Vulnerability of super extra edge-connected graphs
 Chia-Wen Cheng, Sun-Yuan Hsieh, Ralf Klasing

To cite this version:

Chia-Wen Cheng, Sun-Yuan Hsieh, Ralf Klasing. Vulnerability of super extra edge-connected graphs. Journal of Computer and System Sciences, 2020, 108, pp.1-9. 10.1016/j.jcss.2019.07.002 . hal02397462

HAL Id: hal-02397462

https://hal.science/hal-02397462

Submitted on 28 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Vulnerability of Super Extra Edge-Connected Graphs* ${ }^{* \dagger}$

Chia-Wen Cheng ${ }^{1 \ddagger}$, Sun-Yuan Hsieh ${ }^{1,2 \S}$, and Ralf Klasing ${ }^{3 \boldsymbol{4}}$
${ }^{1}$ Department of Computer Science and Information Engineering National Cheng Kung University, Tainan 70101, TAIWAN
${ }^{2}$ Institute of Medical Informatics
National Cheng Kung University, Tainan 70101, TAIWAN
${ }^{3}$ CNRS, LaBRI, Université de Bordeaux
351 Cours de la Libération, 33405 Talence cedex, France

Abstract

Edge connectivity is a crucial measure of the robustness of a network. Several edge connectivity variants have been proposed for measuring the reliability and fault tolerance of networks under various conditions. Let G be a connected graph, S be a subset of edges in G, and k be a positive integer. If $G-S$ is disconnected and every component has at least k vertices, then S is a k-extra edge-cut of G. The k-extra edge-connectivity, denoted by $\lambda_{k}(G)$, is the minimum cardinality over all k-extra edge-cuts of G. If $\lambda_{k}(G)$ exists and at least one component of $G-S$ contains exactly k vertices for any minimum k-extra edge-cut S, then G is super $-\lambda_{k}$. Moreover, when G is super $-\lambda_{k}$, the persistence of G, denoted by $\rho_{k}(G)$, is the maximum integer m for which $G-F$ is still super- λ_{k} for any set $F \subseteq E(G)$ with $|F| \leq m$. Previously, bounds of $\rho_{k}(G)$ were provided only for $k \in\{1,2\}$. This study provides the bounds of $\rho_{k}(G)$ for $k \geq 2$.

Key words: Edge-connectivity, extra edge-connectivity, fault tolerance, persistence of networks, super extra edge-connectivity.

[^0]
1 Introduction

Connectivity is a crucial measure of the reliability and fault tolerance of networks. Let G be the underlying network. A vertex set X of G is a vertex cut of a connected graph G if $G-X$ is disconnected. An edge set S of G is an edge-cut of G if $G-S$ is disconnected. A classic measure for the fault tolerance and reliability of a communication network is the connectivity of G, denoted by $\kappa(G)$, which is the minimum cardinality of a vertex set S such that $G-S$ is disconnected or has only one vertex. Another measure is the edge-connectivity of G, denoted by $\lambda(G)$, which is the minimum cardinality of an edge-cut. The remaining graph is connected when the number of vertices deleted is less than $\kappa(G)$ or the number of edges deleted is less than $\lambda(G)$. Therefore, the higher the $\kappa(G)(\lambda(G))$ is, the more reliable the network.

Harary [11] discussed the minimum cardinality of a set of vertices (edges) whose deletion disconnects the graph, and every remaining component satisfies a graph-theoretic property. Given a graph-theoretic property \mathcal{P}, let $\kappa(G ; \mathcal{P})$ be the minimum cardinality of a vertex-cut such that every remaining component satisfies \mathcal{P}, where the number of vertices is more than two. The notation $\lambda(G ; \mathcal{P})$ for the special edge-cut of G can be defined similarly. Numerous studies have considered special cases of $\kappa(G ; \mathcal{P})$. For example, Xu et al. [30,31] restricted \mathcal{P} to be "no vertex of a degree less than h " for an integer $h \geq 0$. Wang and Zhang [28] discussed a case in which \mathcal{P} is "at least two of components contain cycles."

Let $k \geq 1$ be an integer. Fàbrega and Fiol $[9,10]$ generalized the concept of connectivity and edge-connectivity proposed by Harary [11], to k-extra connectivity and k-extra edge-connectivity. A vertex-cut X of G is a k-extra vertex-cut of G if each component of $G-X$ has at least k vertices. In other words, $\kappa(G ; P)=\kappa_{k}(G)$ and $\lambda(G ; P)=\lambda_{k}(G)$ in which P express "the number of vertices is more than k. A edge-cut X of G is a k-extra edge-cut of G if each component of $G-X$ has at least k vertices. Then, the k-extra connectivity (k-extra edge-connectivity) of G, denoted by $\kappa_{k}(G)\left(\lambda_{k}(G)\right)$, is the minimum cardinality of a k-extra vertex-cut (k-extra edge-cut) of G. Extra connectivity and extra edge-connectivity in certain classes of graphs have received considerable attention in recent years $[1,5,6,13,17,18,20,21,27,34]$. Hsieh and Chang [17]
discussed the 3 -extra connectivity of a k-ary n-cube for $k \geq 4$ and $n \geq 5$. Chang et al. [6] discussed the 4 -extra connectivity and 4 -extra edge-connectivity of folded hypercubes. Chang and Hsieh [5] investigated the $\{3,4\}$-extra connectivity of hypercube-like networks. In addition, Meng and Ji [21] showed that regular graphs with an order of more than 5 have at least one 3 -extra edge-cut. Hong and Hsieh [13] discussed the 4-extra edge-connectivity of hypercube-like networks. L̈u et al. [18] derived the 2-extra edge-connectivity of product graphs. Furthermore, Balbuena and Marcote [1] discussed the k-extra edge-connectivity of product graphs for $k \geq 3$. Zhao and $\mathrm{Ou}[34]$ derived the 2-extra edge-connectivity of lexicographic product graphs.

Given a vertex subset $X \subseteq V(G)$, the notation $[X, \bar{X}]$ is used to denote the set of edges having one endpoint in X and another endpoint in \bar{X}, where $\bar{X}=V(G)-X$. Apparently, $[X, \bar{X}]$ is an edge-cut of G. The notation $G[X]$ is used to denote the subgraph of G induced by X. Let $\omega_{G}(X)=|[X, \bar{X}]|$ and $\xi_{k}(G)=\min \left\{\omega_{G}(X): X \subseteq V(G),|X|=k\right.$, and $G[X]$ is connected $\}$. Obviously, $\xi_{k}(G)$ is always an upper bound of $\kappa_{k}(G)$ and $\lambda_{k}(G)$. If $\kappa_{k}(G)=\xi_{k}(G)$, then G is said to be maximally k-connected (or optimal- κ_{k}). If $\lambda_{k}(G)=\xi_{k}(G)$, then G is said to be maximally k-edge-connected (or optimal- λ_{k}). The properties of optimal- κ_{1} and optimal- λ_{k} for certain classes of graphs have been discussed [1,12, 18, 22, 24, 25, 29]. Hellwig et al. [12] discussed properties of optimal- κ_{1} and optimal- λ_{1} graphs. L̈u et al. [18] stated sufficient conditions for product graphs to be optimal- λ_{2}, and Shang and Zhang [24,25] provided sufficient conditions for various graphs to be optimal- λ_{2} and optimal- λ_{3}. Wang et al. [29] provided sufficient conditions for graphs with a diameter of 2 to be optimal $-\lambda_{k}$ for $k \geq 1$. In addition, Balbuena and Marcote [1] provided sufficient conditions for product graphs to be optimal $-\lambda_{k}$ for $k \geq 3$.

Graph G is super k-extra connected $\left(\right.$ super- $\left.\kappa_{k}\right)$ if every minimum k-extra vertex-cut of G isolates a component with order k. Graph G is super k-extra edge-connected (super- λ_{k}) if every minimum k-extra edge-cut of G isolates a component with order k. The properties of super- κ_{1} and super- λ_{k} of certain classes of graphs have been discussed [1, 7, 19, 24, 25, 29, 34]. Meng [19] provided sufficient conditions for connected vertex-transitive and edge-transitive graphs to be super- κ_{1}. Shang and Zhang [24,25] provided sufficient conditions for various graphs to be super-

Table 1: Summary of Related Studies $\left(\eta_{k}(G)\right.$ is the maximum number of edge-disjoint connected subtrees with order k such that each subtree H satisfies $\omega_{G}(V(H))=\xi_{k}(G)$.)

The properties which the graph G satisfies	The elements of F	Lower bound of $\|F\|$	Upper bound of $\|F\|$	$\begin{aligned} & \text { Property } \\ & \text { of } G-F \end{aligned}$	Ref.
Optimal- $\kappa_{1}, \quad \eta_{1}(G) \geq \delta(G)$, and $\kappa_{2}(G)$ exists	Vertices	$\min \left\{\kappa_{2}(G)-\delta(G), \delta(G)-1\right\}$	$\delta(G)-1$	Optimal- κ_{1}	[15]
Super- $\kappa_{1}, \quad \eta_{1}(G) \geq \delta(G), \quad$ and $\kappa_{2}(G)$ exists	Vertices	$\min \left\{\kappa_{2}(G)-\delta(G)-1, \delta(G)-1\right\}$	$\delta(G)-1$	Super- κ_{1}	[15]
Super- λ_{1} and $\lambda_{2}(G)$ exists	Edges	$\min \left\{\lambda_{2}(G)-\delta(G)-1, \delta(G)-1\right\}$	$\delta(G)-1$	Super- λ_{1}	[14]
$\text { Super- } \lambda_{2}, \eta_{2}(G) \geq \delta(G), \text { and } \lambda_{3}(G)$ exists	Edges	$\min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \delta(G)-1\right\}$	$\delta(G)-1$	Super- λ_{2}	[16]
Super- λ_{k} and $\lambda_{k+1}(G)$ does not exist for $2 \leq k \leq \delta(G)$	Edges	$\lambda(G)-1$	$\lambda(G)-1$	Super- λ_{k}	this paper
Super- λ_{2} and $\lambda_{3}(G)$ exists	Edges	$\begin{aligned} & \min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \eta_{2}(G)-\right. \\ & 1, \lambda(G)-1\} \end{aligned}$	$\lambda(G)-1$	Super- λ_{2}	this paper
Super- λ_{3} and $\lambda_{4}(G)$ exists	Edges	$\begin{aligned} & \min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \eta_{3}(G)-\right. \\ & 1, \lambda(G)-1\} \end{aligned}$	$\lambda(G)-1$	Super- λ_{3}	this paper
Super- λ_{k} and $\lambda_{k+1}(G)$ exists for $k \geq 4$	Edges	$\begin{aligned} & \min \left\{\lambda_{k+1}(G)-\xi_{k}(G)-1, \eta_{k}(G)-\right. \\ & 1, \delta(G)-k+1, \lambda(G)-1\} \end{aligned}$	$\lambda(G)-1$	Super- λ_{k}	this paper

λ_{2} and super- λ_{3}. Furthermore, Zhao and $\mathrm{Ou}[34]$ provided sufficient conditions for lexicographic product graphs to be super- λ_{2}, and Balbuena and Marcote [1] provided sufficient conditions for product graphs to be super- λ_{k} for $k \geq 3$.

Link (edge) and process (vertex) faults may occur when a network is activated; therefore, it is crucial to consider faulty networks. Recently, Hong and Zhang [15] discussed the vertex fault tolerance of optimal- κ_{1} and super- κ_{1} graphs. Hong et al. [14] discussed the edge fault tolerance of super- λ_{1} graphs, and Wang and $\mathrm{Lu}[26]$ examined the bounds in graphs in detail. Hong and $\mathrm{Xu}[16]$ discussed the edge fault tolerance of super- λ_{2} graphs under a condition. In this paper, we discuss the edge fault tolerance of super $-\lambda_{k}$ graphs for $k \geq 2$. In other words, we determine the number of faulty edges allowed for graph to remain super $-\lambda_{k}$. We illustrate the bounds when $k=2, k=3$, and $k \geq 4$. (More details about the results are provided in Table 1.)

The remainder of this paper is organized as follows. Section 2 provides definitions and notation. Section 3 shows the edge fault tolerance of super $-\lambda_{3}$ graphs. Section 4 shows the edge fault tolerance of super- λ_{k} graphs when $k \geq 4$. Section 4 shows the edge fault tolerance of product graphs with some properties. Section 6 provides concluding remarks.

2 Preliminaries

An undirected graph $G=(V, E)$ is a pair of the vertex set V and edge set E, where V is a finite set and E is a subset of $\{(u, v) \mid(u, v)$ is an unordered pair of $V\} . V(G)$ and $E(G)$ denote the vertex set and edge set of G, respectively. Let $n(G)=|V(G)|$ be the order of G. Two vertices u and v are adjacent if (u, v) is an edge in G. The edge (u, v) is incident to u and v, and u and v are the endpoints of (u, v). The degree of vertex v, denoted by $d_{G}(v)$, is the number of edges incident to it. Let $\delta(G)=\min \left\{d_{G}(v) \mid v \in V(G)\right\}$. A path $\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle$ is a sequence of distinct vertices such that any two consecutive vertices are adjacent. Vertices v_{1} and v_{t} are the endpoints of the path. A cycle $\left\langle v_{0}, v_{1}, \ldots, v_{t}, v_{0}\right\rangle$ for $t \geq 2$ is a sequence of vertices such that any two consecutive vertices are adjacent, where $v_{0}, v_{1}, \ldots, v_{t}$ are all distinct. A complete graph is a simple graph whose vertices are pairwise adjacent; a (unlabeled) complete graph with n vertices is denoted K_{n}

An isomorphism from a simple graph G to a simple graph H is a one-to-one and onto function $\pi: V(G) \rightarrow V(H)$ such that $(u, v) \in E(G)$ if and only if $(\pi(u), \pi(v)) \in E(H)$. We say that " G is isomorphic to $H^{\prime \prime}$, written $G \cong H$, if there is an isomorphism from G to H.

Let $k \geq 1$ be an integer. An edge set $S \subseteq E(G)$ is a k-extra edge-cut if $G-S$ is disconnected and each component has at least k vertices. The k-extra edge-connectivity of G, denoted by $\lambda_{k}(G)$, is defined as the minimum cardinality over all k-extra edge-cuts of G. If $\lambda_{k}(G)$ exists, then G is said to be λ_{k}-connected and $\lambda(G)=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \lambda_{3}(G) \leq \cdots \leq \lambda_{k}(G)$. The following lemma shows the necessary and sufficient condition for a graph to be λ_{k}-connected.

Lemma 1. [23] Let $k \geq 1$ be an integer and G be a connected graph. If G has an order of at least $3 k-2$, then G is a λ_{k}-connected graph if and only if G contains no vertex u such that every component of $G-\{u\}$ has an order of at most $k-1$.

The terms $[X, \bar{X}], \omega_{G}(X)$, and $\xi_{k}(G)$ have been defined in Section 1. Studies have shown that $\lambda_{k}(G) \leq \xi_{k}(G)$ holds for any λ_{k}-connected graph, where $1 \leq k \leq 3[3,4,8,21]$. For $k \geq 4$, Bonsma et al. [4] observed that the inequality $\lambda_{k}(G) \leq \xi_{k}(G)$ is no longer true in general.

Let $G_{1}, G_{2}, \ldots, G_{m}$ be m copies of K_{t}, where $m \geq 1$ and $t \geq 1$. Let v be a new vertex such that v is adjacent to every vertex in $\cup_{i=1}^{m} V\left(G_{i}\right)$. Then, the resulting graph is denoted by $G_{m, t}^{*}$. When $t=1, G_{m, t}^{*}$ is a star. The following lemma shows a sufficient condition for a graph G to be λ_{k}-connected and $\lambda_{k}(G) \leq \xi_{k}(G)$ for $1 \leq k \leq \delta(G)+1$.

Lemma 2. [33] Let G be a connected graph with an order of at least $2(\delta(G)+1)$. If G is not isomorphic to $G_{m, \delta(G)}^{*}$ for any positive integer m, then $\lambda_{k}(G)$ exists, and $\lambda_{k}(G) \leq \xi_{k}(G)$ for any k with $1 \leq k \leq \delta(G)+1$.

A graph G is said to be λ_{k}-optimal if it satisfies $\lambda_{k}(G)=\xi_{k}(G)$. Some properties of $\lambda_{k^{-}}$ optimal graphs were investigated in [32]. Moreover, if $\lambda_{k}(G)$ exists and at least one component of $G-S$ contains exactly k vertices for any minimum k-extra edge-cut S, then G is said to be super- $\lambda_{k} ; \lambda_{k}(G)=\xi_{k}(G)$ if G is super $-\lambda_{k}$. The following lemma shows the necessary and sufficient condition for a λ_{k}-connected graph to be super- λ_{k}.

Lemma 3. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$ for some $k \geq 1$. Then, G is super- λ_{k} if and only if G is not λ_{k+1}-connected or $\omega_{G}(X)>\xi_{k}(G)$ holds for any vertex set $X \subseteq V(G)$ with $k+1 \leq|X| \leq\lfloor n(G) / 2\rfloor$ and $G[X], G[\bar{X}]$ being connected.

Proof. According to Lemma 1.4 in [16], G is super $-\lambda_{k}$ if and only if G is not λ_{k+1}-connected or $\lambda_{k+1}(G)>\xi_{k}(G)$ for any $k \geq 1$. Because $\omega_{G}(X)>\xi_{k}(G)$ holds for any vertex set $X \subseteq V(G)$ with $k+1 \leq|X| \leq\lfloor|V(G)| / 2\rfloor$ and $G[X]$ and $G[\bar{X}]$ being connected, $\lambda_{k+1}(G)>\xi_{k}(G)$. Therefore, the result holds.

Let $\eta_{k}(G)$ denote the maximum number of edge-disjoint connected subtrees with order k such that each subtree H satisfies $\omega_{G}(V(H))=\xi_{k}(G)$. For example, consider the graph G shown in Fig. 1. Because vertices a and b are the only two vertices with a minimum degree in this graph, $\eta_{1}(G)=2$. Moreover, because $\omega_{G}(\{(a, b)\})=\xi_{2}(G)=4$ and each of the other edges e does not satisfy the condition (i.e., $\omega_{G}(\{$ the endpoints of $\left.e\}) \neq \xi_{2}(G)=4\right), \eta_{2}(G)=1$. The equality $\eta_{3}(G)=2$ holds because we can find two edge-disjoint paths $\langle a, c, b\rangle$ and $\langle a, d, b\rangle$ such
that $\omega_{G}(\{a, c, b\})=\omega_{G}(\{a, d, b\})=\xi_{3}(G)=4$. Finally, the equality $\eta_{4}(G)=2$ holds because we can find two edge-disjoint paths $\langle a, c, d, b\rangle$ and $\langle d, a, b, c\rangle$ such that $\omega_{G}(\{a, b, c, d\})=\xi_{4}(G)=2$.

Figure 1: Illustration of $\eta_{k}(G)$ for $k=1,2,3,4$

Definition 1. Let $k \geq 1$ be an integer. The persistence of the super- λ_{k} graph G, denoted by $\rho_{k}(G)$, is the maximum integer m for which $G-F$ is still super- λ_{k} for any set $F \subseteq E(G)$ with $|F| \leq m$.

Hong et al. [14] showed that $\min \left\{\lambda_{2}(G)-\delta(G)-1, \delta(G)-1\right\} \leq \rho_{1}(G) \leq \delta(G)-1$ for any super- λ_{1} and λ_{2}-connected graph G. In addition, Hong and Xu [16] showed that $\min \left\{\lambda_{3}(G)-\right.$ $\left.\xi_{2}(G)-1, \delta(G)-1\right\} \leq \rho_{2}(G) \leq \delta(G)-1$ for any super- λ_{2} and λ_{3}-connected graph G with $\eta_{2}(G) \geq \delta(G)$. This study determines the following bounds of $\rho_{k}(G)$ for $k \geq 2$:

1. $\rho_{k}(G)=\lambda_{1}(G)-1$ if graph G is super- λ_{k}, but not λ_{k+1}-connected,
2. $\min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \eta_{2}(G)-1, \lambda_{1}(G)-1\right\} \leq \rho_{2}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{2} and λ_{3}-connected graph G,
3. $\min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \eta_{3}(G)-1, \lambda_{1}(G)-1\right\} \leq \rho_{3}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{3} and λ_{4}-connected graph G, and
4. $\min \left\{\lambda_{k+1}(G)-\xi_{k}(G)-1, \eta_{k}(G)-1, \delta(G)-k+1, \lambda_{1}(G)-1\right\} \leq \rho_{k}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{k} and λ_{k+1}-connected graph G, where $k \geq 4$.

3 Bounds on the persistence of super- λ_{3} graphs

If a graph $G=(V, E)$ has a path with endpoints u and v, then the distance between u and v, denoted by $d_{G}(u, v)$ or simply $d(u, v)$, is the shortest length of a path between u and v. If
G has no such path, then $d(u, v)=\infty$. The eccentricity of a vertex u, denoted by $\epsilon(u)$, is $\max _{v \in V} d(u, v)$.

Let H_{1} be a connected graph that has an order of at least 6 and satisfies the following conditions: (a) H_{1} contains no cycles of a length greater than 3 and (b) there exists exactly one vertex $v_{0} \in V\left(H_{1}\right)$ with a degree greater than 2 , and v_{0} has eccentricity equal to or less than 2. Fig. 2 illustrates graphs H_{1} and H_{2}. The following lemma shows the necessary and sufficient condition for a graph to be λ_{3}-connected.

Figure 2: Illustration of Lemmas 4 and 5

Lemma 4. [4] A connected graph with an order of 6 is not λ_{3}-connected if and only if G is isomorphic to H_{1} or H_{2} (Fig. 2). Furthermore, if G is λ_{3}-connected, then $\lambda_{3}(G) \leq \xi_{3}(G)$.

According to Lemma 4, we can determine the edge fault tolerance of a λ_{3}-connected graph.
Lemma 5. Let G be a λ_{3}-connected graph with $\delta(G) \geq 3$. Then, $G-F$ is a λ_{3}-connected graph and $\lambda_{3}(G-F) \leq \xi_{3}(G-F)$ for any $F \subseteq E(G)$ with $|F| \leq \lambda_{1}(G)-1$.

Proof. Assume that $G-F$ is not λ_{3}-connected. According to Lemma 4, $G-F \cong H_{1}$ or $G-F \cong H_{2}$. Consider the following scenarios.

Case 1: $\delta(G-F) \geq 2$. In this case, $G-F \cong H_{3}$ (Fig. 2) and there are at least six vertices with a degree of 2 in $G-F$. Therefore,

$$
|F|=|E(G)|-|E(G-F)| \geq\left\lceil\frac{(6 \delta(G)-6 \cdot 2)}{2}\right\rceil=3 \delta(G)-6 \geq \delta(G) \geq \lambda_{1}(G),
$$

which leads to a contradiction.

Case 2: $\delta(G-F)=1$. Because $|F| \leq \lambda_{1}(G)-1 \leq \delta(G)-1$, exactly one vertex in $G-F$ has a degree of one, and all edges of F are incident to this vertex v. Therefore, $G-F$ is not isomorphic to H_{2}. According to Lemma $4, G-F \cong H_{4}$ (Fig. 2), and at least four vertices with a degree of 2 . All edges of F are incident to the vertex with a degree of 1 ; therefore,

$$
|F|=|E(G)|-|E(G-F)| \geq 4 \delta(G)-4 \cdot 2 \geq \delta(G)+1 \geq \lambda_{1}(G)
$$

which leads to a contradiction.

Combining the two cases completes the proof.
Next, we show the bounds of $\rho_{3}(G)$ for the super- λ_{3} graph G in Theorem 1.
Theorem 1. Let G be a super $-\lambda_{3}$ graph with $\delta(G) \geq 3$. Then the following statements hold: (a) If G is not λ_{4}-connected, then $\rho_{3}(G)=\lambda_{1}(G)-1$. (b) If G is λ_{4}-connected, then $\min \left\{\lambda_{4}(G)-\right.$ $\left.\xi_{3}(G)-1, \eta_{3}(G)-1, \lambda_{1}(G)-1\right\} \leq \rho_{3}(G) \leq \lambda_{1}(G)-1$.

Proof. There exists one edge set F with size $\lambda_{1}(G)$ such that $G-F$ is disconnected. Then, $G-F$ is not super- λ_{3}, implying that $\rho_{3}(G) \leq|F|-1=\lambda_{1}(G)-1$. Next, we determine the lower bound of $\rho_{3}(G)$ according to whether G is λ_{4}-connected.
(a) To prove that $\rho_{3}(G) \geq \lambda_{1}(G)-1$, it suffices to show that for any $F \subseteq E(G)$ with $|F| \leq \lambda_{1}(G)-1, G-F$ is super- λ_{3}. According to Lemma 5, $G-F$ is λ_{3}-connected with $\lambda_{3}(G-F) \leq \xi_{3}(G-F)$. Because G is not λ_{4}-connected, $G-F$ is also not λ_{4}-connected. According to Lemma 3, $G-F$ is super- λ_{3} and (a) is proved.
(b) Let $m=\min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \eta_{3}(G)-1, \lambda_{1}(G)-1\right\}$. To prove that $\rho_{3}(G) \geq m$, it suffices to show that for any $F \subseteq E(G)$ with $|F| \leq m, G^{\prime}=G-F$ is super- λ_{3}.

Note that $|F| \leq m \leq \lambda_{1}(G)-1$. According to Lemma 5, $G-F$ is λ_{3}-connected with $\lambda_{3}(G-F) \leq \xi_{3}(G-F)$. If $G-F$ is not λ_{4}-connected, then according to Lemma 3, $G-F$ is super $-\lambda_{3}$ and (b) is proved. If $G-F$ is λ_{4}-connected, then let X be any subset of $V\left(G^{\prime}\right)$ with $|X| \geq 4$ and $|\bar{X}| \geq 4$ such that $G^{\prime}[X]$ and $G^{\prime}[\bar{X}]$ are connected. Therefore,

$$
\begin{equation*}
\omega_{G-F}(X) \geq \omega_{G}(X)-|F| \geq \lambda_{4}(G)-\left(\lambda_{4}(G)-\xi_{3}(G)-1\right)=\xi_{3}(G)+1 \tag{1}
\end{equation*}
$$

Because $|F| \leq m \leq \eta_{3}(G)-1$, there exists one subtree A with an order of 3 such that $\omega_{G}(A)=\xi_{3}(G)$ and $A=A-F$. In other words,

$$
\begin{equation*}
\xi_{3}(G)=\omega_{G}(A) \geq \omega_{G-F}(A) \geq \xi_{3}(G-F) \tag{2}
\end{equation*}
$$

According to equations (1) and (2), $\omega_{G-F}(X)>\xi_{3}(G-F)$. According to Lemma 3, $G-F$ is super- λ_{3} and (b) is proved.

Evidently, $\lambda_{1}(G)-1$ is a necessary term in the proposed lower bound formula because the value is also used as an upper bound in Theorem 1. Examples 1 and 2 demonstrate that the other values are also necessary.

Figure 3: Illustration of Examples 1 and 2

Example 1. Consider the graph $G \cong H_{5}$ shown in Fig. 3. A vertex $v \in V(H)$ is adjacent to all the other vertices in G. Because $\lambda_{1}(G)=\lambda_{3}(G)=\xi_{3}(G)=3$ and $\lambda_{4}(G)=6$, according to Lemma 3, G is super- λ_{3}. Moreover, $\min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \lambda_{1}(G)-1\right\}=2$ and $G^{\prime}=G-\left\{e_{1}, e_{2}\right\}$ is not super $-\lambda_{3}$ because $\lambda_{3}\left(G^{\prime}\right)=\lambda_{4}\left(G^{\prime}\right)=6$. Therefore, $\eta_{3}(G)-1$ is a necessary term in the proposed lower bound formula (in this case, $\eta_{3}(G)-1=0$).

Example 2. Consider the graph $G \cong H_{6}$ shown in Fig. 3; $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{2 t}\right\}$ form two separate cycles. The vertices u_{i} and v_{j} are adjacent when $j \in\{2 i-1,2 i\}$. Because $\lambda_{1}(G)=4, \lambda_{3}(G)=\xi_{3}(G)=6$, and $\lambda_{4}(G)=7$, according to Lemma 3, G is super- λ_{3}. Moreover, $\min \left\{\eta_{3}(G)-1, \lambda_{1}(G)-1\right\}=3$ and $G^{\prime}=G-\{e\}$ is not super- λ_{3} because $\lambda_{3}\left(G^{\prime}\right)=\lambda_{4}\left(G^{\prime}\right)=6$. Therefore, $\lambda_{4}(G)-\xi_{3}(G)-1$ is a necessary term in the proposed lower bound formula (in this case, $\left.\lambda_{4}(G)-\xi_{3}(G)-1=0\right)$.

H_{7}

Figure 4: Illustration of Example 3

Example 3. Consider the graph $G \cong H_{7}$ shown in Fig. 4; $\rho_{3}(G)=2$. Because $\lambda_{1}(G)=\lambda_{3}(G)=$ $\xi_{3}(G)=3$ and $\lambda_{4}(G)=6$, according to Lemma 3, G is super- λ_{3}. According to Theorem 1, $\min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \eta_{3}(G)-1, \lambda_{1}(G)-1\right\}=2=\lambda_{1}(G)-1$. Therefore, the lower bound given in Theorem 1 is sharp.

Corollary 1. Let G be a super- λ_{2} and λ_{3}-connected graph. Then, $\min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \eta_{2}(G)-\right.$ $\left.1, \lambda_{1}(G)-1\right\} \leq \rho_{2}(G) \leq \lambda_{1}(G)-1$.

Proof. Note that $n(G) \geq 6$ because G is λ_{3}-connected. Let $m=\min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \eta_{2}(G)-\right.$ $\left.1, \lambda_{1}(G)-1\right\}$. We first prove that $G-F$ is λ_{2}-connected with $\lambda_{2}(G-F) \leq \xi_{2}(G-F)$ for any $F \subseteq E(G)$ with $|F| \leq m$.

When $\delta(G)=1,|F| \leq \lambda_{1}(G)-1 \leq \delta(G)-1 \leq 0$ and $G=G-F$. Therefore, $G=G-F$ is not a star because G is λ_{3}-connected. When $\delta(G) \geq 2$, assume that $G-F$ is a star, and there exists $n(G)-1$ vertices with a degree of 1 in $G-F$. Because $\delta(G) \geq 2$, at least $\delta(G)-1$ edges of F are incident to each of the aforementioned $n(G)-1$ vertices. Consequently,

$$
\left\lceil\frac{([n(G)-1][\delta(G)-1])}{2}\right\rceil \leq|E(G)|-|E(G-F)|=|F| \leq \lambda_{1}(G)-1 \leq \delta(G)-1
$$

In other words, $n(G) \leq 3$, which leads to a contradiction. Therefore, $G-F$ is not a star. According to the results of [3,21], $G-F$ is λ_{2}-connected with $\lambda_{2}(G-F) \leq \xi_{2}(G-F)$ if $G-F$ is not a star; therefore, $G-F$ is λ_{2}-connected with $\lambda_{2}(G-F) \leq \xi_{2}(G-F)$. Consequently, this result of Corollary 1 can be proved using a method similar to that used in Theorem 1.

Figure 1 of [16] shows that the lower bound given in Corollary 1 is sharp.

4 Bounds on the persistence of super $-\lambda_{k}$ graphs for $k \geq 4$

First, we determine the edge fault tolerance of λ_{k}-connected graphs for a positive integer $k \geq 2$.
Lemma 6. Let G be a λ_{k}-connected graph with $2 \leq k \leq \delta(G)$, and $n(G) \geq 3 \delta(G)-2$. Then, $G-F$ is λ_{k}-connected graph for any $F \subseteq E(G)$ with $|F| \leq \lambda_{1}(G)-1$.

Proof. Apparently, $G-F$ is connected because $|F| \leq \lambda_{1}(G)-1$. If $G-F$ is not λ_{k}-connected, according to Lemma 1 , there exists $n(G)-1$ vertices with a degree of at most $k-1$ in $G-F$. Because $\delta(G) \geq k$, at least one edge of F is incident to each of the aforementioned $n(G)-1$ vertices. Thus,

$$
|F| \geq\lceil(n(G)-1) / 2\rceil \geq\lceil(3 \delta(G)-3) / 2\rceil>\delta(G)-1 \geq \lambda_{1}(G)-1,
$$

which leads to a contradiction. Therefore, $G-F$ is a λ_{k}-connected graph.
Now, let G be a super- λ_{k} graph, but not λ_{k+1}-connected for $k \geq 2$. We show the bounds of $\rho_{k}(G)$ in Theorem 2.

Theorem 2. Let G be a super- λ_{k} graph with $2 \leq k \leq \delta(G)$, and $n(G) \geq 3 \delta(G)-2$. If G is not λ_{k+1}-connected, then $\rho_{k}(G)=\lambda_{1}(G)-1$.

Proof. There exists one edge set F with size $\lambda_{1}(G)$ such that $G-F$ is disconnected. Then, $G-F$ is not super- λ_{k}. We have $\rho_{k}(G) \leq|F|-1=\lambda_{1}(G)-1$.

To prove that $\rho_{k}(G) \geq \lambda_{1}(G)-1$, it suffices to show that for any $F \subseteq E(G)$ with $|F| \leq$ $\lambda_{1}(G)-1, G-F$ is super $-\lambda_{k}$. According to Lemma 6, $G-F$ is λ_{k}-connected. Because G is not λ_{k+1}-connected, $G-F$ is also not λ_{k+1}-connected. Thus, every minimum k-extra edge-cut of $G-F$ isolates at least one connected subgraph of order k. Therefore, $G-F$ is super $-\lambda_{k}$ and this theorem is proved.

Next, we determine the bounds of $\rho_{k}(G)$ for a super- λ_{k} and λ_{k+1}-connected graph G.
Lemma 7. Let G be a λ_{k}-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G), k \leq \delta(G)+1$, and $n(G) \geq$ $2 \delta(G)+2$. Then, $G-F$ is a λ_{k}-connected graph and $\lambda_{k}(G-F) \leq \xi_{k}(G-F)$ for any $F \subseteq E(G)$ with $|F| \leq \min \left\{\delta(G)-k+1, \lambda_{1}(G)-1\right\}$.

Proof. Because $|F| \leq \lambda_{1}(G)-1, G-F$ is connected. If $G-F$ is not isomorphic to $G_{m, k-1}^{*}$ for any positive integer m, according to Lemma $2, G-F$ is λ_{k}-connected and $\lambda_{k}(G-F) \leq \xi_{k}(G-F)$ because $n(G) \geq 2 \delta(G)+2 \geq 2 \delta(G-F)+2$.

Therefore, we consider only the case when $G-F$ is isomorphic to $G_{m, k-1}^{*}$ for a positive integer m. Consider the following scenarios.

Case 1: $\delta(G) \geq k$. Because $G-F \cong G_{m, k-1}^{*}$, there exists $n(G)-1$ vertices with degree $k-1$ in $G-F$. Because $\delta(G) \geq k$, at least $\delta(G)-k+1$ edges of F are incident to each of the aforementioned $n(G)-1$ vertices. Therefore,

$$
\left\lceil\frac{([n(G)-1][\delta(G)-k+1])}{2}\right\rceil \leq|E(G)|-|E(G-F)|=|F| \leq \delta(G)-k+1
$$ which implies that $n(G) \leq 3$ and leads to a contradiction.

Case 2: $\delta(G)=k-1$. In this case, $|F|=\delta(G)-k+1=0$ and $G-F=G$. Evidently, $G-F$ is a λ_{k}-connected graph and $\lambda_{k}(G-F) \leq \xi_{k}(G-F)$.

Theorem 3. Let G be a super- λ_{k} graph with $k \geq 4$ and $n(G) \geq 2 \delta(G)+2$. If G is λ_{k+1}-connected, then $\min \left\{\lambda_{k+1}(G)-\xi_{k}(G)-1, \eta_{k}(G)-1, \delta(G)-k+1, \lambda_{1}(G)-1\right\} \leq \rho_{k}(G) \leq \lambda_{1}(G)-1$.

Proof. There exists one edge set F with size $\lambda_{1}(G)$ such that $G-F$ is disconnected. Then, $G-F$ is not super- λ_{k}. We have $\rho_{k}(G) \leq|F|-1=\lambda_{1}(G)-1$.

Let $m=\min \left\{\lambda_{k+1}(G)-\xi_{k}(G)-1, \eta_{k}(G)-1, \delta(G)-k+1, \lambda_{1}(G)-1\right\}$. To prove that $\rho_{k}(G) \geq m$, it suffices to show that for any $F \subseteq E(G)$ with $|F| \leq m, G^{\prime}=G-F$ is super $-\lambda_{k}$. Note that $|F| \leq m \leq \min \left\{\delta(G)-k+1, \lambda_{1}(G)-1\right\}$; therefore, according to Lemma $7, G-F$ is λ_{k}-connected with $\lambda_{k}(G-F) \leq \xi_{k}(G-F)$.

If $G-F$ is not λ_{k+1}-connected, according to Lemma $3, G-F$ is super $-\lambda_{k}$ and this theorem is proved. If $G-F$ is λ_{k+1}-connected, then let X be any subset of $V\left(G^{\prime}\right)$ with $|X| \geq k+1$ and $|\bar{X}| \geq k+1$ such that $G^{\prime}[X]$ and $G^{\prime}[\bar{X}]$ are connected. Therefore,

$$
\begin{equation*}
\omega_{G-F}(X) \geq \omega_{G}(X)-|F| \geq \lambda_{k+1}(G)-\left(\lambda_{k+1}(G)-\xi_{k}(G)-1\right)=\xi_{k}(G)+1 \tag{3}
\end{equation*}
$$

Because $|F| \leq m \leq \eta_{k}(G)-1$, there exists one subtree A with order k such that $\omega_{G}(A)=\xi_{k}(G)$ and $A=A-F$. In other words,

$$
\begin{equation*}
\xi_{k}(G)=\omega_{G}(A) \geq \omega_{G-F}(A) \geq \xi_{k}(G-F) . \tag{4}
\end{equation*}
$$

According to equations (3) and (4), $\omega_{G-F}(X)>\xi_{k}(G-F)$. According to Lemma 3, $G-F$ is super $-\lambda_{k}$ and this theorem is proved.

5 Bounds on the persistence of product graphs

In this section, the results obtained in Sections 3 and 4 are applied to product graphs. The product graph $G * H$ of two graphs G and H was introduced in [2].

Definition 2. [2] Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs. Let $\pi_{x y}$ be a permutation of $\mathrm{V}(\mathrm{H})$ such that $\pi_{x y}^{-1}=\pi_{y x}$ for each edge $x y \in E(G)$. Then, the product graph $G * H$ is the graph with $V(G) \times V(H)$ as its vertex set, and two vertices, $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$, are adjacent in $G * H$ if and only if either $x=y$ and $x^{\prime} y^{\prime} \in E(H)$ or $x y \in E(G)$ and $y^{\prime}=\pi_{x y}\left(x^{\prime}\right)$.

Lemma 8. [1] Let $k \geq 1$ be an integer. Let G be an r-regular connected graph and let H be an s-regular connected graph, with $r \geq 2 k-1$ and $s \geq r+2 k-1$, respectively. Assume that $\lambda_{1}(G)|V(H)| \geq 2 k(s-k)+2$ and H is λ_{k+1}-connected with $\lambda_{k+1}(H) \geq 2(s-k)$. Then, the $(r+s)$-regular graph $G * H$ is super- λ_{k}.

According to Lemma 8, Corollary 1, and $\xi_{2}(G)=2 r+2 s-2$ for any $(r+s)$-regular graph G, the following result is true.

Corollary 2. Let G be an r-regular connected graph and let H be an s-regular connected graph, with $r \geq 3, s \geq r+3$. Suppose that $\lambda_{1}(G)|V(H)| \geq 4 s-6$, and also that H is λ_{3}-connected with $\lambda_{3}(H) \geq 2 s-4$. Then the $(r+s)$-regular graph $G * H$ is super- λ_{2} and $\min \left\{\lambda_{3}(G * H)-2 r-\right.$ $\left.2 s+1, \eta_{2}(G * H)-1, \lambda_{1}(G * H)-1\right\} \leq \rho_{2}(G * H) \leq \lambda_{1}(G * H)-1$.

If G is an $(r+s)$-regular graph, then $\xi_{3}(G)=3 r+3 s-6$ if G contains a triangle or $\xi_{3}(G)=3 r+3 s-4$ if G contains no triangle. According to Lemma 8 and Theorem 1, the
following results are true.
Corollary 3. Let G be an r-regular connected graph and let H be an s-regular connected graph, with $r \geq 5$ and $s \geq r+5$, respectively. Assume that $\lambda_{1}(G)|V(H)| \geq 6 s-16$ and H is λ_{4}-connected with $\lambda_{4}(H) \geq 2 s-6$. If H has a triangle subgraph, then the $(r+s)$-regular graph $G * H$ is super $-\lambda_{3}$ and $\min \left\{\lambda_{4}(G * H)-3 r-3 s+5, \eta_{3}(G * H)-1, \lambda_{1}(G * H)-1\right\} \leq \rho_{3}(G * H) \leq \lambda_{1}(G * H)-1$. Corollary 4. Let G be an r-regular connected graph and let H be an s-regular connected graph, with $r \geq 5$ and $s \geq r+5$, respectively. Assume that $\lambda_{1}(G)|V(H)| \geq 6 s-16$ and H is λ_{4}-connected with $\lambda_{4}(H) \geq 2 s-6$. If G and H have no triangle subgraph, then the $(r+s)$-regular graph $G * H$ is super $-\lambda_{3}$ and $\min \left\{\lambda_{4}(G * H)-3 r-3 s+3, \eta_{3}(G * H)-1, \lambda_{1}(G * H)-1\right\} \leq \rho_{3}(G * H) \leq \lambda_{1}(G * H)-1$.

According to Lemma 8 and Theorem 3, the following result is true.
Corollary 5. Let $k \geq 4$ be an integer. Let G be an r-regular connected graph and let H be an s-regular connected graph, with $r \geq 2 k-1$ and $s \geq r+2 k-1$, respectively. Assume that $\lambda_{1}(G)|V(H)| \geq 2 k(s-k)+2$ and H is λ_{k+1}-connected with $\lambda_{k+1}(H) \geq 2(s-k)$. Then, the $(r+s)$-regular graph $G * H$ is super $-\lambda_{k}$ and $\min \left\{\lambda_{k+1}(G * H)-\xi_{k}(G * H)-1, \eta_{k}(G * H)-1, r+\right.$ $\left.s-k+1, \lambda_{1}(G * H)-1\right\} \leq \rho_{k}(G * H) \leq \lambda_{1}(G * H)-1$.

In [1], the super $-\lambda_{k}$ property of a product of two complete graphs was proved.
Lemma 9. [1] For all integers $k \geq 1, r \geq 2 k+1$, and $s \geq r+2 k-1$, the graph $K_{r} * K_{s}$ is super- λ_{j} for every $1 \leq j \leq k$.

According to Lemma 9, Corollary 1, and $\eta_{2}(G)=|E(G)|$, for any regular graph G, the following result is true.

Corollary 6. For all integers $r \geq 5$ and $s \geq r+3$, the graph $G=K_{r} * K_{s}$ is super $-\lambda_{2}$ and $\min \left\{\lambda_{3}(G)-2 r-2 s+5, \lambda_{1}(G)-1\right\} \leq \rho_{2}(G) \leq \lambda_{1}(G)-1$.

For any complete graph K_{s} for $s \geq 4$, we can prove that $\eta_{3}\left(K_{s}\right) \geq s-1$ by induction on s. When $s=4$, there are three edge-disjoint paths with an order of 3 . Therefore, $\eta_{3}\left(K_{4}\right)=3 \geq s-1$. Assume that the result holds when $s \leq t$. Consider $s=t+1>4$, and let v be a vertex of K_{s}.

According to the induction hypothesis, there are at least $(s-2)$ edge-disjoint paths with an order of 3 in $K_{s}-\{v\}$. The vertex v and two other vertices in $K_{s}-\{v\}$ can form additional edge-disjoint paths with an order of 3 . Then, $\eta_{3}\left(K_{s}\right) \geq s-1$. Moreover, $\eta_{3}\left(K_{r} * K_{s}\right) \geq r(s-1) \geq$ $r+s-2 \geq \lambda_{1}\left(K_{r} * K_{s}\right)$ for $r \geq 1$ and $s \geq 4$. According to Lemma 9 and Theorem 1, the following result is true.

Corollary 7. For all integers $r \geq 7$ and $s \geq r+5$, the graph $G=K_{r} * K_{s}$ is super $-\lambda_{3}$ and $\min \left\{\lambda_{4}(G)-3 r-3 s+11, \lambda_{1}(G)-1\right\} \leq \rho_{3}(G) \leq \lambda_{1}(G)-1$.

We have

$$
\xi_{k}\left(K_{r} * K_{s}\right)=k(r+s-2)-k(k-1)=k(r+s-1)-k^{2} .
$$

According to Lemma 9 and Theorem 3, the following result is true.
Corollary 8. For all integers $k \geq 4, r \geq 2 k+1$, and $s \geq r+2 k-1$, the graph $K_{r} * K_{s}$ is super $-\lambda_{k}$ and $\min \left\{\lambda_{k+1}(G)+k^{2}-k(r+s-1)-1, \eta_{k}(G)-1, r+s-k-1, \lambda_{1}(G)-1\right\} \leq \rho_{2}(G) \leq \lambda_{1}(G)-1$.

6 Conclusion

Fault tolerance is critical for retaining a system's reliability. This study investigates the edge fault tolerance of super $-\lambda_{k}$ graphs. The bounds of this result for $k \in\{1,2\}$ have recently been presented. In this paper, we show that (1) $\rho_{k}(G)=\lambda_{1}(G)-1$ if the graph G is super- λ_{k}, but not λ_{k+1}-connected for $k \geq 2$, $(2) \min \left\{\lambda_{3}(G)-\xi_{2}(G)-1, \eta_{2}(G)-1, \lambda_{1}(G)-1\right\} \leq \rho_{2}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{2} and λ_{3}-connected graph G, (3) $\min \left\{\lambda_{4}(G)-\xi_{3}(G)-1, \eta_{3}(G)-1, \lambda_{1}(G)-1\right\} \leq$ $\rho_{3}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{3} and λ_{4}-connected graph G, and (4) $\min \left\{\lambda_{k+1}(G)-\xi_{k}(G)-\right.$ $\left.1, \eta_{k}(G)-1, \delta(G)-k+1, \lambda_{1}(G)-1\right\} \leq \rho_{k}(G) \leq \lambda_{1}(G)-1$ for any super- λ_{k} and λ_{k+1}-connected graph G, where $k \geq 4$. Future studies should evaluate tighter bounds of $\rho_{k}(G)$ for graphs that satisfy specific conditions.

References

[1] C. Balbuena and X. Marcote : The k-restricted edge-connectivity of a product of graphs. Discrete Applied Mathematics 161(1), 52-59 (2013)
[2] J. C. Bermond, C. Delorme, and G. Farhi : Large graphs with given degree and diameter II. Journal of Combinatorial Theory, Series B, 36(1), 32V48 (1984)
[3] F. T. Boesch and J. F. Wang : Super line-connectivity properties of circulant graphs. SIAM Journal on Algebraic Discrete Methods 7(1), 89-98 (1986)
[4] P. Bonsma, N Ueffing, and L. Volkmann : Edge-cuts leaving components of order at least three. Discrete Mathematics 256(1), 431-439 (2002)
[5] N. W. Chang and S. Y. Hsieh : (2,3)-Extraconnectivities of hypercube-like networks. Journal of Computer and System Sciences 79(5), 669-688 (2013)
[6] N. W. Chang, C. Y. Tsai, and S. Y. Hsieh : On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes. IEEE Transactions on Computers 63(6), 1594-1600 (2014)
[7] E. Cheng, M. J. Lipman, and H. Park: Super connectivity of star graphs, alternating group graphs and split-stars. Ars Combinatoria 59, 107-116 (2001)
[8] A. H. Esfahanian and S. L. Hakimi : On computing a conditional edge-connectivity of a graph. Information Processing Letters 27(4), 195-199 (1988)
[9] J. Fàbrega and M. A. Fiol : Extraconnectivity of graphs with large girth. Discrete Mathematics 127(1), 163-170 (1994)
[10] J. Fàbrega and M. A. Fiol : On the extraconnectivity of graphs. Discrete Mathematics 155(1), 49-57 (1996)
[11] F. Harary : Conditional connectivity. Networks 13, 347-357 (1983)
[12] A. Hellwig, L. Volkmann : Maximally edge-connected and vertex-connected graphs and digraphs: a survey. Discrete Mathematics 308(15), 3265-3296 (2008)
[13] W. S. Hong and S. Y. Hsieh : Extra edge connectivity of hypercube-like networks. International Journal of Parallel, Emergent and Distributed Systems 28(2), 123-133 (2013)
[14] Y. Hong, J. Meng, and Z. Zhang : Edge fault tolerance of graphs with respect to super edge connectivity. Discrete Applied Mathematics 160(4), 579-587 (2012)
[15] Y. Hong and Z. Zhang : Vertex fault tolerance of optimal- κ graphs and super- κ graphs. Information Processing Letters 109(20), 1151-1155 (2009)
[16] Z. M. Hong and J. M. Xu : Vulnerability of super edge-connected networks. Theoretical Computer Science 520, 75-86 (2014)
[17] S. Y. Hsieh and Y. H. Chang : Extraconnectivity of k-ary n-cube networks. Theoretical Computer Science 443(20), 63-69 (2012)
[18] M. L̈u, G. L. Chen, and X. R. Xu : On super edge-connectivity of product graphs. Applied Mathematics and Computation 207(2), 300-306 (2009)
[19] J. Meng : Connectivity of vertex and edge transitive graphs. Discrete applied mathematics 127(3), 601-613 (2003)
[20] J. X. Meng : Optimally super-edge-connected transitive graphs. Discrete Mathematics 260(1), 239-248 (2003)
[21] J. X. Meng and Y. H. Ji : On a kind of restricted edge connectivity of graphs. Discrete applied mathematics 117, 183-193 (2002)
[22] O. R. Oellermann : Connectivity and edge-connectivity in graphs: a survey. Congressus Numerantium 116, 231-252 (1996)
[23] J. Ou : Edge cuts leaving components of order at least m. Discrete mathematics 305(1), 365-371 (2005)
[24] L. Shang and H. Zhang : Sufficient conditions for graphs to be λ^{\prime}-optimal and super- λ^{\prime}. Networks 49(3), 234-242 (2007)
[25] L. Shang and H. Zhang : Degree conditions for graphs to be λ_{3}-optimal and super- λ_{3}. Discrete Mathematics 309(10), 3336-3345 (2009)
[26] D. Wang and M. Lu : Edge fault tolerance of super edge connectivity for three families of interconnection networks. Information Sciences 188, 260-268 (2012)
[27] M. Wang and Q. Li : Conditional edge connectivity properties, reliability comparison and transitivity of graphs. Discrete Mathematics 258, 205-214 (2002)
[28] B. Wang and Z. Zhang : On cyclic edge-connectivity of transitive graphs. Discrete Mathematics 309(13), 4555-4563 (2009)
[29] S. Wang, S. Lin, and C. Li : Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2. Discrete Mathematics, 309(4), 908-919 (2009)
[30] J. M. Xu : On conditional edge-connectivity of graphs. Acta Mathematicae Applicatae Sinica 16(4), 414V419 (2000)
[31] J. M. Xu and Q. Liu : 2-restricted edge connectivity of vertex-transitive graphs. Australasian Journal of Combinatorics 30, 41-50 (2004)
[32] J. Xu : Topological structure and analysis of interconnection networks. Springer Publishing Company, Incorporated (2010)
[33] Z. Zhang and J. Yuan : A proof of an inequality concerning k-restricted edge connectivity. Discrete mathematics 304(1), 128-134 (2005)
[34] W. Zhao and J. Ou: On restricted edge-connectivity of lexicographic product graphs. International Journal of Computer Mathematics 91(8), 1618-1626 (2014)

[^0]: *A preliminary version of this paper appeared in Proceedings of The 21st Annual International Computing and Combinatorics Conference (COCOON'15), under the title "Bounds for the Super Extra Edge Connectivity of Graphs," Springer-Verlag Lecture Notes in Computer Science series (LNCS) 9198, pp. 624-634, 2015.
 ${ }^{\dagger}$ This work was supported in part by the Ministry of Science and Technology under grant MOST-104-2811-E-006-016.
 ${ }^{\ddagger}$ E-mail: p78981037@mail.ncku.edu.tw
 ${ }^{\text {§ }}$ Corresponding author. E-mail: hsiehsy@mail.ncku.edu.tw
 『E-mail: ralf.klasing@labri.fr

