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MODULATED FREE ENERGY AND MEAN FIELD LIMIT

DIDIER BRESCH, PIERRE-EMMANUEL JABIN, AND ZHENFU WANG

ABSTRACT. This is the document corresponding to the talk the first author gave at
THES for the Laurent Schwartz seminar on November 19, 2019Brlja%ncerns our recent
introduction of a modulated free energy in mean-field theory in hﬂ]._Th"ls physical object
may be seen as a combination of the modulated potential energy introduced by S. Serfaty
[See Proc. Int. Cong. Math. (2018)] and of the relative entropy introduced in mean
field limit theory by P.—E. Jabin, Z. Wang [See Inventiones 2018]. It allows to obtain,
for the first time, a convergence rate in the mean field limit for,Riesz %Iid Coulomb
repulsive kernels in the presence of viscosity using the estimates inlh“g% and([20]. The main
objective in this paper is to explain how it is possible to co Taore general repulsive
kernels through a Fourier transform approach as announced in%—lﬁﬁin the case oy — 0
when N — +oo and then if ¢ > 0 is fixed. Then we end the paper with comments on
the particle approximation of the Patlak-Keller-Segel system which is associated to an
attractive kernel and refer to [C.R. Acad Science Paris 357, Issue 9, (2019), 708-720]
by the authors for more details.

1. INTRODUCTION

This paper concerns interaction Kgrtigles system and quantitative estimates in mean
field limit theory in the spirit of % and . Namely we consider N particles,
identical and interacting two by two through a kernel K. For simplicity, we consider
periodic boundary conditions and we assume the position of the i-th particle X;(¢) € II¢
evolves through as follows

= % > K(X; — X;)dt + V20dW;
J#i

for N independent Brownian motions W; with a gradient flow hypothesis K = —VV where
V € LY(T1%) will be discussed later-on: For possible vanishing viscosity with respect to N
namely oy — 0 when N — 400 we consider singular repulsive kernels with some pointwise
and Fourier controls (including Riesz and Coulomb Kernels) and for ¢ > 0 we consider
more general singular repulsive kernels with Fourier control and then we conclude with
some comments on the Patlak-Keller-Segel attractive kernel. The main objective in this
document is to give some details in the repulsive case to complete the note written by the
authors [C.R. Acad Sciences 357, Issue 9, (2019), 708-720] which focused on the attractive
Patlak- Keller—SLngl k(frnel A full paper is still in progress to propose a single complete
document, see eaders int by some reviews on mean field limit for stochastic
particle systems are ref 0ed 9 | and on mean field limit for deterministic particle
systems are referred to%l] 4],
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2 DIDIER BRESCH, PIERRE-EMMANUEL JABIN, AND ZHENFU WANG

As usually, we introduce py the joint law of the process (X, -, Xy) which satisfies the
Liouville equation
N | N
atpN—i—z;divxi pNN%:K(xi—xj) :JZ;A“[)N'
1= J7F1 1=

The main objective is to obtain a rate of convergence with respect to the number of
particles N from py to py = p®V =TIV, p with

op + div(pu) = o Ap, u=—VVkyp
where p is a 1-particle distribution namely p > 0 and [ p = 1. More precisely, the main

objective is to prove (for o > 0 fixed) that there exists constants Cr ;5 > 0 and § > 0
such that

o g — Ty p(t, 23) || 1 eay < Crp N~
where py, is the marginal of the system at a fixed rank k,

pNE(t T, ..., T) Z/ pn(t,21,...,2N)dTpyy ... TN,
T(N-k)d

under assumptions of global existence of entropy-weak solutions py of the Liouville equa-
tion and global existence of classical solution p of the limiting system. Due to the Csiszar-
Kullback-Pinsker Inequality, it suffices to control the quantity

1/ o i log PN,k
k Jikd ok p%

and therefore

due to the inequality

In the case oy — 0 when N — +o00, the information will be related to a rescaled modulated
potential energy sigilar to the one introduced by S. Serfaty.

As explained in]}?;ﬂ (and commented by F. Golse during the talk) the keys of the paper
by S. Serfaty is to introduce a clever truncation of the kernel at a length-scale r; depending
on the point ¢ and equal to a minimal distance from z; to its nearest neighbors. Using
such truncation it is possible to prove that the truncated energy can be controlled by the
full energy and conversely. The next crucial result is that, even though positivity is lost,
when using the r; as truncation parameters she can still control for each time slice the
expression by the modulated energy itself, up to a small error , and provided the limiting
solution is regular enough. This, which is the most difficult part of her proof, uses two
ingredients: the first is to re-express as a single integral in terms of a stress-energy tensor,
and the second is to show that the expression is in fact close to the same expression with
truncated fields.

In thi goggpugggtewe will explain how to construct an appropriate regular'e(id kernel
(Lemma}%hl—cm some sense play the role of the appropriate truncation in g(}] In the
case oy — 0, it will be used to control the contribution to the potential energy for close
particles switching between the kernel and its regularization. It will also be used coupled
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with a Fourier transform property to get rid of the re-expression as a single integral in
terms of a stress-energy tensor. In the case o > 0 fixed the Four'iel}retransform hypothesis
may be relaxed playing with the classical convexity inequality (%5% and large deviation
type estimates.
The paper is divided in seven sections. ection 1 is the present introduction. Section 2
d1cate to the modulated free energy w Gy and G, defined respectivel ?iy
) introduced by the authors in [5] which allows fo ake the link between);FZU]
%ET The analys1s is based on the important inequality ( bﬁwmh ) with Gré)ln é
Lemma and some appropriate estimates. Secglo%} 3 concerns t assumptlons %Iff(gﬂ}f
on the kernels and the main results Theorem B.T and Theorem e focus on repulsive
kernels and provide Theorems first in the case oy — 0 when N — 400 and secondly
when o is fixed. We provide simple comme ts, 813% the attractive kernel corresponding to
the Patlak-Keller-Segel system and refer to %’]’f(ﬁ more details. Section 4 is dedicated to
an important regularization lemma which will helpful to switch between the kernel and
an appropriate regularized one. Section 5 and Sectio I&Gcmflcergl_q;he proofs of different

controls from below and above coupled with inequality (2.6) with (2.7) firstly when oy — 0
hen N — +o00 and secondly when o is fixed. Section 7 concludes the proofs of Theorem
and Theorem rom Gronwall arguments. In Section 8, we provide comments on

the interesting attractive case corresponding to the particle approximation of the Patlak-
Keller-Segel system. We end the paper by Section 9 with some comments and open
problems.

2. PHYSICS PROVIDES THE RIGHT MATHEMATICAL OBJECT

. X rJaWa X .
As firstly introduced b, It}le authors in ;ZL , keeping advantage of the idea to introduce

appropriate weights from [3], we define the following modulated free energy
PN | PN 1 N pn(t, XN) G (XM
E(i 7) N LX) dx™. 2.1) [z
Gn Gy N Jian ou( ) Og( Gn(XN) pn(t, XN) (2.1)

where the Gibbs equilibrium Gy of the system and G, the corresponding distribution
where the exact field is replaced by the mean field limit according to the law p are given
by

Gn(t, XV) = exp —721/ (2.2)
i#£]j

and
N

1 i N N
Gon (t, XV) = exp (—UZV*MH%/WVW) (2:3)

i=1
It may be written

PN | PN 5
E(GTV GM) = Hn(pnlpN) + Kn(GN|Gpy)

where

H(pwlon) = ~ £ XV Log ((LXEXD Y g 2.4 -
VowIN) = 5 fu PV X085 o (24) [relativeent:
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is exactly the relative entropy introduced by Jabin-Wang and

1 Gy(XN
Kn(GNIGy) = % o pn (t, XN) log (M) dx™ (2.5)

is the expectation of the modulated potential energy introduced by S. Serfaty multiplied
by 1/o. It is then possible to show that the free energy has the right algebraic structure for
any V even. More precisely, using smoothing properties and definition of global entropy-
weak solution of the Liouville system and global classical solution of the limit system, we
get the inequality

2

~ t
PN | PN o PN Gn
E — | (t +/ / d ’Vlog_—Vlog
N <GN GﬁN) ( ) N 0 JII4N PN 1Y Gﬁ (26)
< En (pN > )+ In
where
Jy (v 50)
Iy =—= VV(r—y) - | Vlog =—(x) — Vlog —(y
N 2 Jo Jmav Jmzdn{zzy} ( ) G,j( ) Gp( ) (2.7)

(dpn — dp)®*dpy,

where uy = Zf\il d(x — x;)/N is the empirical measure. It is important to note that the
right-hand side is exactly the expectation of the quantity obtained by S. Serfaty with the
modulated potential energy when ¢ = 0 and to remark that the parasite terms involving
divK in the work by P.—E. Jabin and Z. Wang have disappeared. In order to use Gronwall
Lemma, the previous expression leaves two main points in the proof namely the existence
¢ > 0 and C' > 0 such that we have_

I) An upper bound of In given by (b?) If the viscosity o > 0 is fixed namely

t —
PN | PN C
In< | Ey PN c
N—/O <GN G,;N>(S)dS+N9

and if oy — 0 when N — +o00

0 C
O'NINSCO'N/ /CN<g]]\; (§N> (S)ds—’_ﬁ

PN

IT) A control from below on modulated quantities. For o > 0 fixed, the modulated free
energy F is almost positive or more specifically that for some constant

PN | PN 1 _ C
Ev (22525 () > = -

and, for oy — 0 when N — +o00, the rescaled modulated potential energy is almost
positive namely

C
Remark 2.1. Combining the relative entropy with a modulated energy 1as hee successively
used for various limit in kinetic theory such as quasi neutral Jir (see 1, or Vlasov-

Maxwell-Boltzmann to incompressible viscous EMHD (see

modulatedense
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Remark 2.2. Note the presence of modulated Fisher type information

o [ PN Gy |?
D=— d log — — Vlog —— 2.8
. pN\vOgﬁN Viog (2.8)

PN
IN
in the inequality (h)

3. ASSUMPTIONS AND MAIN RESULTS.

We will split the discussions in three parts. The first part concerns the case with
viscosity, g — 0 when N — +00. We show how to consider more general singular kernels
than in%]% extending their methods. The second part concerns a fixed viscosity o > 0
using the modulated free energy where we indicate kernels that may be considered. In the
last part, we give comments regarding the Patlak-Keller-Segel system which concerns an
attractive kernels and viscosity 2do > A where A measures the intensity of the kernel.

I) Repulsive Kernels. In this part, the first assumptions on V' are
V(—z)=V(z), Ve LPII?%) for some p > 1 (3.1)

with following Fourier sign

V(€) >0 for all £ € RY (3.2)
and the following pointwise controls for all z € T¢: There exists constants k and C' > 0
such that c o
IVV(x)] < o V2V ()| < o for some k, k' > 1/2 (3.3)
and v
IVV(z)| < C ’:(ET). (3.4)
We also assume that
lli‘mOV(ac) = 400, V(z) < CV(y) for all |y| < 2|z (3.5)
T|—
and
VeV ()] < ¢ (f/(g) + f(o)1> with 0 < a < d for all € e R?  (3.6)
R L+ Jef e |
where
flo)=0if 0 — 0 and f(o) =1 if o is fixed. (3.7)

Remark 3.1. Remark B]il b Riesz and Coulomb kernels perturbed to get periodic kernels
satisfy hypothesis (E%l )f(E%.Ei. Note that constraints k, k' > 1/2 are chosen for simplicity
in the argument: the results cover any k and &'.

I-1) Case oy — 0 and repulsive kernels. The convergence rate theorem reads as follows

Theorem 3.1. Assume K = —VV with V satisfying (W(Wwith f(e) =0. Consider
p a smooth enough solution with inf p > 0. There exists constants C > 0 and a function
n(N) with n(N) — 0 as N — oo s.t. for py = X | p(t,x;), and for the joint law pn on
N of any entropy-weak solution to the SDE system,

on Kn(t) < eCPIKIE (o0 Kn(t = 0) + on Ha(t = 0) +n(N)),

hypO1

hyp03

hyp001

hyp02

hyp04

hyp05

hyp06
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Hence if on lC?V +on HY < n(N), for any fived marginal PNk

Wi(pw g, T p(t,24)) < O n(N),

where W1 is the Wasserstein distance.

I-2) Case o > 0 fized with respect to N and repulsive kernels. The convergence rate
theorem reads as follows

Theorem 3.2. Assume K = —VV with V satisfying (W(Wwith f(o) =1. Consider
p a smooth enough solution with inf p > 0. There exists constants C > 0 and 6 > 0 s.t.
for pny = Hfilﬁ(t,aﬁi), and for the joint law py on N of any entropy-weak solution to
the SDE system,

Hy(t) + [Kn(t)] < P IKIE <HN(t = 0) + |Kn(t =0)| + 59) ,

Hence if HR, + |IC9V| < CN~?, for any fized marginal PNk

lpn e — Ty 5t 2) || oo (vay < O N0

Remark 3.2. In the case ¢ > 0 fixed, it is possible to enlarge th hcl%gs of kernels for
instance assuming only V' > —C with C' > 0 and choosing o = 0 in (}Eé:a) So.allow o =0
requires a novel large deviation inequality, similar in spirit to Prop. 6.1 buf for singular
attractive potentials. More precisely, we can use the followj g proposition for which the
proof is more complex and we refer to our upcoming article %TOTHZ. There exists 1y > 0,

0 >0 s.t. ifG(x)§Clog‘71|+CwithC>0andn§no then

C
] Gz — ) (@ — )™ dp < CHoy + 5.
4N Hatyyn{|z—y|<n}

Note that sjch, control is also central in the proof for the attractive Patlak-Keller-Segel
kernel, see ;ZI for a sketch.

IT) An Attractive case. This part concerns the first quantitative estimate related to par-
ticle approximatiomn of the Patlak-Keller-Segel system. Namely we get the same conclusion
than in Theorem 3.2 for

V = Mlog |z| + perturbation

fo<A< %lﬁra‘)gith the perturbation being regular kernel to get V' periodic. We refer the
readers to or the explanation of the steps in the Proof. Some comments are given at
the end of the present paper.

4. AN IMPORTANT REGULARIZATION LEMMA

In our approach an importan Legnma &Iill be the construction of an appropriate regu-
larized kernel using hypothesis (B:1)—=(8.5). More precisely we prove the following Lemma
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hyp01 hyp02
Lemma 4.1. Let V satisfying (%3' )*(E%ii. Then there exists a smooth approximation V.
of V and a function of n(e) with n(e) — 0 as € — 0 such that

V. >0,

5
Ve = Vi <€), Mgz (V= Vo)l < € lapzs (VV = VVE) [ < €
Ve(z) < V(z) + ¢ for all x.

9

5k/ 9

This step asks for appropriate regularization which in some sense depgndoé) t%g total
number of particles N: It uses the pointwise properties of the kernels (%3§H%§) which

includes a doubling variable property.
Proof. Some preliminAary controls. Consider a smooth kernel K' with compact support
in B(0,1) and s.t. K' > 0. Observe that for |z| > 26 and since |VV (y)| < ﬁ for
lyl = [x]/2,
K} xV(z) = V(z)| < Kl(z)\V(m—éz)—V(x)]dzSCW.
|2[<1

Therefore

K} xV(z) <V(z)+C6Y2 Vx| > 8% (4.1)
On the other hand, we also have that K} x V(z) < C6~¢||V| 1. Since V(z) — oo as
|z| — 0, we also have that for some increasing function f(6)

KixV(z) <V(z), V| < f(9). (4.2)

As k is chosen such that k& > 1/2 then 51/2k > 20, so we need to be more precise where
F(6) < Ja| < 81/,
Construction of an appropriate reqularized kernel W.

Case |z| > 20. First of all we notice that by the doubling property, we have directly if
|x| > 26 that |x|/2 < |z — 0 2| < 2|z| for |z] <1 and thus

K} V(z)<COV(z), Vl|z|>26. (4.3)
Case |x| < 26. For |z| < 2§, the doubling property on its own only gives that

K}x«V(z) <CKixV(0)<C6 / V(y) dy. (4.4)
B(0,6)

We now define a sequence d,, — 0 s.t.

/ V(y)dy<C V(y)dy. (4.5)
B(0,6n) 6n/2<1y|<6n

The existence of such a sequence is straightforward to show by contradiction, as otherwise,
we would have for some ¢ and all § < ¢ that

[ vaze-y [ Ve
B(0,6/2) 5/2<y|<é
By induction, this would imply that

[ vewza-yoric-n [ v (4.6)
B(0,6/2%) 8/2<|y|<é

|x|geqdelta
|x|leqdelta

| x| sim2delt:

defdelta_n
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Using the LP bound on V', we have

/ Viy)dy < C' 9—kp/(p—1)
B(0,5/2F)

contrad

this provides a contradiction with (4.6) if C' — 1 is too large. Note by the way that if we
assume some explicit rate on V' then we can have explicit bound on how large §,, can be

WIb. Opg1. defdelta_nK*V(0) o
If 6 = d,, then (h.B) and Eh.zﬂ together implies that
Kl «V(z)<Co,¢ V(y) dy.
0n/2<]y|<dn

02
This is where we use (%ﬁ) which implies that if |z| < 24, and 6,/2 < | L{éi H%He@%ean
V(y) < CV(x). Hence eventually for § = d,,, we obtain the counterpart to (4.3) and find

K5, «V(z) <CV(zx), V. (4.7)

Now for every e, we are going to choose M of the parameters 6, with M the integer part
of ¢ large, and define first

1 M
W, = M2K5ni * V.
1=

We start by taking &,, < e?/C and we then define the n; recursively s.t.
Onipy < min(f(0n,), 077).

Ni+1

We of course have automatically that Wg > 0. Moreover since maxd,, — 0 as ¢ — Oootihe
standard approximation by convolution shows that ||V — W,| ;1 — 0. By using (3.3), we
also directly have that

max 0y,
ok

3

[Lzp>s (V = We)llpr <C 5

<C

and similarly
€
|“h1|25 (‘7‘/ —-‘7‘@%)“L1 <C SET.

roughgeneral

|x|geqdelta
It only remains to compare W, and V. For this consider any I,Xiifle Lie%té(lfk then (hl i
(%.Zi also d

directly implies that W.(z) < V(x) +e. If |z| < f(dn,,) then
that We(z) < V(z).

This only leaves the case where |z| is somewhere between d,,, and d,,. In that case,
there exists i s.t. d,,, < |z| < dy,,. By the definition of the ., one has that || < f(dn;)

if j <iand |z| > (5714% if j > i+ 1. Using again (%%f%ﬂ%%%\%lﬁ%en have
Ks,, * V() <V(z)+e ifj>i+1, Ks,, * V(z)<V(x) ifj<i.
Using (EE%%?‘;ISZ' and j =17+ 1, we get
We(x) <(14+2C/M)V(z)+e=(1+4+2Ce)V(z)+e.
Definition of Ve and conclusion. This leads to the final definition V. = W./(1 + 2C¢)

which indeed satisfies V. <V +¢, V2 > 0 and still ||[V. — V|| ;1 — 0 together with the other
convergences since obviously ||[Vz — We|[;1 — 0. O

irectly implies
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5. CONTROL OF TERMS FOR REPULSIVE KERNELS WITH VANISHING VISCOSITY oy — 0

lemmatruncate . . X
As a corollary of Lemma &[ [, we obfain a straightforward control on the contribution
to the potential energy from close particles

lemmatruncate
Lemma 5.1. Under the assumptions of Lemma b.?, there exists a function n(N) with
n(N) — 0 as N — oo, one has that
on Kn(t) = —n(N).

Furthermore there exists n(0) with n(d) — 0 as n — 0, such that for any §

B (g SV~ ) Ty 6) < Aow K (1) + n(N) +(6).
i#£]

Proof. We start by noticing that
1 1
oxkn® =5 [ Ve-ye -0y [ Viw—) (ax — )
lz—y|>6 lz—y| <, z#y

By using the regularity of p and the LP integrability of V', we may bound from below the
second term in the right-hand side by

/ Viz—y) (uy —p)** > QZV i) Lz, ;<5 — C 6%,
|ac—y\<6, :L’;éy 275‘7

for some positive exponent «. Using Lemma 4.1 and more precisely the inequality V. <
V + €, we obtain that

/ Vie =) (uy = % > g S0 Veles = 2) L — O —
‘x_y|<67 $7£y ’L;ﬁ_]
X . lemmatruncate
Observe now that by the second point in Lemma h [, we have that
_ _ €
[ ve-pun-p®z [ Vie-pe-pT-Cg (61
lz—y|=d lz—y[=d

Therefore by summing, we obtain that
Vie—y) (v =922 | Vlw—y) (uy — p)*? — C6% —e — C .
)
v#Y z#y

We may simply add the diagonal to find

_ _ C'||Vx oo o £
[ ve—n =072 [Vie—y) v -p@- L= oy —coc 2 62)
TAYy
Since V. > 0, this yields
/ V(z—1y) (un — p)=? CHJ/VHLOO—CCSO‘—E—C;C,

and conclude the first point by optimizing in € and §.
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To prove the second point we first remind that

N2 V=) Ty < [ Vie—y) (ay — )P +C 5,
i#£j |z—y|<6, z#y
and thus
N2 V@)l e < [ Vo= y) ey - p)% 4 OO0
i#£j z7Y

- / V(e —y) (uy — 9
|z—y|>6, z#y

intermed0
Using again (% I), we get

szf"’z me|<a</ Viz—y) (v —p)* +C6*
i#j 27y

3
-/ Vel — ) (i — )P+ C
lz—y|>6, z£y

Remark that since we are on the torus, [}, >5 has L' norm less than 1. Therefore the

Fourier transform of V. [;>; is dominated by V. and

/ Vilo = 9) (= 9 < = [ Velw— 9) (ay — )
‘th—y\zﬁdi”ﬂ#y
interme
Appealing to (% 2), we hence finally get

N V@ =) iz <2 [ V=) (o )
i#j 27y
A

N )

which concludes the second point, again by optimizing in €. U

o €
+C6 +057+6+C

We need to control terms from above like
[ aew [ VV(x—y) - ($(x) — 0(y))(dpuy — dp)™
HdN HZdﬂ{lﬁéy}

for 9 regular enough in terms of the potential energy. We use F urie transform for the
regularized kernel that not use explicit formula of the kernel as in %9], . This procedure
allows to treat more general kernels because it is not based on the reformulation of the
energy in terms of poter;écl%l L £xfension representation (for the fractional laplacian) by
Caffarelli-Silvestre as in [19], %D], . More precisely, we prove that

Lemma 5.2. Let ¢p € Wh(T1%) and if V satisfies (Elf%(%%% then for any measure v,
we have that
- [TV @i - v < [ O Ve

hyp01 05
Remark 5.1. Remark that Riesz and Coulomb Kernel satisfy Hypothesis (%3' )f(E%.(E).
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. . h 05 . . .
Proof. This is where we need (3.6) which gives studying |£] ~ (]

ClE—dly

using Gronwall Lemma. For i regular enough, we use the following calculation

V(E) -Vl <

= [ IV - )W)~ b = Re [H(€V(€) ~ V)€ ~ OFEH(C)dede
——Re [i(£V©) - V() + (€ - <>V<<>) 9(E ~ QPEH(Q)dedc

<0/|§ cllite — OV ( 15(6)|dedC

and therefore, using some regularity on v, by Cauchy-Schwartz

~ [V =@ - s < ¢ [P i

O
Of course we cannot directly use Lemma %?’?%h V on Iy as
JACENIUT R
will in ggne al be mﬁmte dlagonal is not removed. But we can now easily combine

ourler
Lemma % 2 with Lemma % i f(o obtain

01 hyp05
1trolINvanishing‘ Corollary 5.1. Assume that ) € W5 and that V satisfies (E%I —(B.6). Then there exists
a function n(N) with n(N) — 0 as N — oo and such that

. / dpx / YV (@ — 1) () — () (dux —dp)®* < Coy Kn(t) +n(N).
114N HZdO{zyéy}

Proof. The basic strategy is again to split I into two parts

- / dpy / YV —y) - (@) — v)(duy — dp)™>
TN {lo—y|<8}n{oy}
- / dpy / YV —y) - (@) — o) (duy — dp)™>
N |z—y|>d}

For the second. term in the right-hand side, we want to replace VV by Y Ve, Wesimply yuse
the second point of Lemma 4.1 again (similarly to the obtention of (%I ) in Lemma %i )
to get that

- / TV (z ) ((x) — () (duy — dp)®?
{lz=y1>3} (5.3)

< /{x . VVe(z —y) - ((x) — @) (dun — dp)®% + C 5k"
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For the first term in the réﬁht—hand side, we first use the regularity of p together with the
LP bound on V from (3.1) to deduce that

- / VV(z —y) - ((2) = ¥(y))(duy — dp)**
{lz—y|<s}n{z#y}

s—/’ V(@ —y) - (@) — b)) + C o,
{lz—y|<oIn{z#y}

hyp02
for some o > 0. We know use the pointwise bound on VV from (%E) and the Lipschitz
bound on 1 to obtain that

N / VV(z —y) - (%) = () (dpy — dp)”
{lz—yl<o}n{z#y}

<C V(z —y)duf? + C 5.
{lz—y|<oIn{z#£y}

. . . KNgeqO
Using the second point in Lemma % i, we hence have that

—/ WW/ YV () - () — () (duy — dp)™?
4N {lz—y|<sIn{zAy}
< ConKn+n(N)+n(d).

(5.4

By the construction of V; the same estimate applies

—/ Ww/ VVe(w — y) - (b(z) — b(y))(duy — dp)*>
N {lz—y|<sIn{z#y}
< ConKn +n(N) +n(d).

(5.5)
. intermed2’ |intermedQ’ |
We may combine (%.5) with (%.3) to obtain that

—/ mw/ TV —y) - (b(x) — 0(u)) (duy — dp)®?
4N {lz—y|>8}n{z£y}

S_Awmwﬂﬁwvw@—w«ww—wwmwN—@@Q

£
+CW+C’0NICN+77(N)+77(5).

i a1’
Together with (%%E)e,ﬂ%?ﬁﬁnally concludes that
= [ ey [ Vi) (@)~ 6 da — dp)®
TN {z#y}
< - / dpy / YVl —y) - (@) — (y)) (dpy — dp)®* (5.6)
114N

e

+C o

+Con Ky +n(N) +n(d).
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lemfourie hyp01 hyp05
We know apply Lemma %.Zm oﬁnvsrwhich by construction still satisfies (&3' H%g) and this
yields

- / dpy / YV (& — y) - (b(x) — 0(y))(duy — dp)?
I14N {z#y}

<c [ dpn / Vol — ) (dpy — dp)®?
HdN

+C — +ConKn +n(N) + n(9).

(5"”
We may now remove the diagonal
= [ ey [ Vi) (00— b)) day — dp)®
IeN {z#y}

| Vell Lo

<c de/ Vo — ) (duy — dp)2 + C
e N

+C — 6’“' +ConKn +n(N)+n(d),
lemmatruncate
and using the third point in Lemma &I I,

- / dpy / YV (e —y) - (b(x) — 0())(duy — dp)?
4N {z#y}

Vel 00
<C dN/ V(z—y) (duny —dp)®* + Ce —i—CH Iz
I14N {z#y} N
+C5k, + Con Ky +n(N) +n(6).
The conclusion follows by optimizing in ¢ and §. 0

6. CONTROL OF TERMS FOR REPULSIVE KERNELS WITH FIXED VISCOSITY o > 0

6.1. A large deviation result.

Proposition 6.1. There exists 69 > 0 and some exponent 8 > 0, s.t. for any p € L= N
P(11%) with logp € WL, for any W € LP(IT??) for some p > 1 with W(—z) = W (z),
W >0, |VIW(x)| < % and finally [|W]|1 < &g then

log/ Nf{gc;éy} W(z—y) (dun— dp)® 7®N dXN < %

Proof. We denote
Flux)= [ W= y) duy - dp)°
{z#y}
and introduce a simple truncation W, of W by
Wg(x) = W(:E) H|I|Z€'
We define as well
R)= [ We—y) da—dp)®?
2dn{a#y}
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We may expand F' to find

Flux) = | Wz — ) (duy — dp)*™
m2dn{ay}
1 1 _
= mZ:I/V(acZ —xj) — 2N ZW*p(mi)
i#] i
e[ W) pla) ply) de dy
m2dn{az7#y}
Now note that by the LP integrability on W and the L™ integrability on p,
(We o p() = W p(a)] < [[We = Wl [|pllpe < W j<ell oo [|p] o
< CeV|p) poe.
Further note that since W > 0, we have that W(x) < W(x) so this directly implies that
—F(un) < =Fe(un) + C||plp e/
We are hence led to bounding
INe = E log/ =N Jr2a Welo—y) (dun—dp)®* 22N axN
’ N dN ’

since

Iy = log/ N fiygy Wa—y) (dpn—dp)®” PN AXN < Zy o+ OV (6.1)
HdN

We now rely on a quantitative variant of a classical large deviation result

Theorem 6.1. Assume that logp € W and that L is a standard convolution kernel.
Then there exists a constant C' depending only on d, L, s.t. for any F : P(I?%) — R,
continuous on continuous functions, one has that

log/ e NFLsxun) 5o d XN < I(F)

14N
C _ _
T N1/(d+1) gd/(d+1) (log N + [log 8| + || log pl| o) + C'é || log pllw1.e0,
where
— _ Jad —
I(F) = “ené%cd) [F(p) + /Hd w log 5 dm]. (6.2) l@

1tlargedeviation ‘

[variantlargedeviation
Proof. The proof of Theorem 6.1 relies on classical arguments and we refer to our upcoming

article for more details. Since [VW| < C/|z|*, the potential . is smooth and hence
5
—F; (NN) < —F; (L(;*/AN) + C

[variantlargedeviation
Using Theorem 6.1, we thus have that

1) C _
ZN,E SI(FE) + C? + N1/(d+1) §d/(d+1) (logN + | 10g6| + H 10g PHLOO)

+ C 6 || log pllwiee-

©3

The last step of the proof is hence to estimate I(F) for which we appeal to
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Lemma 6.1. For any p € L™, there exists a truncation &g s.t. for any W with |W |1 < &
and W(z) > 0 then, defining

Fa = [ W) (u(dn) — plo) de) (u(dy) ~ plo) dy),
{=z#y}
one then has that I(F};) = 0.

I(F)1
Assuming that Lemma Wﬁs; wemay apply it to W = W. which implies I(F.) =0

and finally combining (6.1) and

C
N1/(d+1) §d/(d+1) (
+ C ¢ || log plyy1.00-

. B
Zn <Cel/? +C€—k+ log N + |log d| + | log pl| o)

We may immediately conclude by optimizing in £ and §. 0

I(F)log ~ ) ) .
Sketch of the proof of Lemma 16.1. Since W > 0, I(Fy;,) is coercive and by considering a
maximizing sequence, we may find a maximum g which is bounded in L log L. Such a
maximum must satisfy that

1+logg+2V~V*(ﬂ—ﬁ) = K,
p
where the constant « is chosen so that [ i = 1. This may be rewritten as

i = % e—QW*(ﬂ—ﬁ)7 M= /[—,6—2 W(i=p) .

Let us denote u = —W x (1 — p) and to emphasize the dependence on w in M

M =M, = /pe2“($> dz.

We observe that u is a solution to

u=—W « (p (ej\f) - 1)) , (6.4)

which is in fact a sort of F Poy- hneareelhptlc equation. It is straightforward to show that
the unique solution to (;3 Dist=0 provided that ||W| ;1 is small enough. O

g

6.2. Control on Ep. The second ingredient to bound Epy from below is the following
classical convexity inequality

G(XN)dpy < ~ / dpn 1o g ex + e log / NV dpy. (6.5)

T1aN T1aN

The proper control of Ex however requires truncatlng interactions after some distance so
that we define

/ / V(e — ) x(z — yl/m) (dux — dp)® py dX 7,
AN J{z#y}

eulerlagrang

ineg
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where y is some smooth non-negative function with y=1 on [0,1] and x = 0 onLL;Z %Bl’viation
together with x > 0. Finally we define EY, = Hy + K%. Combined with Prop. %.l %EIS
inequality lets us bound from below EY, as per

01 hyp02 06
Proposition 6.2. Assume that V satisfies (%‘ )-ik}ﬁi and (E%F) then there exists ng > 0

and 0 > 0 so that for any n < ng

C

Moreover for any 6 < n with n < ng

1 C 6
E ﬁ Zv(xi_l'j)]lmi—lj\ﬁd SEK;—FW‘FC(; .
i#]

ine
Proof. For the first point, using (%55 on K%, we find that

1 —N V(a— - dun—dp)®?
K, SHN+Nlog/l_IdNe B Sy V=) =l/0) =) g

LargeDeviati 01 001
We now apply Prop. oo W :m;lé Vix) x(lzl/n). From (%[i and (E%§}, W trivially
satisfies all assumptions of Prop. %.I with the exception of ||W| 1 < dp. For this, we
remark that

V@ xel/ll < [ Vie)da <OVl

|z|<27n

o that W11, tg g is ensured by choosing 1 < ng with 7y small enough. Therefore Prop.
%.I implies tha

C

For the second point, observe first that

1 1
N2 D V(@i — ) Tjg,—ay <5 < N2 > V(i — ) x(|zi — 51/9)
i] i

< /{ L V=)l =) o)+ 0"
xHy

Therefore

1
20 N2 ZV(%‘ = 25) Lyyay1<s | — ER
i
1
= Hv=g, Ve —y) (x(z — yl/n) — x(jz — y|/8)) (dun — dpn)®? + C 8°.
. T J{a#y}
ine

Using (6.
1 U
i#]
< Jblog/w o~ 26 Jaryy V(@9 (X(z—yl/m)=x(|l2=yl/9)) (dun—dpn) = dpy +C &%,
1
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LargeDeviation
Of course x(|z —y|/n) — x(|x —y|/d) > 0if § < n so that we may again apply Prop. %
to W(x) =V (z) (x(|z|/n) — x(|x|/J)) and find as claimed

C
Ui 0
20N2 ZV HI%—%|<5 —Ey<Cd +W'

i#]

6.3. Control of the right-hand side. As for the case ¢ — 0, the goal is to control
—— [ ] V=0 @)~ wlw) (da — ) dp.
4N {x#y}
05
The Fourier assumption (3 or o> O%l_ssfmore general thEt £ assumption (E%1 5) in the case

o = 0 because we can use Inequality ( and Theorem o control the new term in
the Fourier procedure. More precisely, we have

hyp01 hyp02
Lemma 6.2. Assume that ) € W with k large enough and that V satisfies (bi )—(%.Ei

and
3 ’ 1€ =l /e x(©) :
‘V(f) - V(C)| < Cl + |C| (V(C) + W) (66) diffhatV

with 0 < a < d and x € LEO. Then for any measure v, we have that

—/VV(JJ—@/)(Q/J(fv)—¢(y))v®2 SC/ﬁ(&)IQ(V(é)JrX(&)/(lJr|£|d_“)d£- (6.7)

lemfoursi
Proof. The proof follows the same lines as for Lemma %(.J‘Zm. SRS O

. . . . . fourier
Note that the extra term in the right-hand side of inequality (% 7; is controlled by the
relative entropy because going back to the physical space, we will get a term written as

/iau—me—m@wmw

%vgi‘g,pr (§£@aﬁsﬁ\1;za € LP for some p > 1. We can now prove the equivalent of Corollary

01 hyp06
>1INnonvanishing‘ Corollary 6.1. Assume that v € W and that V satisfies all assumptions (}'EalFF( ).
Then there exists ng and 6 > 0 s.t. if n <o

_ C
ey [ V(=) (@) - b)) — dp) < CEY(0) + .
14N HQdﬂ{x;ﬁy}
|controlINvanishing
Proof. The proof closely d@gllows the one for Corollary (5.1). More pre(nsely all arguments
up to obtaining (% 6) are identical and hence we have still

—/ mw/' YV (& — y) - (b(x) — b(y))(duy — dp)®?
ICA {z#y}

/ dN/ —y) - () — b)) ([duy — dp)*?
14N {miy}

+C—+CKnx+

5k’ +Cn’.

N0
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. X . lemfourler lemfourier2
From this %%cdtlrrlllsntgaéd of Lemma y Lemma et us take V as constructed
in Lemma % [. From Assumptions ( &3 gi { , we have that
¥ O ’§ C‘ 9 KS(C)
Vi) -V()l<c (v s )
V(= V(O < OF e (VO + s

diffhatV lemfourier2
so that (%6% 1s satisfied with y = K. and Lemma % 2 yields

Iv<C [ doy / Voo — ) (duy — dp)®?
N {z#y}

+C d /Mk(g)dg
o O g

C
+COKN+ 5 +Cnf.

5k’ N@
lemmatruncate
Because we have that V. < CV + ¢, by Lemma &I.I, we deduce that

+C —

In<C dPN/ V(z —y) (dpn — dp)**
4N {z#y}

~ _£2 R
vo [ dpw [P &) ae

TN 1+ |gd-«
C
+C 2+ Ch+ 15+

oundEN
Using Prop. %.Zu, we then have that

~ _QQ .
vsCEl+C [ dpy [ NI R

d
1+ |§’ “ (6.8) intermed0’’

¢ o
+C5k' +CKy+ NO + Cn”.
By taking the inverse Fourier transform, we can write
v — pl? _ Y
dpn | g Ke(§) dé = don | KexG(z —y) (dun — dp)
HdN 1 + ‘§| HdN H2d

where G(€) = (14 |€])~** and hence G(z) < C B | . We may remove the diagonal

lin — pl?
/H o [ K@) de

1
< [ o | KexGlo =) (dan—dp)*? + O
N {ay} e*N

and then simply bound K. x G by 1/|z|* to get

ity — pI®
[ aow [ B K ae
1

1
<C d,ON/ d,uN*dﬁ(gQJrCi.
14N {z#y} |z —yl|* ( ) e*N
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. . . . LargeDeviation X
By using the convexity inequality and Prop. % [, we finally obtain that

d MK 1
PN (§)dE < CHN +C ——,
114N e*N

1+ (€]
int do’’
and inserting this into (%I}Sei e
C
Ui 0
In < CEy C'ék,—i—ClCN—i-Ne—i-Cn,
concluding by optimizing on ¢ and e. U

Conv Convgene
7. CONCLUDING THE PROOFS OF THEOREMS B.1 AND 3.

The proofs of Theprems £3 I and > How follow fram m a straightforﬁ%d Gronwall argu-
ment starting from bﬁ For the proof of Theorem B.T, we rescale (b.Bi to deduce

on En(t) < oxEn(t = 0) + /0 "In(s) ds.
with
= [ ] VG0 @)~ v) [ — 9 dpw

and

wmzﬁvmém.

Note that ¢ € W% uniformly in N since oy log G is smootgcogpggggm% ig N (but the
scaling by o is needed here). We may hence apply Corollary 5.1 to obtain tha

In < CoynKn(t) +n(N),
and hence recalling that Ex = Ky (t) + Hn (1),

JNICN( )—I—O’NHN()<UNICN(t—O)+UNHN(t—O +C/JNICN( )d8+77( ) (71)

KNgeqO
We recall from ﬂéemm%ﬁfgﬁat on Kn > —n(N) and hence applying Gronwall lemma, we

conclude from
on Kn(t) < et (on Kn(t =0) + on Hn(t =0) +n(N)),

finishing the proof of Theorem Eg% For the proof of Theorem E%,Xgaes&mentioned just
after (6.5), the control of En required truncating interactions after some distance and it
remains now to control the long rapge part in V' which we need to deal with on it own.
The procedure is well explained ina%—Fﬁst we recall that this long-range part reads

W(z) = V(z)(1 = x(lz|/n))
odulatedene . . BI_\I2
and we define Y given by (B gi with (?NEE and ng/v replacing V' by W in (2.2) and
b 3). The different results in Section 6 actually concern EX, and we need to evaluate the

contrlbution of IC]V\I,/ which is the complement. Calculating its evolution in time and using
the fact that the kernel V is W2 far from 0, we can prove that

d

C
%KN(G]V\II/‘G?]/V) < CHn(pnIpN) + -

N

gronwallO
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. rJaWa . rJaWal
The interested readers are referred to ;ZI for more explanations and to or the forth-
Sgr%i%gesingle complete document. Plugging everybody together allows to get Theorem
8. AN ATTRACTIVE INTERESTING CASE: THE PATLAK-KELLER-SEGEL KERNEL.

In space dimension 2, the Patlak-Keller-Segel system reads
op +div(pu) = o Ap,
u=V®o, —AP=27A\p.

This is an important system in biology for instance. Classical solutions for such system
may not exist for all times as the si ar attractive interactions can lead to concentration
(see J. Dolbeault and B. Perthame [7]):

e Global existence of classical solution if A <40 (or A < 2do).
e Always blow-up if A > 40.

Based on the free energy of the system
L A -
/p logpdz + 3 /10g |z =yl p(x) ply) dx dy.

Blanchet-Dolbeault-Perthame (see Eﬁo_gﬁow existence of global weak satisfying free energy
control with subcritical mass. Note that our modulated free energy may be seen as a
particle version of such free energy. Particle approxi Lation aLgcthe Patlak-Keller-Segel
system has been studied by seveLFg%}Toauthors such as %&Eﬁ% for example. Recently
N. Fournier and B. Jourdain (see proved limit for A < o with no quantitative estimates.
In all these papers, the particle system is also studied from an existence view point which
is an important and difficult question. This is not the objective of our study which focuses
on quantitative estimates under assumptions of existence of solutions.

To prove a quantitative estimate between the particle appppximation of the Patlaks
Keller-Segel system and its formal limit, the upper-bound of (2.7) in the inequality (}‘Zﬁb'f
encoding the propagation of £ ab5, more simple than for the repulsive case. It uses that
|VV (z)| < C/|x| and Theorem [I5]. The lower bound control of K is more complicated:
We choose to prove an upper bound of the opposite. The method is quite similar that the
repulsive case when o > 0 is fixed. It uses an appropriate cut-off smooth function close to
singularity with a regularization of the kernel and the proof that for an appropriate cut-off
size the large deviation function is zero. This uses the Logarithmic Hardy-Littlewood-
Sobolev inequality to show the maximum is attained for n small enpugh for y = p. The
interested readers are referred to Z?I for more explanations and to or a single complete
document.

9. CONCLUSION.

rJaWa
Using%@l;e right physics is the key in %{]—tﬁmake the link between two important results
namely [T9] and : This link allows to consider more general singular kernels with
possible presence of viscosity. The method provides a statistical control with a large
class of attractive-repulsive interactions but some works are needed to obtain the best
convergence rate and it is not yet fully clear how gener%}itf'?gs;%eractions can be. Note
that we have not used the presence of the diffusive term (2.8) in the inequality concerning
the free-energy which could perhaps help to improve the rate of convergence when o > 0
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is fixed. It could be also interesting to study the case with blow-up for attractive kernels
namely the super-critical cases. An other important problem could be non-gradient flow
systems and hamiltonian systems. It cou;%;;_lalso be the extension of the work to the Keller-
%%cg%o?grabolic—parabolic equations, see [21]. An existence result improving the results by

) or the particle approximation of the Patlak-Keller-Segel system is also a challenging
and interesting problem.
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