TWRI linear, frequency conversion, and solitonic
regimes in the ordinary KTP plane (Fig. 3). For each regime, Fig. 3 shows i) the output profile
of the waves at frequencyω, ii) the profile of the wave at the sum frequency, iii) the profile of
the extraordinary polarized component and iv) the profile ofthe ordinary polarized component
at frequencyω. In the low–intensity (I = 1MW/cm2) linear regime, the input waves did not
interact and propagated without diffraction in the KTP crystal following their own character-
istic directions (Fig. 3.a). The wavesEe

ω andEo
ω , superimposed at the crystal entrance, were
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Fig. 4. Solitonic decay,I = 2.5GW/cm2. Experimental (dashed lines) and numerical (solid
lines) spatial output profiles at the exit face of the KTP crystal alongx, intersection between
the exit face of the crystal and the ordinary plane.Ee

ω (red lines), andEo
ω (blue lines).

spatially separated at the crystal output. At moderate input intensity (I = 0.1GW/cm2), parts
of the beamsEe

ω andEo
ω interacted and generated a steady field at the sum frequency.At the

crystal output we observed a component of beamsEe
ω andEo

ω which did not interact and behave
linearly and the generated wave at the sum frequencyEe

2ω whose propagation direction lies in
between the input waves directions in the ordinary plane (Fig. 3.b). This regime corresponds to
the well known optical non–collinear sum frequency wave generation. At higher input intensity
(I = 2.5GW/cm2), we observed again the amount of the waveEe

ω andEo
ω which did not interact

and behave as linear waves (Fig. 3.c). Moreover, we observedthe birth of two well defined ordi-
nary and extraordinary wavesEe

ω andEo
ω , which turned out to be spatially shifted with respect

to the linear components. The observation of the two new spatially shifted waves provided a
clear evidence that a TWRI soliton was generated at the sum frequency within the crystal: such
soliton had subsequently decayed into two solitons in the fundamentals right before the end
face of the crystal. In fact, the wave at the sum frequency disappeared. Indeed, by removing
the attenuation filters used to protect the camera, we may observe a faint component at the sum
frequency 2ω which is generated in part through type II interaction and mainly through type I
SHG by the extraordinary wave atω (see inset of Fig. 3.c). Numerical simulations of the op-
tical interactions, described by the equations (1), well reproduce the experimental results (see
Fig. 4). The above discussed results represent the experimental evidence of the transition from
a sum–frequency wave generation to a TWRI solitonic decay.

4. Conclusions

In conclusion, we have theoretically and experimentally investigated the spatial dynamics of
two diffractionless beams at frequencyω1, ω2 which mix to generate a field at the sum fre-
quencyω3. Depending on the intensity, when the generated field atω3 can sustain a TWRI
soliton, it decays into solitons atω1 andω2. Our experimental findings demonstrate the pos-
sibility of reaching soliton regimes in non-diffractive TWRI systems; these nonlinear regimes
could pave the way to the construction of novel systems for storing, retrieving and processing
information in the optical and plasma domains.
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