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We study the propagation characteristics of optical signals in waveguides

composed of linear periodic arrangements of metallic nanoparticles embedded

in a dielectric host. We find the complex Bloch band diagram for the guided

modes including material losses by employing Mie scattering theory as well as

coupled dipole approximations. The results of the model are validated through

finite element solution of Maxwell’s equations.
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1. Introduction

Since the pioneering paper by Quinten et al. [1] the subject of light propagation in

linear chains of metal nanoparticles has attracted a lot of research efforts [2–12]. This
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interest is mainly motivated by the wide range of potential applications that sweep

from the realization of biologic nanosensors [13], to sub-wavelength imaging [14], to

the merging of electronic circuits to photonic devices [15].

All the relevant properties of a guiding structure are embedded in the dispersion

relation k = k(ω), i.e. the functional relation between the wavevector of the propa-

gating mode and the operating frequency. Several methods to calculate the dispersion

relation for linear chains of nanoparticles were based on the coupled-dipole approx-

imation (CDA), where the electromagnetic field is supposed to be the sum of the

field emitted by the spheres, treated as point dipoles with a certain polarizability

α(ω). The first studies considered only nearest neighbor interaction and neglected

retardation effects, i.e. considered the static polarizability of the particles and only

the near-field of the dipole [2, 3]. Latter studies showed that retardation effects are

fundamental and cannot be neglected in the computation of dispersion relation [4].

The inclusion of these aspects leads to a dispersion equation expressed as an infi-

nite series, that diverges when the unavoidable losses of the the metal are taken into

account. Analytic continuation techniques were employed to express the dipole sum

in term of Polylogarithmic functions [8], whose properties were studied in details in

Ref. [10]. In all these studies, however, the effect of losses was neglected or treated

at the first order by perturbation techniques. The complex dispersion relation fully

taking into account the losses in metal was solved by Koenderink et al. [9], by fixing a

real wavevector and finding a complex frequency. This method is however unphysical
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when dealing with a waveguide, and gives bad results when the group velocity of the

propagating mode becomes small or when the decay rate is considerable.

In this paper we derive the dispersion relation for nanoparticle chains by exploiting

Mie scattering method. This dispersion relation is exact when all modes are consid-

ered. In a certain range of parameters only the first order spherical vector harmonics

need to be considered, and simple expressions for longitudinal and transverse modes

are obtained. Interestingly enough, we show that the dispersion relation reduces to the

usual one obtained by coupled dipole approximation, provided that the polarizability

of the spheres is calculated by Mie scattering coefficients.

Next we calculate the complex band diagram by numerically solving the disper-

sion relation for lossy particles, by fixing a real frequency and finding a complex

wavevector. We find a complex dispersion relation that strongly differs from previous

studies [9, 10]: losses modify even the real part of the propagation constant (an ef-

fect not captured by first order perturbation) and prevent the existence of resonator

modes [7] characterized by vanishing group velocity.

To conclude we compare the results of the Mie model with the exact Bloch modes

dispersion calculated by finite element solution of Maxwell’s equations. We revisit the

finite element method formulation for the calculation of three dimension periodic crys-

tal bands. The method yields a quadratic eigenvalue equation in the Bloch wavevector

modulus. In this case frequency is a parameter so that the strong dispersion of the

metal is easily taken into account.
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The paper is organized as follows. In Sec. II we find the complex dispersion relation

of linear chains of nanoparticles following the Mie scattering approach. In Sec. III we

show the complex band diagram for a case of interest, highlighting the difference with

previous results. In Sec. IV we develop the proper formulation of finite element and

compare the result of finite element simulation and analytical approach. Section V

contains the concluding remarks.

2. Dispersion relation of nanoparticle chains: Mie theory approach

In this section we develop a model to analyze the properties of a periodic linear chain

of nanospheres based on the generalized Mie theory of Gerardy and Ausloos for a

cluster of spheres [16]. The nanospheres have radius R, center-to-center spacing d,

dielectric constant ǫs, and are embedded in an infinite matrix with dielectric constant

ǫm. Mie theory states that any field can be expressed as linear combination of the

vector spherical harmonics (VSH) of the first and third kind −→m1
lm,

−→m3
lm,

−→n 1
lm and

−→n 3
lm because they constitute a complete and orthogonal set of vector basis functions

[16–18]. Longitudinal waves described by functions
−→
l lm are neglected, because we

assume that the dielectric constants of the spheres and the matrix are isotropic.

We can expand any arbitrary incident electromagnetic field (
−→
E i,

−→
H i) in the matrix

as linear combination of vector spherical harmonics of the first kind −→m1
lm(n) and

−→n 1
lm(n) centered in the n−th sphere:
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−→
E i =

∑

lm

{

ai,lm(n)
−→m1

lm(n) + bi,lm(n)
−→n 1

lm(n)
}

−→
H i =

kM
iµ0ω

∑

lm

{

bi,lm(n)
−→m1

lm(n) + ai,lm(n)
−→n 1

lm(n)
}

(1)

where n refers to the n−th sphere in the chain. The index l sweeps from 1 to

infinity, while m from −l to +l, and ai,lm(n) and bi,lm(n) are the coefficients of the

linear combination. kM = ω
√
ǫm/c is the wave-vector in the matrix, µ0 is the magnetic

permeability of vacuum and ω is the angular pulsation of the input field.

Starting from here and for the rest of the paper we develop our calculation basing

upon the electric field only, as it is usually done [16]. In the frame centered in the

n−th sphere the total electric field
−→
E (n) can be expressed as the sum of the incident

field [that is linear combination of VSH of first kind −→m1
lm(n) and −→n 1

lm(n)] and of

the scattered field [that is linear combination of VSH of the third kind −→m3
lm(n) and

−→n 3
lm(n)] [16]:

−→
E (n) =

∑

lm

{

alm(n)
−→m1

lm(n) + blm(n)
−→n 1

lm(n) +

clm(n)
−→m3

lm(n) + dlm(n)
−→n 3

lm(n)
}

. (2)

Functions −→m1
lm(n) and

−→n 1
lm(n) are excited both by the input field and by the scat-

tered field of the other spheres, that is sum of functions of the third kind −→m3
lm(v) and

−→n 3
lm(v) with v 6= n. For this reason the coefficients alm(n) and blm(n) in Eq.(2) differ

from ai,lm(n) and bi,lm(n) in Eq.(1), relative to the input field only. In general, any
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function −→m1
lm(n) and −→n 1

lm(n) produces a scattered vector function that is, respec-

tively, −→m3
lm(n) and

−→n 3
lm(n). Coefficients alm(n), blm(n), clm(n) and dlm(n) are linked

by means of the scattering coefficients of the Mie theory [16]:

clm(n) = Γl(n)alm(n),

dlm(n) = ∆l(n)blm(n), (3)

where Γl(n) and ∆l(n) are the scattering coefficients related to the n−th sphere. In

the case described in this paper, all the spheres have the same radius and dielectric

constant so that the scattering coefficients are equal for all the spheres and do not

depend on n. In this case generalized scattering coefficients ∆m and Γn reduces to

the scattering coefficients of the single isolated sphere (usually called am and bm in

literature [18], that differ from am and bm in our notation).

The coefficients alm(n) are the sum of ai,lm(n) due to the input field and of all the

contributions Tpqlm(v, n)cpq(v) and Cpqlm(v, n)dpq(v) due respectively to the scattered

functions −→m3
pq(v) and

−→n 3
pq(v) of all the other spheres in the matrix, so that:

alm(n) = clm(n)/Γl = ai,lm(n) +

∑

v 6=n

∑

pq

{

Tpqlm(v, n)cpq(v) + Cpqlm(v, n)dpq(v)
}

. (4)

Tpqlm(v, n) is the coupling coefficient between −→m1
lm(n) and −→m3

pq(v) in the frame

centered in the n−th sphere, or, equivalently, the coupling coefficient between −→n 1
lm(n)
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and −→n 3
pq(v). Cpqlm(v, n) is the coupling coefficient between −→n 1

lm(n) and
−→m3

pq(v) in the

frame centered in the n−th sphere, or, equivalently, the coupling coefficient between

−→m1
lm(n) and

−→n 3
pq(v). Similar arguments hold true for coefficients blm(n), so that it is

possible to write:

blm(n) = dlm(n)/∆l = bi,lm(n) +

∑

v 6=n

∑

pq

{

Cpqlm(v, n)cpq(v) + Tpqlm(v, n)dpq(v)
}

. (5)

Equations (4-5) constitute a system that allows to calculate the coefficients cpq(n)

and dpq(n) from the knowledge of the input field (coefficients ai,pq(n) and bi,pq(n)). By

inserting cpq(n) and dpq(n) in Eqs.(2,3) the total field in the matrix can be exactly

calculated.

It is often possible to simplify the system (4,5) by considering only the scattering

coefficients that are significantly different from 0. A drastic simplification of the treat-

ment is possible when only the first coefficient ∆1 is significant: this usually happens

when the radius R is sufficiently smaller than the wavelength of the input field. For

the rest of the paper we actually work under this assumption. In this way only func-

tions −→n 1
1−1,

−→n 1
10 and −→n 1

11 are interacting. In fact by setting Γl = 0 and ∆l+1 = 0 for

any l ≥ 1, the coefficients cpq and dpq in Eq.(4) and Eq.(5) are equal to 0, except d1−1,

d10 and d11, whose values are now given by Eq.(5) with m = −1, 0, 1:
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bi,1m(n) = d1m(n)/∆1 −
∑

v 6=n

1
∑

q=−1

T1q1m(v, n)d1q(v). (6)

If the chain of nanospheres is located on the x−y plane, then the functions −→n 1
10 are

decoupled from −→n 1
1−1 and −→n 1

11, because it can be shown (for example using results

in [19]) that T101−1(v, n) = T1011(v, n) = T1−110(v, n) = T1110(v, n) = 0. Moreover,

being the spheres equidistant, T1010(v, n) = T1010(v − n); of course also for the other

coupling coefficients (n, v) can be substituted by (v − n). From Eq.(6) it is then

possible to write, for the coefficients d10:

bi,10(n) = ∆−1
1 d10(n)−

∑

v 6=n

T1010(v − n)d10(v)

= U1010(n) ∗ d10(n) (7)

where the symbol ∗ denotes the discrete convolution and we put U1010(0) = ∆−1
1

and U1010(n) = −T1010(n) for n 6= 0. Reasoning in a similar way, from Eq.(6) we can

obtain for the coefficients d1−1 and d11:

bi,1−1(n) = U1−11−1(n) ∗ d1−1(n) + U111−1(n) ∗ d11(n)

(8)

bi,11(n) = U1−111(n) ∗ d1−1(n) + U1111(n) ∗ d11(n)

where U1−11−1(0) = U1111(0) = ∆−1
1 , U111−1(0) = U1−111(0) = 0, and for any n 6= 0
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U1−11−1(n) = −T1−11−1(n), U111−1(n) = −T111−1(n), U1−111(n) = −T1−111(n) and

U1111(n) = −T1111(n). Moreover, from [19] it is possible to see that T1−11−1(n) =

T1111(n) and T111−1(n) = T1−111(n), so that U1−11−1(n) = U1111(n) and U111−1(n) =

U1−111(n).

As far as the calculation of the coupling coefficients, a lot of efforts have been done

in order to calculate them in a straightforward and fast way; in this sense, an excellent

result has been reached in Ref. [19], where we can find simple analytical formulas.

Following the treatment it is possible to show that for n 6= 0:

T1010(n) = −i
3

2

eikM |d·n|

kM |d · n| +
3

2

eikM |d·n|

(kM |d · n|)2 + i
3

2

eikM |d·n|

(kM |d · n|)3 ,

T1−111(n) = i
3

4

eikM |d·n|

kM |d · n| −
9

4

eikM |d·n|

(kM |d · n|)2 − i
9

4

eikM |d·n|

(kM |d · n|)3 ,

T1111(n) = −i
3

4

eikM |d·n|

kM |d · n| −
3

4

eikM |d·n|

(kM |d · n|)2 − i
3

4

eikM |d·n|

(kM |d · n|)3 . (9)

Eq.(7) can be rewritten in the ”spatial frequency” (or wavevector) domain by using

the Discrete Time Fourier Transform, so that:

b̂i,10(k) = Û1010(k)d̂10(k) (10)

where b̂i,10(k), Û1010(k) and d̂10(k) are respectively the Fourier transforms of the

sequences bi,10(n), U1010(n) and d10(n). It is then straightforward to calculate d10(n)

as a linear filtering of the input coefficients bi,10(n) by means of the transfer function

1/Û1010(k).
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We can check for the existence of a self-sustaining mode of the chain by forcing a

vanishing input field (i.e. bi,10(n)=0) and by looking for those k for which d10(n) 6= 0,

that is to find those k that make Û1010(k) = 0.

Also Eq.(8) can be rewritten in the frequency domain:

b̂i,1−1(k) = Û1111(k)d̂1−1(k) + Û1−111(k)d̂11(k)

b̂i,11(k) = Û1−111(k)d̂1−1(k) + Û1111(n)d̂11(k) (11)

where the relations Û1−11−1(k) = Û1111(k) and Û1−111(k) = Û111−1(k) are used. Once

again, the coefficients d1−1(n) and d11(n) are easily calculable as a linear filtering of

the input coefficients bi,1−1(n) and bi,11(n). As before we force the input coefficients

bi,1−1(n) and bi,11(n) to zero in order to find the modes of the chain. In this case the

system (11) has nontrivial solutions d̂1−1(k) and d̂11(k) only if Û1111(k)±Û111−1(k) = 0,

that correspond to d̂11(k) = ±d̂1−1(k), i.e. d11(n) = ±d1−1(n).

We look for k that solves Û1010(k) = 0 in order to find the first mode of the chain;

being U1010(0) = ∆−1
1 and using Eq.(9) for T1010(n), we can write:

Û1010(k) = ∆−1
1 −

∞
∑

n=1

T1010(n)e
−ikn −

∞
∑

n=1

T1010(−n)e+ikn = 0 (12)

that is (from the definition of polylogarithm [20]):
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0 = ∆−1
1 + i

3

2

Li1(e
i(kMd−k)) + Li1(e

i(kMd+k))

kMd

−3

2

Li2(e
i(kMd−k)) + Li2(e

i(kMd+k))

(kMd)2

−i
3

2

Li3(e
i(kMd−k)) + Li3(e

i(kMd+k))

(kMd)3
, (13)

where Lip(x) is the polylogarithm function of order p. Û1010(k) is symmetric and

periodic of π in k, so that we can limit the search of the real part of k between 0 and

π, that is coherent with the fact that the system is periodic. If k is the solution of

Eq.(13), then the propagation constant of the mode is β = k/d and d10(n) = eikn, so

that the electric and magnetic field of the mode are:

−→
E =

∞
∑

n=−∞

−→n 3
10(n)e

ikn,

−→
H =

kM
iµ0ω

∞
∑

n=−∞

−→m3
10(n)e

ikn.

(14)

Along the direction of alignment (x axis) functions −→n 3
10 posses only z component,

making the electric field transverse with respect to the direction of propagation.

The second and third mode of the chain are found by solving Û1111(k)±Û1−111(k) =

0. Being U1111(0) = ∆−1
1 , U1−111(0) = 0 and using Eq.(9) for T1111(n) and T1−111(n),

it is possible to recast the second mode equation in this way:
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Û1111(k) + Û1−111(k) = 0 (15)

that is

0 = ∆−1
1 + 3

Li2(e
i(kMd−k)) + Li2(e

i(kMd+k))

(kMd)2

+i3
Li3(e

i(kMd−k)) + Li3(e
i(kMd+k))

(kMd)3
. (16)

The solution of Eq.(16) (0 < Re(k) < π) imposes d̂1−1(k) = d̂11(k), then d1−1(n) =

d11(n), so that the electric and magnetic field of the mode are:

−→
E =

∞
∑

n=−∞

(−→n 3
1−1(n) +

−→n 3
11(n))e

ikn,

−→
H =

kM
iµ0ω

∞
∑

n=−∞

(−→m3
1−1(n) +

−→m3
11(n))e

ikn.

(17)

Along the direction of alignment (x axis) functions −→n 3
10 posses only x component,

making the electric field longitudinal with respect to the direction of propagation.

The equation for the third mode is Û1111(k) − Û1−111(k) = 0, and has the same

formulation of Eq.(13): the first and third mode are degenerate. This fact is not sur-

prising since the third mode is simply a ninety-degree rotation of the first one around

the axis along which the chain is lined up. This makes the two modes degenerate

because of the cylindrical rotational symmetry of the system.
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Eq.(13) and Eq.(16) have to be solved in the complex plane. If both spheres

and the matrix have purely real dielectric constant, then the system is lossless

and it can be shown that |∆1|2 = −Re(∆1): this implies that ∆−1
1 = ∆∗

1/|∆1|2 =

−1−iIm(∆1)/Re(∆1), so that Re(∆−1
1 ) = −1. It can be also shown that Re(Û1010(k)-

∆−1
1 )= Re(Û1111(k)+Û1−111(k)-∆

−1
1 )=1 for any k real with kMd < k < π. As

a consequence, under this last condition Re(Û1010(k))=Re(Û1111(k)+Û1−111(k))=0

when the system is lossless. It is then possible to look for real k solutions be-

tween kMd and π (that is, under the ligth line) by solving Im(Û1010(k))=0 and

Im(Û1111(k) + Û1−111(k))=0. The correspondent modes propagate without damping.

When the system is lossy, the condition Re(Û1010(k)-∆
−1
1 )= Re(Û1111(k)+Û1−111(k)-

∆−1
1 )=1 remain verified (kMd < k < π), but Re(∆−1

1 ) 6= −1 so there does not exist a

real k that solves Re(Û1010(k))=0 or Re(Û1111(k)+Û1−111(k))=0: solutions k have to

be found in the complex plane, as expected.

Equations (13) and (16) can be related to the dispersion relation for the transverse

and longitudinal modes obtained by CDA [4,9]. In fact (13) and (16) can be rewritten

as

1 +
α(ω)

4πd3ǫmǫ0
ΣT (ω, β) = 0, (18)

1− 2
α(ω)

4πd3ǫmǫ0
ΣL(ω, β) = 0, (19)

where β = k/d is the wavevector of the mode, α(ω) = i3c3∆1(ω)4πǫmǫ0/(
√
ǫM

3ω3) is

the ”exact” polarizability of the spheres calculated by Mie scattering coefficients [21],
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and ΣL(ω, β) and ΣT (ω, β) are sum of polylogarithmic functions and depend on ω

through kM(ω).

This correspondence tells us that i) CDA is exact when the polarizability of spheres

is calculated from Mie scattering coefficients and the particle radius (separation) are

small (large) with respect to wavelength in the matrix; ii) we can easily obtain more

accurate dispersion relation for bigger particles by including more vector sperical

harmonics in (4,5).

We want to underline that obtaining the coupled dipole approximation from the

exact Mie theory shows exactly what approximations have been done, and indicates

the way to improve the accuracy of the treatment when required. In fact in previous

works the CDA was obtained by simply assuming that the spheres behave as point

dipoles with a certain polarizability, and the mathematical formulation of the scat-

tered fields is simply assumed. By means of Mie theory we were able to calculate

the field scattered by the nanoparticles and the dispersion relation to a degree of

accuracy that is fixed by the number of the considered vector spherical harmonics. In

the following numerical examples we will show that the lowest order approximation

furnish good enough results for small spheres, with size comparable to that usually

exploited in real experiments.
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3. Complex dispersion relation

In this section we solve Eqs.(18-19) for a case of interest, by considering silver nanopar-

ticles embedded in a glass substrate. In contrast to previous studies we solve (18-19)

for a complex propagation constant β at a fixed real value of frequency ω. This is

the natural way to proceed when studying a waveguide: in fact in the physical sit-

uation an electromagnetic field at a fixed real frequency impinges on the waveguide

and excites some guided modes that propagates with a possibly complex propagation

constant. The imaginary part of β fixes the decay length of the guided modes along

the structure. The dual way to proceed (fixing a real β and find a complex ω) was

used un previous studies [9] to circumvent some mathematical problems. However this

way to proceed is suitable for chains of finite length (i.e. resonators), where we expect

to excite a vibrating mode along all the chain, characterized by a real β, and to see

its decay in time fixed by imaginary part of frequency. When the imaginary part of

β and ω are small, and away from zero group velocity points, the two methods give

approximately the same results. However in proximity of vanishing group velocity or

in presence of strong losses (as in the case of metals at optical frequencies) the two

methods give totally different results, as we shall see in this section.

We consider particle with radius R = 25nm with a center to center spacing d =

75nm and we take the dielectric constant of glass ǫm = n2
m = 2.25. For what concerns

the metal, we used a fitting model based on the dielectric constant of silver tabulated
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in [22]. We decided not to use the popular Drude model, since it is not very accurate

in the visible range, especially for what concerns absorption.

Figure 1 (Fig. 2) shows the frequency of the guided modes as a function of the

real (imaginary) part of the propagation constant. Let’s start our discussion by con-

sidering first dispersion curves calculated neglecting losses (dotted curves): we have

one longitudinal mode (L) and two transverse modes (T1 and T2). Modes L and T1

are the usual longitudinal and transverse modes discussed previously in literature [4]

and have purely real propagation constant under the light line β = ωnm/c. Above

the light line, also in absence of losses, the propagation constant becomes complex.

The dispersion curve we find is very different from previous studies, as we are solving

dispersion relation for complex β at a fixed real ω. For example, considering the lon-

gitudinal mode L, we can see that above the light line the real part of the propagation

constant describes approximately an arc of circumference, that intersects light line in

two points (normalized frequency around 0.17 and 0.13). In the analogous case stud-

ied in Ref. [9], the real part of dispersion curve describes approximately a parabola

with vertex centered in β = 0, implying only an intersection with light line. These

differences are explained by the fact that above the light line the losses are very high

and modifies also the real part of propagation constant. In view of these aspects we

can assert that above the light line, calculating the dispersion curve by fixing real

wavevector leads to totally wrong results.

The complex band diagram shows a second transverse mode T2 with negative group
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velocity that has complex propagation constant (i.e. decays during propagation) even

in absence of losses also below the light line. At the border of the first Brillouin zone

(βd/(2π) = 0.5) the propagation constant has a fixed real part (Re[βd/(2π)] = 0.5)

and varying imaginary part. This mode has been overlooked in previous studies, as

it is not possible to find by fixing a real wavevector. Physically it corresponds to

an evanescent mode that has a complex propagation constant and decays oscillating

during propagation. It indicates the presence of a frequency stop-band due to the

periodic nature of the waveguide.

When losses are considered the dispersion curves change dramatically (circles and

crosses in the figures). A first general feature is that zero group velocity is not allowed

and the curves Re[β(ω)] bend in order to avoid points where ∂Re[β]/∂ω = 0. For

example the longitudinal mode displays zero group velocity at the edge of the Brillouin

zone in absence of losses. When losses are included the real part of propagation

constant turns backward at around Re[β]d/(2π) ≈ 0.48.

The real part of the dispersion curve for transverse mode T1 does not depart to

much from the lossless curve for normalized frequencies below 0.165 and the imaginary

part is very low. For higher frequencies, up to 0.17, the losses increases and the the

real part of β is smaller than the lossless case and reaches the maximum value of 0.35

for a normalized frequency approximatively equal to 0.17, that corresponds to null

group velocity for lossless particles. Increasing further the frequency causes a fold of

the curve that follows now the (lossless) T2 mode and intersects again with the light
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line at the point (ωd/(2πc), kd/(2π)) = (0.26, 0.1735). This behavior is reminiscent

of the surface plasmon mode at the straight interface between a lossy metal and a

dielectric [23].

As far as mode T2 is considered, the effect of losses is to smoothen the real part

of the dispersion curve eliminating the edge at the junction of the two branches of

the lossless T2 curve (at (ωd/(2πc), kd/(2π)) = (0.17, 0.5)). The influence of material

losses in this case is quite small, since the imaginary part of propagation constant is

high also in the lossless case.

This discussion shows that when a real metal is considered, the losses are so high

that the effects on the dispersion curves cannot be treated by first order perturbation,

as it is evident from the big influence of absorption also in the real part of propagation

constant.

4. Finite element simulations

In order to asses the validity and to check the accuracy of the model described in

the previous sections, we solved Maxwell’s equations with a finite element method.

The usual way to calculate the Bloch modes of a periodic structure is to fix the

wavevector and to find the frequency by solving a linear eigenvalue problem. Since

the metal is strongly dispersive, this entails an iterative cycle that can require several

iterations, it is possible to evaluate only a mode at once and the iterations can even

not converge. In order to avoid these complications we reformulate the problem into
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a quadratic eigenvalue problem for the wavevector at a fixed frequency. While the

quadratic eigenvalue equation is nonlinear, it is a more tractable problem than the

general nonlinear case above, and can yield solutions more efficiently. In addition,

this formulation inherently yields bands of purely imaginary- and complex-wavevector

Bloch modes, which may be particularly hard to obtain with nonlinear search routines.

A similar formulation was exploited previously for the calculation of complex Bloch

bands of a 2D plasmonic crystal [24].

Starting from Maxwell’s equations in frequency domain, we eliminate the electric

field and write the vector wave equation for the magnetic field in the domain Ω ∈ R3,

representing the unit cell of the structure:

∇× ε−1∇× H̃ =
(ω

c

)2

H̃ in Ω. (20)

The unit cell Ω is a volume of size Lx, Ly, Lz, where Lx = d is fixed by the periodicity

of the chain along x, and Ly, Lz are arbitrary. A good choice of these two lengths

(for numerical purpose) implies that the mode amplitude at the cell boundary must

be decayed to a negligible value.

Due to the periodicity of the dielectric constant ε, we can write H̃ = Heik·x, where

k = (kx, ky, kz) is the wavevector and H is periodic, with basic cell the domain Ω.

By inserting this ansatz in Eq.(20) and following the Galerkin procedure [25], we can
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write the variational formulation of the problem:

find ω ∈ R such that ∃0 6≡ H ∈ V :

∫

Ω

ε−1(∇+ ik)×H · (∇+ ik)× φ =
(ω

c

)2
∫

Ω

H · φ

∀φ ∈ V,

(21)

where φ : Ω → R3 are test functions chosen from an appropriate functional space

V (details can be found in [26, 27] and references therein). After some algebra and

by exploiting the vector identities (a × b) · c = a · (b × c) and (a × b) · (a × c) =

|a|2(b · c) − (a · b)(a · c), we can rewrite the variational formulation of (21) for the

wavenumber:

find β ∈ C such that ∃0 6≡ H ∈ V :

∫

Ω

ε−1(∇×H) · (∇× φ)−
(ω

c

)2
∫

Ω

H · φ =

− iβ

{
∫

Ω

ε−1k̂ · (H ×∇× φ)−
∫

Ω

ε−1k̂ · (φ×∇×H)

}

− β2

∫

Ω

ε−1
{

H · φ− (k̂ ·H)(k̂ · φ)
}

, ∀φ ∈ V,

(22)

where β =
√

k2
x + k2

y + k2
z is the modulus of wavevector and k̂ is its unit vector.

This integro-differential equation may be transformed into matrix format by fol-

lowing the usual finite element method discretization [25]: the domain Ω is divided

into several tetrahedral subdomains (elements) in which locally supported expansion

functions are defined; H is expanded in terms of such functions within each element;

and φ is taken to be each one of the local expansion function inside each element.
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Then the following matrix eigenvalue equation in β results:

(A− ω2

c2
B)x = iβ(C−D)x+ β2Fx.

Here x is a vector containing the coefficients of the expansion of H, and matrices A

to F may be individually related to each integral in Eq. (22) by inspection. Explicit

expressions for the matrices in this case can be found in [25]. The eigenvalue equation

may be solved at a fixed frequency ω (and thus fixed ǫ(ω)) and k-vector direction.

The eigenvalue itself is the k-vector amplitude, β. The most common way of solving

the quadratic eigenvalue problem is by linearization, which results in a (linear) system

twice the original size. We implemented the formulation (22) with a commercial finite

element software [28].

In the following we show the numerical results for the two low-loss modes T1 and L.

Figure 3 shows the real and imaginary parts of the dispersion curve βT1
(ω) cal-

culated by solving dispersion relation (18) and by finite elements. We can see that

the agreement between the two methods of solution is almost perfect, both for the

real and imaginary part of wavevector: finite elements simulations confirm the band

folding and the impossibility of reaching zero group velocity. In fact, at least for the

positive slope branch of the dispersion curve, we can affirm that the losses are in-

versely proportional to the group velocity and fix a lower limit to attainable group

velocity. Once reached this lower limit, the band folds back and the losses increase

dramatically. By looking at the imaginary part of the mode wavevector, we can es-
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timate a useful propagation bandwidth from normalized frequencies in the interval

(0.155, 0165), corresponding to a wavelength range of (450nm, 480nm). The insets

show three different slices (x = 0, z = 0, y = 0 planes) of the norm of the magnetic

field for the transverse mode at ωd/(2πc) = 0.16. The doughnut shape visible in the

x − y plane implies an electric dipole mode sitting in the y − z plane, transverse to

the direction of alignment of the spheres (x axis), as expected.

Figure 4 shows the real and imaginary parts of the dispersion curve βL(ω) calculated

by solving dispersion relation (19) and by finite elements. In this case the finite element

solution shows an appreciable deviation from the CDA model. For the real part we

can see that the simulated propagation constant is always greater than the analytical

one by a factor ≈ 10%. Imaginary part agrees better for normalized frequencies up

to 0.186, and then begins to deviate consistently. These effects can be ascribed to the

fact that for high frequencies we cannot neglect the influence of multi-poles modes.

The insets show three different slices (x = 0, z = 0, y = 0 planes) of the norm of

the magnetic field for the transverse mode at ωd/(2πc) = 0.183. The doughnut shape

visible in the y − z plane implies an electric dipole mode sitting along the direction

of alignment of the spheres (x axis), as expected.

5. Conclusions

In this paper we derived the exact dispersion relation for nanoparticle chains by

exploiting Mie scattering method. In a certain range of parameters only the first

22



order spherical vector harmonics need to be considered, and simple expressions for

longitudinal and transverse modes are obtained, that we showed to reduce to the usual

one obtained by CDA (provided that the polarizability of the spheres is calculated

by Mie scattering coefficients). We found a complex dispersion curve that strongly

differs from previous studies: losses modify even the real part of the propagation

constant and prevent the existence of resonator modes characterized by vanishing

group velocity. The results of the Mie model agree very well with the exact Bloch

modes dispersion calculated by finite element solution of Maxwell’s equations.
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Figure Captions

Figure1: Real part of the roots β(ω) of the dispersion relations (18-19). Dotted

curves, lossless metal; circles and crosses, lossy metal.

Figure 2: Imaginary part of the roots β(ω) of the dispersion relations (18-19).

Dotted curves, lossless metal; circles and crosses, lossy metal. The horizontal line

ωd/(2πc) ≈ 0.169 indicates the zero group velocity of the transverse mode T1 in the

lossless case.

Figure 3: Transverse mode T1. Real and imaginary part of the roots β(ω) of the

dispersion relations (18) (solid line) and results of finite element simulation (circles).

Insets show three slices (x = 0, z = 0, y = 0 planes) of the norm of the magnetic field

for the transverse mode at ωd/(2πc) = 0.16.

Figure 4: Longitudinal mode L. Real and imaginary part of the roots β(ω) of the

dispersion relations (19) (solid line) and results of finite element simulation (circles).

Insets show three slices (x = 0, z = 0, y = 0 planes) of the norm of the magnetic field

for the transverse mode at ωd/(2πc) = 0.183.
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Fig. 1. Real part of the roots β(ω) of the dispersion relations (18-19). Dotted

curves, lossless metal; circles and crosses, lossy metal.
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Fig. 2. Imaginary part of the roots β(ω) of the dispersion relations (18-19).

Dotted curves, lossless metal; circles and crosses, lossy metal. The horizontal

line ωd/(2πc) ≈ 0.169 indicates the zero group velocity of the transverse mode

T1 in the lossless case.
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Fig. 3. Transverse mode T1. Real and imaginary part of the roots β(ω) of the

dispersion relations (18) (solid line) and results of finite element simulation

(circles). Insets show three slices (x = 0, z = 0, y = 0 planes) of the norm of

the magnetic field for the transverse mode at ωd/(2πc) = 0.16.
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Fig. 4. Longitudinal mode L. Real and imaginary part of the roots β(ω) of the

dispersion relations (19) (solid line) and results of finite element simulation

(circles). Insets show three slices (x = 0, z = 0, y = 0 planes) of the norm of

the magnetic field for the transverse mode at ωd/(2πc) = 0.183.
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