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Abstract. The present work investigates the effect on the flow-induced vibrations of the
lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach
based on a wave finite element and a transfer matrix method. The structural vibrations,
under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary
layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic
analysis of finite structures, using an elementary periodic subsystem. Different flow regimes
and shell curvatures are analysed and the computational efficiency is also discussed.

Keywords: wave finite element method; flow-induced vibrations; wave propagation; boundary
layer excitation

1. Introduction

In the transport industry it is not rare to meet excessive structural vibrations due to
random aeroacoustic excitations acting on the structure’s surface by means of the pres-
sure fluctuations. While structure-borne acoustic radiation might impact on the comfort of
the transport means, the excessive vibrations might lead to undesired flow-induced fatigue
problems [Kolaini et al. (2018), Vaquer-Araujo et al. (2018), Mehta (2018)]. This issue is
even more evident with sandwich and laminated composite structures, extensively used in
modern aerospace as well as in the automotive, naval and civil industry, because they can
provide lighter and stronger structures than most metal alloys. At the same time, high
computational costs arise, from the point of view of the numerical simulations, when com-
plex sandwich panels are analysed using classical models as, for example, the finite element
method (FEM).

The vibrational response of fluid loaded axisymmetric structures can be estimated once
data on the distributed pressure distributions are available. While numerical methods can
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give accurate case-sensitive surface pressures, simplified semi-empirical models for the wall
pressure fields (WPF), and their correlation functions, are present in the literature, for a
large variety of excitation models.

The characterisation of the turbulent boundary layer wall pressure fluctuations has first
been carried out experimentally by Corcos [Corcos et al. (1963)]. The Corcos model assumes
the separation of variables and and exponential dependency versus frequency, for the cross
spectral density of the pressure fluctuations, on the distances among points. This model is
one of the simplest and most used in literature. To improve the accuracy of the Corcos model
in specific wavenumber domains (i.e. the sub-convective domain), Efimtsov et al. (1982) and
Ffowcs Williams et al. (1982) proposed a model which is somewhat correlated to the Corcos
one, while Smol’yakov et al. (1991) and Chase et al. (1980) proposed formulations with a
stream-wise and cross-wise correlation for the pressure fluctuations.

The predictive methodologies available in literature are mainly modal-based and mainly
connected to flat panels [Elishakoff et al. (1983), Ichchou et al. (2009), Ciappi et al. (2012),
De Rosa et al. (2008a), Franco et al. (2013), Yang et al. (2017)]. Some applications to
curved shells have been presented by Birgersson et al. (2004), while some measurements and
analyses on full-scale fuselages have also been presented in the literature by Bhat (1971) and
Wilby et al. (1972).

Since the computational cost associated to finite element calculations might be excessive,
especially under distributed random pressure loads, the convective load can be simulated
through a purely coherent or incoherent equivalent load depending on the frequency range of
analysis [Franco et al. (2013)]. For example, at high-frequencies, an equivalent rain-on-the-
roof excitation can be used in this frequency regime, giving advantages in the calculation of
the joint acceptance integrals [Lyon et al. (1995), Ichchou et al. (2009)]. Hybrid SEA/FE
methods are also present in the literature, to deal with the medium-high frequencies [Troclet
et al. (2009)]. However, since most of these techniques, present in the literature, are limited in
terms of accuracy and the computational speed in specific frequency ranges, especially in the
medium one, a strong interest is placed on methods to overcome and/or extend these limits
[Errico et al. (2018b)]. This paper proposes an hybrid wave based methodology, suitable also
for axisymmetric structures.

While in the literature the influence of the lay-up sequence is mainly studied for static
and buckling analysis, only a few works investigate the effect of the lamination with a
specific vibro-acoustic target, as done by Christen et al. (2016). Here, the effect of the
stacking sequence is studied on cylindrical structures under distributed pressure loads, for
fixed frequencies, and under turbulent boundary layer excitation.

The work is structured as follows: Section 2 presents a literature survey; Section 3
presents the numerical methodology used for axial-symmetric structures; Section 4 presents
a validation of the approach for a large cylindrical shell under a propeller-like deterministic
pressure distribution and a tapered axisymmetric structure under a diffuse acoustic field
excitation; Section 5 presents a study on cylinders of different radius for various stacking
sequences under a turbulent boundary layer excitation.
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2. Literature Background

2.1 Analytic Solution

The analytic approach can be developed only for a flat rectangular panel simply-supported
along the edges. The approach, developed in [Elishakoff et al. (1983)], is further analysed in
[De Rosa et al. (2008a), Franco et al. (2013), De Rosa et al. (2008b)]. The final equation is
here shown for sake of completeness, [De Rosa et al. (2008b)]:

Sww(xa, ya, ω) =
∑
j

∑
n

[Ψj(xa, ya)Ψn(xa, ya)

ZHj (ω)Zn(ω)γjγn

]
AQjQn(ω) (1)

where Ψj is the jth analytic mode shape, γj is the generalized mass coefficient for the
same mode order, Zj is the dynamic structural impedance and AQjQn is the well-known joint
acceptance integral.

This approach, while giving a powerful tool for the validation of other numerical and
experimental techniques, as in the present case, is valid in a limited set of cases. In fact,
as described in [Elishakoff et al. (1983), De Rosa et al. (2008a), Franco et al. (2013), De
Rosa et al. (2008b)], this analytic solution is developed and is easy to derive only for a flat,
rectangular and simply-supported plate under a fully developed (ergodic) turbulent boundary
layer modelled using the Corcos model [Corcos et al. (1963)]. The main complexity is, first, in
the solution of the joint-acceptance integral and, then, in that the knowledge of the analytic
formulation of structural modes is needed. The boundary layer induced vibrations are also
analysed, in the literature, under different boundary conditions [Hambric et al. (2004)].

2.2 Modal solution for vibrations under random load

Within discretized FE framework, under the hypothesis of statistically stationary and
ergodic random forces, the calculation of the displacement cross-spectrum matrix, Sww, can
be performed as in Eq. 2 [Elishakoff et al. (1983)].

Sww(ω) = ΨH(ω)ΨTSFF (ω)ΨHH(ω)ΨT (2)

with

Hj(ω) =
1

ω2
j − ω2 + iηω2

j

(3)

where Ψ is the matrix of the structural modes and SFF is the load matrix in a FE
framework. The elements of this matrix should be calculated with a surface integral on
the nodal area of the product of the structural shape functions and the wall pressure cross
spectra (WPS) [De Rosa et al. (2008b)]. However, considering that the pressure fluctuations,
do not fluctuate very quickly in the nodal area, given by ∆x∆y, a direct lump-on-the-nodes
of the wall pressure cross spectra is a good approximation of the integral hidden in SFF , as
in Eq. 4 [De Rosa et al. (2008a), Franco et al. (2013), De Rosa et al. (2008b)].

Si,jFFL = Xpp(ξ
ij
x , ξ

ij
y , ω)∆2

x∆2
y (4)
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Eq. 4 is valid if the nodal area so small that the pressure is not fluctuating much in the
considered spatial domain. This means that, once a mesh is fixed, Eq. 4 will be valid just
up to a certain frequency, called aliasing frequency.

Within this work, the the coherence model for the wall pressure fluctuations proposed
by Corcos et al. (1963), as in Eq. 5 and 6, is used.

Xpp(ξ, ω) = Sp(ω)Γ(ξx, ξy, ω) (5)

where
Γ(ξx, ξy, ω) = e−αx|ωξx/Uc|e−αy |ωξy/Uc|ei|ωξx/Uc| (6)

Uc is the convective flow speed, Sp is the single-point auto spectral density of the wall pressure
distribution, αx and αy are the correlation coefficients and ξx and ξy are the relative distances
for the stream-wise and cross-wise directions respectively [Corcos et al. (1963)].

3. The Numerical Methodology

3.1 A Transfer Matrix Approach

Here a transfer matrix between the excited degrees of freedom and the target ones is used.
Assuming a quantity of interest v, which can be representative of displacements, velocities,
accelerations or pressures, the cross spectral densities among two points i and j to a random
distributed pressure can be calculated as in Eq. 7.

Svv(xi, xj , ω) = LTv (xi, ω)SFF (ω)Lv(xj , ω) (7)

where Lv is the transfer matrix that links the target degrees of freedom (TDof) and the
excited ones (EDof) and Svv is the matrix of the auto/cross spectral densities. If, on the
contrary, the excitation is distributed but deterministic, Eq. 8 can be used instead.

V (xi, ω) = LTv (xi, ω)PF (ω) (8)

where V is the target quantity of interest, while PF is the matrix describing the pressure
load distribution. The first advantage of this approach relies in choosing the value of TDof
depending on the analysis needs. This is particularly suitable if the target is represented
by the vibrational levels on a localised part of the whole assembly (i.e. a junction). An
extensive discussion of the advantages of the proposed method has been proposed by Errico
et al. (2018b).

The elements of the transfer matrix represent transfer Green function between two points
i and j. In this paper, the input Green functions are calculated through a wave-based
technique and a reciprocity approach [Errico et al. (2018b)].

3.2 The Wave Finite Element Method (WFEM)

The adopted wave-based technique is a wave finite element (WFE) method applicable for
homogeneous and periodic structures. The method makes use of the periodic conditions to
move in the wavemode-basis, in which the problem is analysed through the superposition of
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Fig. 1 Two adjacent elementary cells of a waveguide

different wavefields, [Brillouin et al. (1953), Mead et al. (1996), Manconi et al. (2008), Waki
et al. (2009), Errico et al. (2018a)].

Considering a repetitive substructure of a periodic assembly, the Bloch-Floquet conditions
(periodicity) can be easily applied considering a complex propagation constant linking the
wavefields in the substructures’ different points. For a single periodic system (in a 1-D
formulation), the periodicity conditions become the equilibrium of the displacement and
forces among the common hypernodes of two subsequent periodic cells (Fig. 1). In the
following dynamic stiffness equations, the left and right side hypernodes are defined with the
letters L and R respectively. [

DLL DLR

DRL DRR

]{
qL

qR

}
=

{
FL

FR

}
(9)

where D = [ K - ω2 M]. For unit-cells involving complex cross-sections, a state vector
reduction can be used to reduce the computational effort [Droz et al. (2014)]. It can be
combined with Craig-Bampton (CB) dynamic condensation method of the inner degrees of
freedom in case of structural periodicity [Droz et al. (2016)]

With simple substitutions in Eq. 9, one can get the so-called Transfer matrix, T that
links nodal displacements and forces in two adjacent substructures [Manconi et al. (2008),
Waki et al. (2009), Mencik et al. (2007), Mencik (2010)].

[
T
]

=

[
−D−1

LRDLL D−1
LR

−DRL + DRRD−1
LRDLL −DRRD−1

LR

]
(10)

Useful discussions on the properties of this matrix and the associated numerical issues, are
present in the literature [Renno et al. (2014, 2013)]. In a wavemode-basis, the displacements
and forces in the substructure section can be expressed as such:{

qL

fL

}
=

[
Φ+
q Φ−q

Φ+
f Φ−f

]{
a+

a−

}
(11)

where a+,− are the wave amplitudes of the positive and negative going waves. On the
contrary, Φ+,−

q and Φ+,−
f , represent specific partitions of the eigenvectors of the transfer ma-

trix (Eq. 10) connected to the displacements and forces distributions is the waveguide section
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Fig. 2 The rotation of the global reference into the local one in each location and layer of the cell.

[Mead et al. (1996), Renno et al. (2014), Errico et al. (2018b)]. The filtering issues associated
with the wave basis are deeply investigated in literature [Manconi et al. (2008), Mencik et al.
(2007)] and are not repeated here. Moreover, the possibility of introducing variable meshes,
within this framework, has been recently investigated by Errico et al. (2018b).

3.3 Forced Vibrations for Axisymmetric Structures

In a WFE framework, the forced vibrations can be evaluated through the superposition
of the direct and reverberant field. The first is the result of the excitation and the second is
the reverberant wavefield.

It is worth to highlight that the distributed rand excitation is not translated to the
substructures’ scale but is accounted using Eq. (7). The wave finite element method is
here used to evaluate the transfer functions that compose the transfer matrix, using single
input (single point) responses between the target and loaded degrees of freedom. Here, a
general formulation to deal with axisymmetric and curved structures, even in presence of
structural impedence variations along the periodicity direction and tapering, is presented. In
fact, the main issue of the standard WFE formulation stands in the fact that the consecutive
sub-domains can not be different from the previous one, whereas, for curved and tapered
structures each point behaves on a circumference of different radius moving along the rotation
axis.

First, the curvature of the substructure must be simulated rotating the degrees of free-
dom, as shown in Fig. 2. The idea is to rotate the local reference for each node belonging to
the cell FE. In this way, imposing the periodicity conditions, as shown in Eq. 10, the wave
propagation is automatically analysed along the imposed curved path. Moreover, a single
FE model of the cell can be used to simulate different curvatures, and, apart from large
periods, the cell can be modelled as totally flat.

A rotational matrix is assembled in a block diagonal matrix Rot, for each curvature. As
in Fig. 2, the curvature simulation must be made for every layer composing the elementary
cell. Each layer can have a different nature and even fluid-structure coupling at cell scale
can be included if fluid layers are present [Manconi et al. (2009)].



6 F. Errico et al.

Fig. 3 Waves in an axial-symmetric jointed structure excited by a point load

The new mass and stiffness matrices of the curved cell can be calculated with a simple
matrix product:

M = RotTj MflatRotj

K = RotTj KflatRotj .
(12)

The waves, resulting from the eigenvalue problem of the transfer matrix (Eq. 10) repre-
sent circumferential waves and the angular distance between points (Eq. 13) can be used as
a new reference. This approach can be particularly useful for tapered structures.

λθ = e−ikθ∆θ (13)

where kθ=kxR=kx∆x/∆θ is the circumferential wavenumber, ∆θ is the angular distance and
R is the section radius (Fig. 3).

Using the wavemode-basis, the structural response can be calculated considering the su-
perposition of an equivalent direct field and the reverberant one. When a closed axisymmetric
structure is considered, the formulation presented by Errico et al. (2018b) can be used. Here,
a more general formulation is presented to deal with joints and impedance variations along
the circumference, as illustrated in Fig.3.

In the case some discontinuities, such as linear or complex joints, are reached by the waves,
the scattering properties become largely impactive on the structural behaviour. Considering
a junction as in Fig. 3 one can analyse the scattering properties taking into account the
waves in the first and second waveguide, in terms of incident and outgoing (reflected and
transmitted) wave amplitudes along the junction itself [Mitrou et al. (2017), Groby et al.
(2009)]. In Fig. 3 this is illustrated with b−,+1 and b−,+2 , at the edges of the structure.
The scattering matrix s can be defined taking into account what just said and thus has the
following expression: {

b−1
b+

2

}
=

[
s1 s2

s3 s4

]{
b+

1

b−2

}
(14)
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where the scattering matrix has been splinted in four sub-matrices: s1 and s4 represent
transmission matrices, while s2 and s3 represent reflection ones. The joint is assumed to
be infinite in the direction normal to the propagation one and is modelled using finite ele-
ments. This assumption does not affect the results even for finite-size structures. It is to be
underlined that there is no restriction on the type of FE model to be used for the joint.

Condensing the FE of the junction to the borders and express the dynamic equation
of the junction as condensed to its edges, one gets Eq. 15. Typical methods are static
condensations or a component mode synthesis [Droz et al. (2014)]. If internal forces are
present, these can be substituted by structurally equivalent forces at the joint interface.

DJ QJ = FJ (15)

where QJ and FJ are the vectors of dofs and nodal forces of the joint to its borders.
Since the force and displacement vectors at the borders of the joint are in common with

the two waveguides, they can be expressed in wave base using the wavemodes of each periodic
substructure. Imposing the continuity and equilibrium conditions for the joint and using the
eigenvectors of the two waveguides incident on the joint, the displacements QJ and the force
field FJ can be expressed in a wave-basis:

QJ =

[
Φ1,+
q b+

1 + Φ1,−
q b−1

Φ2,+
q b+

2 + Φ2,−
q b−2

]
(16)

FJ =

[
Φ1,+
f b+

1 + Φ1,−
f b−1

−Φ2,+
f b+

2 − Φ2,−
f b−2

]
. (17)

Substituting the previous equations in the equilibrium equation of the joint (Eq. 15), con-
densed to boundaries, the scattering matrix can be obtained straightforwardly, as in Eq.
18.

s =

[
−DJ

[
Φ1,−
q 0

0 Φ2,+
q

]
+

[
Φ1,−
f 0

0 −Φ2,+
f

]]−1 [
DJ

[
Φ1,+
q 0

0 Φ2,−
q

]
−

[
Φ1,+
f 0

0 −Φ2,−
f

]]
(18)

The inversion in Eq. 18 can cause numerical instabilities and the use of the left eigenvalues
is required [Mitrou et al. (2017)]. It should be underlined that the actual description is
applicable also for lap joints, L-shaped, T-shaped or more complex junctions, as deeply
investigated in [Renno et al. (2013), Mitrou et al. (2017)].

Once the amplitudes of direct wavefield are known, the amplitudes of the waves can be
calculated at a given response point by considering the excitation, reflection and propagation
relations. First the scattering equation can be solved obtaining the values of the incoming
and out-coming waves at the joint:

b+2 =
[
I − Tr(2π − θ1)s4Tr(2π − θ1)

]−1[
Tr(2π − θ1)s3Tr(θ1)

]
a+ (19)
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b−1 = Tr(θ1)s1Tr(θ1)a+ + Tr(θ1)s2Tr(θ1)b+2 (20)

with θ1 is the angular distance between the joint and the reference point chosen.
Using again Fig. 3 as reference, the amplitude of waves in the reference point can be

calculated. The response in a target point can be finally expressed as:

a+ =
[
I − Tr(2π − θ1)s3Tr(θ1) − Tr(2π − θ1)s4Tr(2π − θ1)

[
I − Tr(θ1)s2Tr(θ1)

]−1

Tr(θ1)s2Tr(θ1)
]−1[

e+ + Tr(2π − θ1)s4Tr(2π − θ1)
[
I − Tr(θ1)s2Tr(θ1)

]−1
e−
] (21)

a− =
[
I − Tr(θ1)s2Tr(θ1)

]−1[
e− + Tr(θ1)s1Tr(θ1)a+

]
− e− (22)

Eqs. (21) and (22) represent the general solution when an impedance variation is also
present on the circumferential wave-path. In the case the axisymmetric structure is homo-
geneous, or simply there is no variation of impedance, Eq. (21) and (22) remain the same,
while the values of the sJ (J =1,. . . ,4) matrices change in zeros and identity matrices since
a full transmission must be simulated.

In general, the structures might not be fully periodic. It might happen, however, that
the entire structure can be identified as the sum of periodic parts connected through joints.
In these cases, the technique presented above can still be considered valid if the scattering
around the joint is taken into account. It is worth to highlight that the present formulations
are more general than the ones proposed in Errico et al. (2018a, b).

4. Validating Results

4.1 Distributed Deterministic Pressure Loading

Here the structural vibrations of a cylindrical model are firstly validated and then investi-
gated for different structural models, under an assigned pressure distribution. This pressure
field is a simplified representation of the one induced by a rotating propeller on a cylindrical
model of a fuselage. The pressure distribution is representative of a 100 Hz tonal harmonic
load and a simple illustration is present in Fig. 4.

Both the global FE model and the substructure, are shown in Fig. 5. The cylindrical
model is 9.7 m long and the diameter is 3.4 m. Free boundary conditions are imposed at the
borders. The analysis is performed at 100 Hz and a validation with a full FEM calculation, in
the case of a 2mm-thick aluminium shell, is shown in Fig. 6 for the whole set of points along
the axis, belonging to two specific angular locations. In order to assure mesh convergence, a
10 elements per wavelength mesh has been used. The whole FE models has 48 elements in
the circumferential direction and 43 in the axial one. The structure is modelled using ANSYS
SHELL181 elements, in both cases. As observed in Fig. 6, the difference in percentage is
limited under 0.2% along the whole set of points. While the classic FEM requires 12936
nodal DoFs, the WFE approach requires just 264 of them, reducing the size of the numerical
problem by almost 98%.
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Fig. 4 Pressure distribution assumed on the cylindrical portion of a fuselage model at 100Hz, in Pa.

Fig. 5 The cylindrical structure used as a test-case: full finite element model and substructure in the
framework of the proposed method.
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Fig. 7 A tapered axisymmetric structure, used as a test-case: full finite element model (a); substruc-
ture in the framework of the proposed method (b).
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Fig. 8 Numerical results comparison for a fairing-like structure under diffuse acoustic excitation -
Auto Spectral Density in one point, [dB ref. (1 m/s)2/Hz].

4.2 Diffuse Acoustic Field

In this section, a complex and tapered axisymmetric structure, similar to a space launcher
fairing (Fig. 7), is used as a test-case to prove the efficiency of the method and its flexibility.
Due to gradient effects, it is not correct to apply a Corcos TBL model [Yang et al. (2017)]. An
incident diffuse field (DAF) is simulated, instead, since it is often used to describe the TBL
load in the low frequencies (i.e. load description on a space launcher fairing during take-off
and climbing phases), overestimating the effects for increasing excitation frequency. In Fig.
7, the relative substructure used within the present approach is also shown. The structure is
made again of aluminium. Fig. 8 shows the comparison between a full stochastic FE method
and the proposed WFE with the TM approach. A computational cost comparison is also
shown in Table 1; the reference FEM solution is calculated using a proper set of modes in
Eq. (2), while the size of the load matrix in Eqs. (2), (7) and (4) is the same between the
models. As expected, the two models are equivalent in terms of accuracy, up to the aliasing
frequency, where the full stochastic finite element model starts to lose precision. The use
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Table 1 Computational cost comparison for the sructural model in Fig. 7 under TBL load

Method Mesh Design Relative CPU Relative RAM
Frequency [kHz] Time/Frequency Memory/Frequency

FEM - Eqs.(2), (4) 2.0 43.8 5.8

WFE - Eq.(7), (4) 2.0 1.0 1.0

Table 2 Material Data of the Lamina

EX [GPa] EY [GPa] ρ[Kg/m3] GXY [GPa] GXZ [GPa] νXY
129 8.25 1600 4.23 4.23 0.0192

of the transfer matrix, in fact, strongly increases the flexibility in terms of selection of the
degrees of freedom, both for the target and the wetted, while the wave-based method to
evaluate the Green functions allows the use of a reduced model for all the calculation steps.
In order to assure mesh convergence, a 10 elements per wavelength mesh has been used, and,
again, the structure is modelled using ANSYS SHELL181 elements, in both cases.

5. Stacking Sequence Effects on the Structural Response

It is interesting now to compare different laminations for a composite laminate shell. In
fact, a different stacking sequence can lead to a different wave propagation along the shell
and thus a different vibration field for given excitation model. The set of configurations
and stacking sequences analysed are listed in Table 2 and 3. Each lamina is 0.425mm thick
and the laminate is composed by 8 layers, in each configurations. The 0◦ and 90◦ represent
fibres orientations corresponding to the axial and circumferential directions of the cylinder.
The choice of the sequences A and B, reported in Tab. 3, is justified by the need of having
higher axial or circumferential bending stiffness, while the configurations C and D, apart
from notching issues, that usually require ±45◦ orientations on the outside, is aiming to
induce helical bending waves, attenuating the excitation of the purely circumferential and
axial modes of the shell. Here a TBL excitation is again considered using a Corcos model.
A simple application of this simple model to a cylindrical model is still acceptable, if the
stream-wise direction is parallel to the axis of rotation and the cross-wise is assumed to be
the circumferential one [Li et al. (2017)]. Of course, the model must be purely cylindrical
(not tapered) to avoid pressure gradient effects which would invalidate the application of
the Corcos model. The convective speed is 180 m/s. The cylindrical model analysed is 0.2m
long and is 3.4mm thick. The auto spectral densities of the radial velocity are averaged in
four random points and compared. A 10 elements per wavelength mesh has been used, and

Table 3 Stacking Sequences

A B C D

[902/04/902] [02/904/02] [±45/04/± 45] [±45/904/± 45]
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Fig. 9 Numerical results comparison. Cylinder under TBL (Radius 0.36m) - Auto Spectral Density
averaged on four points, [dB ref. (1 m/s)2/Hz].
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Fig. 10 Numerical results comparison. Cylinder under TBL (Radius 0.20m) - Auto Spectral Density
averaged on four points, [dB ref. (1 m/s)2/Hz].

the structure is modelled using ANSYS SHELL181 elements. Different cylinder radius are
analysed: 0.36m in Fig.9, 0.2m in Fig.10, 0.12m in Fig.11. The results show that altering
the lamination sequence the structural modes shift in frequency. However, having kept the
mass of the structure constant (each lamina has the same density), the dynamic content
in frequency is similar among the cases. In fact Fig. 9 shows how, for the configurations
analysed, not much difference is observed. On the other hand, when the radius of the cylinder
is reduced, as in Fig. 11, it is clearer how the best result is achieved with the configuration
A, which is the stiffest in the stream-wise direction.

6. Conclusions

This work shows a numerical wave-based approach for the analysis of the vibrations of
shell structures when convective loads are considered. The approach couples the translated
load to the target degrees of freedom using numerical Green functions. A wave finite el-
ement method is reformulated in the case of curved and axisymmetric structures to cope
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Fig. 11 Numerical results comparison. Cylinder under TBL (Radius 0.12m) - Auto Spectral Density
averaged on four points, [dB ref. (1 m/s)2/Hz].

with complex and tapered shapes. A dynamic or static condensation is also possible for
complex cross-sectional geometries and the presence of joints or impedence variations along
the circumference can also be modelled.

The analytical formulations are available for simple test-cases, while the classic FEM
approaches can only cope with the lowest frequency ranges, due to computational cost issues,
the present method aims to extend of the FE-based numerical analysis to higher frequencies
within the medium frequency range, for a given computational cost, or a reduced calculation
time, given a frequency band. The flexibility of the link between the structural and fluid
mesh, gives the possibility of using a single substructure to analyse different test-cases.

The effects of the stacking sequence has been investigated with four different configura-
tions, for three different length on radius ratios, showing how the stiffer the final laminate
is in the stream-wise direction, the most attenuated the response is.
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