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Abstract

Current state of the art systems in NLP heav-

ily rely on manually annotated datasets, which

are expensive to construct. Very little work ad-

equately exploits unannotated data – such as

discourse markers between sentences – mainly

because of data sparseness and ineffective ex-

traction methods. In the present work, we pro-

pose a method to automatically discover sen-

tence pairs with relevant discourse markers,

and apply it to massive amounts of data. Our

resulting dataset contains 174 discourse mark-

ers with at least 10K examples each, even for

rare markers such as coincidentally or amaz-

ingly. We use the resulting data as supervision

for learning transferable sentence embeddings.

In addition, we show that even though sen-

tence representation learning through predic-

tion of discourse markers yields state of the art

results across different transfer tasks, it is not

clear that our models made use of the semantic

relation between sentences, thus leaving room

for further improvements. Our datasets are

publicly available 1

1 Introduction

An important challenge within the domain of nat-

ural language processing is the construction of ad-

equate semantic representations for textual units –

from words over sentences to whole documents.

Recently, numerous approaches have been pro-

posed for the construction of vector-based repre-

sentations for larger textual units, especially sen-

tences. One of the most popular frameworks aims

to induce sentence embeddings as an intermedi-

ate representation for predicting relations between

sentence pairs. For instance, similarity judge-

ments (paraphrases) or inference relations have

been used as prediction tasks, and the resulting

embeddings perform well in practice, even when

1https://github.com/

synapse-developpement/Discovery

the representations are transfered to other seman-

tic tasks (Conneau et al., 2017). However, the kind

of annotated data that is needed for such super-

vised approaches is costly to obtain, prone to bias,

and arguably fairly limited with regard to the kind

of semantic information captured, as they single

out a narrow aspect of the entire semantic content.

Unsupervised approaches have also been pro-

posed, based on sentence distributions in large cor-

pora in relation to their discourse context. For in-

stance, Kiros et al. (2015) construct sentence rep-

resentations by trying to reconstruct neighbouring

sentences, which allows them to take into account

different contextual aspects of sentence meaning.

In the same vein, Logeswaran et al. (2016) propose

to predict if two sentences are consecutive, even

though such local coherence can be straightfor-

wardly predicted with relatively shallow features

(Barzilay and Lapata, 2008). A more elaborate

setting is the prediction of the semantic or rhetor-

ical relation between two sentences, as is the goal

of discourse parsing. A number of annotated cor-

pora exist, such as RST-DT (Carlson et al., 2001)

and PDTB (Prasad et al., 2008), but in general

the available data is fairly limited, and the task

of discourse relation prediction is rather difficult.

The problem, however, is much easier when there

is a marker that makes the semantic link explicit

(Pitler et al., 2008), and this observation has of-

ten been used in a semi-supervised setting to pre-

dict discourse relations in general (Rutherford and

Xue, 2015). Building on this observation, one ap-

proach to learn sentence representations is to pre-

dict such markers or clusters of markers explicitly

(Jernite et al., 2017; Malmi et al., 2018; Nie et al.,

2017). Consider the following sentence pair:

I live in Paris. But I’m often abroad.

The discourse marker but highlights an op-

position between the first sentence (the speaker



s1 Paul Prudhomme’s Louisiana Kitchen created a sensation when it was published in 1984.

c happily,

s2’ This family collective cookbook is just as good

Table 1: Sample from our Discovery dataset

lives in Paris) and the second sentence (the

speaker is often abroad). The marker can thus

be straightforwardly used as a label between sen-

tence pairs. In this case, the task is to pre-

dict c = but (among other markers) for the pair

(I live in Paris, I’m often abroad). Note that dis-

course markers can be considered as noisy labels

for various semantic tasks, such as entailment (c =
therefore), subjectivity analysis (c = personally)

or sentiment analysis (c = sadly). More gener-

ally, discourse markers indicate how a sentence

contributes to the meaning of a text, and they pro-

vide an appealing supervision signal for sentence

representation learning based on language use.

A wide variety of discourse usages would be

desirable in order to learn general sentence rep-

resentations. Extensive research in linguistics has

resulted in elaborate discourse marker inventories

for many languages.2 These inventories were cre-

ated by manual corpus exploration or annotation

of small-scale corpora: the largest annotated cor-

pus, the English PDTB consists of a few tens of

thousand examples, and provides a list of about

100 discourse markers, organized in a number of

categories.

Previous work on sentence representation learn-

ing with discourse markers makes use of even

more restricted sets of discourse markers, as

shown in table 2. Jernite et al. (2017) use 9 cate-

gories as labels, accounting for 40 discourse mark-

ers in total. It should be noted that the aggregate

labels do not allow for any fine-grained distinc-

tions; for instance, the TIME label includes both

now and next, which is likely to impair the super-

vision. Moreover, discourse markers may be am-

biguous; for example now can be used to express

contrast. On the other hand, Nie et al. (2017) make

use of 15 discourse markers, 5 of which are ac-

counting for more than 80% of their training data.

In order to ensure the quality of their examples,

they only select pairs matching a dependency pat-

tern manually specified for each marker. As such,

2See for instance a sample of language on the Textlink
project website: http://www.textlink.ii.metu.

edu.tr/dsd-view

both of these studies use a restricted or impover-

ished set of discourse markers; they also both use

the BookCorpus dataset, whose size (4.7M sen-

tences that contain a discourse marker, according

to Nie et al., 2017) is prohibitively small for the

prediction of rare discourse markers.

In this work we use web-scale data in order to

explore the prediction of a wide range of discourse

markers, with more balanced frequency distribu-

tions, along with application to sentence represen-

tation learning. We use English data for the exper-

iments, but the same method could be applied to

any language that bears a typological resemblance

with regard to discourse usage, and has sufficient

amounts of textual data available (e.g. German or

French). Inspired by recent work (Dasgupta et al.,

2018; Poliak et al., 2018; Levy et al., 2018; Glock-

ner et al., 2018) on the unexpected properties of

recent manually labelled datasets (e.g. SNLI), we

will also analyze our dataset to check whether la-

bels are easy to guess, and whether the proposed

model architectures make use of high-level rea-

soning for their predictions. Our contributions are

as follows:

– we propose a simple and efficient method to

discover new discourse markers, and present

a curated list of 174 markers for English;

– we provide evidence that many connectives

can be predicted with only simple lexical fea-

tures;

– we investigate whether relation prediction ac-

tually makes use of the relation between sen-

tences;

– we carry out extensive experiments based on

the Infersent/SentEval framework.

2 Discovering discourse markers

2.1 Rationale

Our goal is thus to capture semantic aspects of

sentences by means of distributional observations.

For our training signal, we aim at something more

evolved than just plain contextual co-occurrence,



author discourse markers / classes classes markers

Jernite et al. (2017) ADDITION, CONTRAST, TIME, RESULT, SPECIFIC, COMPARE,

STRENGTH, RETURN, RECOGNIZE

9 40

Nie et al. (2017) and, but, because, if, when, before, though, so, as,

while, after, still, also, then, although

15 15

current work later, often, understandably, gradually, or, ironi-

cally, namely, . . .

174 174

Table 2: Discourse markers or classes used by previous work on unsupervised representation learning

but simpler than a full-fledged encoder-decoder à

la Skip-Thought. In that respect, discourse rela-

tions are an interesting compromise, if we can re-

liably extract them in large quantities. This ob-

jective is shared with semi-supervised approaches

to discourse relation prediction, where automati-

cally extracted explicit instances feed a model tar-

getting implicit instances (Marcu and Echihabi,

2002; Sporleder and Lascarides, 2008; Pitler and

Nenkova, 2009; Rutherford and Xue, 2015). In

this perspective, it is important to collect unam-

biguous instances of potential discourse markers.

To do so, previous work used heuristics based on

specific constructs, especially syntactic patterns

for intra-sentential relations, based on a fixed list

of manually collected discourse markers. Since

we focus on sentence representations, we limit

ourselves to discourse arguments that are well-

formed sentences, thus also avoiding clause seg-

mentation issues.

Following a heuristic from Rutherford and Xue

(2015), also considered by Malmi et al. (2018) and

Jernite et al. (2017), we collect pairs of sentences

(s1, s2) where s2 starts with marker c. We only

consider the case where c is a single word, as de-

tecting longer adverbial constructions is more dif-

ficult. We remove c from the beginning of s2 and

call the resulting sentence s′
2
. Malmi et al. (2018)

make use of a list of the 80 most frequent discourse

markers in the PDTB in order to extract suitable

sentence pairs. We stay faithful to Rutherford and

Xue (2015)’s heuristic, as opposed to Malmi et al.

(2018); Jernite et al. (2017): if s2 starts with c fol-

lowed by a comma, and c is an adverbial or a con-

junction, then it is a suitable candidate. By limit-

ing ourselves to sentences that contain a comma,

we are likely to ensure that s′
2

is meaningful and

grammatical. As opposed to all the cited work

mentioned above, we do not restrict the pattern to

a known list of markers, but try to collect new re-

liable cues.

This pattern is decisively restrictive, since dis-

course markers often appear at the clausal level

(e.g. I did it but now I regret it). But clauses

are not meant to be self contained, and it is not

obvious that they should be included in a dataset

for sentence representation learning. At the same

time, one could easily think of cases where c is

not a discourse marker, e.g. (s1, s2)= (“It’s cold.”,

“Very, very cold.”). However, these uses might be

easily predicted with shallow language models. In

the next section, we use the proposed method for

the discovery of discourse markers, and we inves-

tigate whether the resulting dataset leads to im-

proved model performance.

2.2 Methodology

We use sentences from the Depcc corpus

(Panchenko et al., 2017), which consists of En-

glish texts harvested from commoncrawl web data.

We sample 8.5 billion consecutive sentence pairs

from the corpus. We keep 53% of sentence pairs

that contain between 3 and 32 words, have a high

probability of being English (> 75%) using Fast-

Text langid from Grave et al. (2018), have bal-

anced parentheses and quotes, and are mostly low-

ercase. We use NLTK (Bird et al., 2009) as sen-

tence tokenizer and NLTK PerceptronTagger as

part of speech tagger for adverb recognition. In

addition to our automatically discovered candidate

set, we also include all (not necessarily adverbial)

PDTB discourse markers that are not induced by

our method. Taking this into account, 3.77% of

sentence pairs contained a discourse marker can-

didate, which is about 170M sentence pairs. An

example from the dataset is shown in table 1. We

only keep pairs in which the discourse marker oc-

curs at least 10K times. We also subsample pairs

so that the maximum occurrence count of a dis-

course marker is 200K. The resulting dataset con-



Figure 1: Frequency distribution of candidate discourse

markers; the horizontal line indicates the subsampling

threshold.

tains 19M pairs.

We discovered 243 discourse marker candi-

dates. Figure 1 shows their frequency distribu-

tions. As expected, the most frequent markers

dominate the training data, but when a wide range

of markers is included, the rare ones still con-

tribute up to millions of training instances. Out

of the 42 single word PDTB markers that precede

a comma, 31 were found by our rule. Some mark-

ers are missing because of NLTK errors, which

mainly result from morphological issues.3

2.3 Controlling for shallow features

As previously noted, some candidates discovered

by our rule may not be actual discourse markers.

In order to discard them, we put forward the hy-

pothesis that actual discourse markers cannot be

predicted with shallow lexical features. Inspired

by Gururangan et al. (2018), we use a Fasttext

classifier (Joulin et al., 2016) in order to predict

c from s′
2
. The Fasttext classifier predicts labels

from an average of word embeddings fed to a lin-

ear classifier. We split the dataset in 5 folds, and

we predict markers for each fold, while training on

the remaining folds. We use a single epoch, ran-

domly initialized vectors of size 100 (that can be

unigrams, bigrams or trigrams) and a learning rate

of 0.5.

In addition, we predict c from the concatenation

of s1 and s′
2

(using separate word representations

for each case). One might assume that the predic-

tion of c in this case relies on the interaction be-

tween s1 and s2; however, the features of s1 and

s2 within Fasttext’s setup only interact additively,

3For instance, lovely is tagged as an adverb because of its
suffix, while besides was never tagged as an adverb

which means that the classification most likely re-

lies on individual cues in the separate sentences,

rather than on their combination. In order to test

this hypothesis, we introduce a random shuffle op-

eration: for each example (s1, s′
2
, c), s′

2
is replaced

by a random sentence from a pair that is equally

linked by c (we perform this operation separately

in train and test sets).

Table 3 indicates that shallow lexical fea-

tures indeed yield relatively high prediction rates.

Moreover, the shuffle operation indeed increases

accuracy, which corroborates the hypothesis that

classification with shallow features relies on indi-

vidual cues from separate sentences, rather than

their combination.

features accuracy (%)

majority rule 1.2

s2 18.6

s1-s2’ 21.9

s1-s2’ (shuffled) 24.8

Table 3: Accuracy when predicting candidate discourse

markers using shallow lexical features

Tables 4 and 5 show the least and most pre-

dictable discourse markers, and the corresponding

recognition rate with lexical features.

candidate marker accuracy (%)

evidently, 0.0

frequently, 0.0

meantime, 0.0

truthfully, 0.0

supposedly, 0.1

Table 4: Candidate discourse markers that are the most

difficult to predict from shallow features

candidate marker accuracy (%)

defensively, 65.5

afterward 71.1

preferably, 71.9

this, 72.7

very, 90.7

Table 5: Candidate discourse markers that are the easi-

est to predict from shallow features. This shows candi-

dates that are unlikely to be interesting discourse cues.



Interestingly, the two most predictable candi-

dates are not discourse markers. Upon inspection

of harvested pairs, we noticed that even legitimate

discourse markers can be guessed with relatively

simple heuristics in numerous examples. For ex-

ample, c = thirdly is very likely to occur if s1 con-

tains secondly. We use this information to option-

ally filter out such simple instances, as described

in the next section.

2.4 Dataset variations

In the following, we call our method Discovery.

We create several variations of the sentence pairs

dataset. In DiscoveryHard, we remove examples

where the candidate marker was among the top

5 predictions in our Fasttext shallow model and

keep only the 174 candidate markers with a fre-

quency of at least 10k. Instances are then sampled

randomly so that each marker appears exactly 10k
times in the dataset.

Subsequently, the resulting set of discourse

markers is also used in the other variations of our

dataset. DiscoveryBase designates the dataset for

which examples predicted with the Fasttext model

were not removed. In order to measure the ex-

tent to which the model makes use of the rela-

tion between s1 and s′
2
, we also create a Dis-

coveryShuffled dataset, which is the Discovery-

Base dataset subjected to the random shuffle oper-

ation described previously. To isolate the contribu-

tion of our discovery method, the dataset Discov-

eryAdv discards all discourse markers from PDTB

that were not found by our method. Also, in or-

der to measure the impact of label diversity, Dis-

covery10 uses 174k examples for each of the 10
most frequent markers,4 thus totalling as many in-

stances as DiscoveryBase. Finally, DiscoveryBig

contains almost twice as many instances as Dis-

coveryBase, i.e. 20k instances for each discourse

marker (although, for a limited number of mark-

ers, the number of instances is slightly lower due

to data sparseness).

3 Evaluation of sentence representation

learning

3.1 Setup

Our goal is to evaluate the effect of using our

various training datasets on sentence encoding,

given encoders of equivalent capacity and similar

4They are: however, hence, moreover, additionally, never-
theless, furthermore, alternatively, again, next, therefore

setups. Thus, we follow the exact setup of In-

fersent (Conneau et al., 2017), also used in the

Dissent (Malmi et al., 2018) model: we learn

to encode sentences into h with a bi-directional

LSTM sentence encoder using element-wise max

pooling over time. The dimension size of h is

4096. Word embeddings are fixed GloVe embed-

dings with 300 dimensions, trained on Common

Crawl 840B.5 A sentence pair (s1, s2) is repre-

sented with [h1, h2, h1 ⊙ h2, |h2 − h1|],
6 which

is fed to a softmax in order to predict a marker

c. Our datasets are split in 90% train, 5% vali-

dation, and 5% test. Optimization is done with

SGD (learning rate is initialized at 0.1, decayed by

1% at each epoch and by 80% if validation accu-

racy decreases; learning stops when learning rate

is below 10−5 and the best model on training task

validation loss is used for evaluation; gradient is

clipped when its norm exceeds 5). Once the sen-

tence encoder has been trained on a base task, the

resulting sentence embeddings are tested with the

SentEval library (Conneau et al., 2017).

We evaluate the different variations of our

dataset we described above in order to analyze

their effect, and compare them to a number of ex-

isting models. Table 7 displays the tasks used for

evaluation. For further analysis, table 9 displays

the result of Linguistic Probing using the method

by Conneau et al. (2018). Although these tasks are

primarily designed for understanding the content

of embeddings, they also focus on aspects that are

desirable to perform well in general semantic tasks

(e.g. prediction of tense, or number of object).

3.2 Results

Table 6 gives an overview of transfer learning

evaluation, also comparing to other supervised and

unsupervised approaches. Note that we outper-

form DisSent on all tasks except TREC7 with less

than half the amount of training examples. In ad-

dition, our approach is arguably simpler and faster.

MTL (Subramanian et al., 2018) only achieves

stronger results than our method on the MRPC and

SICK tasks. The MTL model uses 124M train-

ing examples with an elaborate multi-task setup,

training on 45M sentences with manual transla-

tion, 1M pairs from SNLI/MNLI, 4M parse trees

of sentences, and 74M consecutive sentence pairs.

5https://nlp.stanford.edu/projects/glove/
6h1 ⊙ h2 = (h11.h21, .., h1i.h2i, ...)
7This dataset is composed of questions only, which are

underrepresented in our training data.



N MR CR SUBJ MPQA SST2 TREC SICK-R SICK-E MRPC AVG

InferSent 1.0 81.1 86.3 92.4 90.2 84.6 88.2 88.4 86.1 76.2 85.9
MTL 124 82.5 87.7 94 90.9 83.2 93 88.8 87.8 78.6 87.4

SkipThought 74 76.5 80.1 93.6 87.1 82 92.2 85.8 82.3 73 83.6
QuickThought 174 81.3 84.5 94.6 89.5 - 92.4 87.1 - 75.9 -
DisSent 4.7 80.1 84.9 93.6 90.1 84.1 93.6 84.9 83.7 75 85.6
DiscoveryBase 1.7 82.5 86.3 94.2 90.5 85.2 91.8 85.7 84 75.8 86.2
DiscoveryHard 1.7 81.6 86.5 93.9 90.5 84.8 90 85.4 83.2 76.5 85.8
Discovery10 1.7 81.2 85.1 93.7 90.2 83 90 85.9 83.8 75.8 85.4
DiscoveryAdv 1.4 81.4 85.8 93.8 90.5 83.4 92 86 84.3 75.7 85.9
DiscoveryShuffled 1.7 81.4 86.1 94.1 90.9 85.3 90.4 85.6 83.6 75.4 85.9
DiscoveryBig 3.4 82.6 87.4 94.5 91.0 85.2 93.4 86.4 84.8 76.6 86.9

Table 6: SentEval evaluation results with our models trained on various datasets. The first two models are su-

pervised, the other ones unsupervised. All scores are accuracy percentages, except SICK-R, which is Pearson

correlation percentage. InferSent is from Conneau et al. (2017), MTL is the multi-task learning based model from

Subramanian et al. (2018). Evaluation tasks are described in table 7, and N denotes the number of examples for

each dataset (in millions). Dissent is from Nie et al. (2017), QuickThought is from Logeswaran and Lee (2018)

with fixed embeddings configuration. The best result per task appears in bold, the best result for unsupervised

setups is underlined.

The model also fine-tunes word embeddings in or-

der to achieve a higher capacity. It is therefore re-

markable that our model outperforms it on many

tasks. Besides, MTL is not a direct competitor

to our approach since its main contribution is its

multi-task setup, and it could benefit from using

our training examples.

Our best model rivals (and indeed often out-

performs) QuickThought on all tasks, except re-

latedness (SICK-R). QuickThought’s training task

is to predict whether two sentences are contigu-

ous, which might incentivize the model to perform

well on a relatedness task. We also outperform In-

ferSent on many tasks except entailment and relat-

edness. Entailment prediction is the explicit train-

ing signal for Infersent.

To help the analysis of our different model vari-

ations, table 8 displays the test scores on each

dataset for the original training task. It also

shows the related PDTB implicit relation predic-

tion scores. The PDTB is annotated with a hierar-

chy of relations, with 5 classes at level 1 (includ-

ing the EntRel relation), and 16 at level 2 (with

one relation absent from the test). It is interest-

ing to see that this form of simple semi-supervised

learning for implicit relation prediction performs

quite well, especially for fine-grained relations, as

the best model slightly beats the best current ded-

icated model, listed at 40.9% in Xue et al. (2017).

DiscoveryHard scores lower on its training task

than DiscoveryBase, and it also performs worse

on transfer learning tasks. This makes sense,

since lexical features are important to solve the

evaluation tasks. Our initial hypothesis was that

more difficult instances might force the model

to use higher-level reasoning, but this does not

seem to be the case. More surprisingly, prevent-

ing the encoders to use the relationship between

sentences, as in DiscoveryShuffled, does not sub-

stantially hurt the transfer performance, which re-

mains on average higher than Nie et al. (2017).

Additionally, our models score well on linguistic

probing tasks. They outperform Infersent on all

tasks, which seems to contradict the claim that

SNLI data allows for learning of universal sen-

tence representations (Conneau et al., 2017). And

a final interesting outcome is that the diversity of

markers (e.g. using DiscoveryBase instead of Dis-

covery10) seems to be important for good perfor-

mance on those tasks, since Discovery10 has the

worst overall performance on average.

name N task C

MR 11k sentiment (movie reviews) 2
CR 4k sentiment (product reviews) 2
SUBJ 10k subjectivity/objectivity 2
MPQA 11k opinion polarity 2
TREC 6k question-type 6
SST 70k sentiment (movie reviews) 2
SICK-E 10k entailment 3
SICK-R 10k relatedness 3
MRPC 4k paraphrase detection 2
PDTB5 17k implicit discourse relation (coarse) 5
PDTB16 17k implicit discourse relation (fine) 15

Table 7: Transfer evaluation tasks. N is the number of

training examples and C is number of classes for each

task.



Figure 2: TSNE visualization of the softmax weights from our DiscoveryBig model for each discourse marker, after

unit norm normalization. Markers discovered by our method (e.g. absent from PDTB annotations) are colored in

red.

PDTB5

coarse
PDTB16

fine
T

InferSent 46.7 34.2 -
DisSent 48.9 36,9 -
DiscoveryBase 52.5 40.0 20.6
DiscoveryHard 50.7 39.8 9.3
Discovery10 48.3 37.7 51.9
DiscoveryAdv 49.7 37.6 26.1
DiscoveryShuffled 51.0 39.5 11.5
DiscoveryBig 51.3 41.3 22.2

Table 8: Test results (accuracy) on implicit discursive

relation prediction task (PDTB relations level 1 and 2,

i.e coarse-grained and fine-grained) and training tasks

T . Note that scores for T are not comparable since the

test set changes for each version of the dataset.

3.3 Visualisation

The softmax weights learned during the training

phase can be interpreted as embeddings for the

markers themselves, and used to visualize their

relationships. Figure 2 shows a TSNE (van der

Maaten and Hinton, 2008) plot of the markers’

representations. Proximity in the feature space

seems to reflect semantic similarity (e.g. usu-

ally/normally). In addition, the markers we dis-

covered, colored in red, blend with the PDTB

markers (depicted in black). It would be interest-

ing to cluster markers in order to empirically de-

fine discourse relations, but we leave this for future

work.

4 Related work

Though discourse marker prediction in itself is an

interesting and useful task (Malmi et al., 2017),

discourse markers have often been used as a train-

ing cue in order to improve implicit relation pre-

diction (Marcu and Echihabi, 2001; Sporleder and

Lascarides, 2005; Zhou et al., 2010; Braud and

Denis, 2016). This approach has been extended

to general representation learning by Jernite et al.

(2017)—although with empirically unconvincing

results, which might be attributed to an inappropri-

ate training/evaluation set-up, or the use of a lim-

ited number of broad categories instead of actual

discourse markers. Nie et al. (2017) used the more

standard InferSent framework and obtained bet-

ter results, although they were still outperformed

by QuickThought (Logeswaran and Lee, 2018),



BShift CoordInv Depth ObjNum SubjNum OddM Tense TC WC AVG

InferSent 56.5 65.9 37.5 79.9 84.3 53.2 87 78.1 95.2 70.8
SkipThought 69.5 69 39.6 83.2 86.2 54.5 90.3 82.1 79.6 72.7
QuickThought 56.8 70 40.2 79.7 83 55.3 86.2 80.7 90.3 71.4
DiscoveryBase 63.1 70.6 45.2 83.8 87.2 57.3 89.1 83.2 94.7 74.9
DiscoveryHard 62.7 70.4 44.5 83.4 88.1 57.3 89.5 82.8 94.1 74.8
Discovery10 61.3 69.7 42.9 81.8 86.7 55.8 87.8 81.4 96.1 73.7
DiscoveryAdv 61.5 70 43.9 82.6 86.2 56.2 89.1 82.8 96.1 74.3
DiscoveryShuffled 62.6 71.4 45.3 84.3 88 58.3 89.3 82.8 93.4 75
DiscoveryBig 63.3 71.4 46.0 84.1 87.8 57.1 89.4 84.2 96 75.5

Table 9: Accuracy of various models on linguistic probing tasks using logistic regression on SentEval. BShift is

detection of token inversion. CoordInv is detection of clause inversion. ObjNum/SubjNum is prediction of the

number of object resp. subject. Tense is prediction of the main verb tense. Depth is prediction of parse tree depth.

TC is detection of common sequences of constituents. WC is prediction of words contained in the sentence. OddM

is detection of random replacement of verbs/nouns by other verbs/nouns. AVG is the average score of those tasks

for each model. For more details see Conneau et al. (2018). SkipThought and Infersent results come from Perone

et al. (2018), QuickThought results come from Brahma (2018).

which uses a much simpler training task. Both

of these rely on pre-established lists of discourse

markers provided by the PDTB, and both per-

form a manual annotation for each marker—Nie

et al. (2017) uses dependency patterns, while Jer-

nite et al. (2017) uses broad discourse categories.

Our work is the first to automatically discover dis-

course markers from text.

More generally, various automatically extracted

training signals have been used for unsupervised

learning tasks. Hashtags (Felbo et al., 2017) have

been sucessfully exploited in order to learn sen-

timent analysis from unlabelled tweets, but their

availability is mainly limited to the microblog-

ging domain. Language modeling provides a gen-

eral training signal for representation learning,

even though there is no obvious way to derive

sentence representations from language models.

BERT (Devlin et al., 2018) currently holds the

best results in transfer learning based on language

modeling, but it relies on sentence pair classifi-

cation in order to compute sentence embeddings,

and it makes use of a simple sentence contigu-

ity detection task (like QuickThought); this task

does not seem challenging enough since BERT re-

portedly achieves 98% detection accuracy. Phang

et al. (2018) showed that the use of SNLI datasets

yields significant gains for the sentence embed-

dings from Radford (2018), which are based on

language modeling.

For the analysis of our models, we draw inspira-

tion from critical work on Natural Language Infer-

ence datasets (Dasgupta et al., 2018; Levy et al.,

2018). Gururangan et al. (2018); Poliak et al.

(2018) show that baseline models that disregard

the hypothesis yield good results on SNLI, which

suggests that the model does not perform the high

level reasoning we would expect in order to pre-

dict the correct label. They attribute this effect

to bias in human annotations. In this work, we

show that this issue is not inherent to human la-

beled data, and propose the shuffle perturbation in

order to measure to what extent the relationship

between sentences is used.

5 Conclusion

In this paper, we introduce a novel and efficient

method to automatically discover discourse mark-

ers from text, and we use the resulting set of can-

didate markers for the construction of an exten-

sive dataset for semi-supervised sentence repre-

sentation learning. A number of dataset variations

are evaluated on a wide range of transfer learn-

ing tasks (as well as implicit discourse recogni-

tion) and a comparison with existing models indi-

cates that our approach yields state of the art re-

sults on the bulk of these tasks. Additionally, our

analysis shows that removing ‘simple’ examples

is detrimental to transfer results, while preventing

the model to exploit the relationship between sen-

tences has a negligible effect. This leads us to be-

lieve that, even though our approach reaches state

of the art results, there is still room for improve-

ment: models that adequately exploit the relation-

ship between sentences would be better at lever-

aging the supervision of our dataset, and could

yield even better sentence representations. In fu-

ture work, we also aim to increase the coverage

of our method. For instance, we can make use of

more lenient patterns that capture an even wider



range of discourse markers, such as multi-word

markerse.

References

Regina Barzilay and Mirella Lapata. 2008. Model-
ing Local Coherence: An Entity-Based Approach.
Computational Linguistics, 34(1):1–34.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, vol-
ume 43.

Siddhartha Brahma. 2018. Unsupervised learning
of sentence representations using sequence consis-
tency. CoRR, abs/1808.04217.
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