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Abstract

Edge connectivity is a crucial measure of the robustness of a network. Several edge
connectivity variants have been proposed for measuring the reliability and fault tolerance
of networks under various conditions. Let G be a connected graph, S be a subset of edges
in G, and k be a positive integer. If G − S is disconnected and every component has at
least k vertices, then S is a k-extra edge-cut of G. The k-extra edge-connectivity, denoted
by λk(G), is the minimum cardinality over all k-extra edge-cuts of G. If λk(G) exists and at
least one component of G−S contains exactly k vertices for any minimum k-extra edge-cut
S, then G is super-λk. Moreover, when G is super-λk, the persistence of G, denoted by
ρk(G), is the maximum integer m for which G − F is still super-λk for any set F ⊆ E(G)
with |F | ≤ m. Previously, bounds of ρk(G) were provided only for k ∈ {1, 2}. This study
provides the bounds of ρk(G) for k ≥ 2.
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1 Introduction

Connectivity is a crucial measure of the reliability and fault tolerance of networks. Let G be

the underlying network. A vertex set X of G is a vertex cut of a connected graph G if G − X

is disconnected. An edge set S of G is an edge-cut of G if G − S is disconnected. A classic

measure for the fault tolerance and reliability of a communication network is the connectivity

of G, denoted by κ(G), which is the minimum cardinality of a vertex set S such that G − S is

disconnected or has only one vertex. Another measure is the edge-connectivity of G, denoted by

λ(G), which is the minimum cardinality of an edge-cut. The remaining graph is connected when

the number of vertices deleted is less than κ(G) or the number of edges deleted is less than λ(G).

Therefore, the higher the κ(G) (λ(G)) is, the more reliable the network.

Harary [11] discussed the minimum cardinality of a set of vertices (edges) whose deletion dis-

connects the graph, and every remaining component satisfies a graph-theoretic property. Given

a graph-theoretic property P , let κ(G;P) be the minimum cardinality of a vertex-cut such that

every remaining component satisfies P , where the number of vertices is more than two. The

notation λ(G;P) for the special edge-cut of G can be defined similarly. Numerous studies have

considered special cases of κ(G;P). For example, Xu et al. [30,31] restricted P to be “no vertex

of a degree less than h” for an integer h ≥ 0. Wang and Zhang [28] discussed a case in which P

is “at least two of components contain cycles.”

Let k ≥ 1 be an integer. Fàbrega and Fiol [9,10] generalized the concept of connectivity and

edge-connectivity proposed by Harary [11], to k-extra connectivity and k-extra edge-connectivity.

A vertex-cut X of G is a k-extra vertex-cut of G if each component of G − X has at least k

vertices. In other words, κ(G;P ) = κk(G) and λ(G;P ) = λk(G) in which P express “the number

of vertices is more than k. A edge-cut X of G is a k-extra edge-cut of G if each component of

G − X has at least k vertices. Then, the k-extra connectivity (k-extra edge-connectivity) of G,

denoted by κk(G) (λk(G)), is the minimum cardinality of a k-extra vertex-cut (k-extra edge-cut)

of G. Extra connectivity and extra edge-connectivity in certain classes of graphs have received

considerable attention in recent years [1, 5, 6, 13, 17, 18, 20, 21, 27, 34]. Hsieh and Chang [17]
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discussed the 3-extra connectivity of a k-ary n-cube for k ≥ 4 and n ≥ 5. Chang et al. [6]

discussed the 4-extra connectivity and 4-extra edge-connectivity of folded hypercubes. Chang

and Hsieh [5] investigated the {3, 4}-extra connectivity of hypercube-like networks. In addition,

Meng and Ji [21] showed that regular graphs with an order of more than 5 have at least one

3-extra edge-cut. Hong and Hsieh [13] discussed the 4-extra edge-connectivity of hypercube-like

networks. L̈u et al. [18] derived the 2-extra edge-connectivity of product graphs. Furthermore,

Balbuena and Marcote [1] discussed the k-extra edge-connectivity of product graphs for k ≥ 3.

Zhao and Ou [34] derived the 2-extra edge-connectivity of lexicographic product graphs.

Given a vertex subset X ⊆ V (G), the notation [X,X] is used to denote the set of edges

having one endpoint in X and another endpoint in X, where X = V (G)−X. Apparently, [X,X]

is an edge-cut of G. The notation G[X] is used to denote the subgraph of G induced by X.

Let ωG(X) = |[X,X]| and ξk(G) = min{ωG(X) : X ⊆ V (G), |X| = k, and G[X] is connected}.

Obviously, ξk(G) is always an upper bound of κk(G) and λk(G). If κk(G) = ξk(G), then G

is said to be maximally k-connected (or optimal-κk). If λk(G) = ξk(G), then G is said to be

maximally k-edge-connected (or optimal-λk). The properties of optimal-κ1 and optimal-λk for

certain classes of graphs have been discussed [1,12,18,22,24,25,29]. Hellwig et al. [12] discussed

properties of optimal-κ1 and optimal-λ1 graphs. L̈u et al. [18] stated sufficient conditions for

product graphs to be optimal-λ2, and Shang and Zhang [24,25] provided sufficient conditions for

various graphs to be optimal-λ2 and optimal-λ3. Wang et al. [29] provided sufficient conditions

for graphs with a diameter of 2 to be optimal-λk for k ≥ 1. In addition, Balbuena and Marcote [1]

provided sufficient conditions for product graphs to be optimal-λk for k ≥ 3.

Graph G is super k-extra connected (super-κk) if every minimum k-extra vertex-cut of G

isolates a component with order k. Graph G is super k-extra edge-connected (super-λk) if every

minimum k-extra edge-cut of G isolates a component with order k. The properties of super-κ1

and super-λk of certain classes of graphs have been discussed [1, 7, 19, 24, 25, 29, 34]. Meng [19]

provided sufficient conditions for connected vertex-transitive and edge-transitive graphs to be

super-κ1. Shang and Zhang [24,25] provided sufficient conditions for various graphs to be super-
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Table 1: Summary of Related Studies (ηk(G) is the maximum number of edge-disjoint connected
subtrees with order k such that each subtree H satisfies ωG(V (H)) = ξk(G).)

The properties which the graph
G satisfies

The elements
of F

Lower bound of |F | Upper bound
of |F |

Property
of G − F

Ref.

Optimal-κ1, η1(G) ≥ δ(G), and
κ2(G) exists

Vertices min{κ2(G) − δ(G), δ(G) − 1} δ(G) − 1 Optimal-κ1 [15]

Super-κ1, η1(G) ≥ δ(G), and
κ2(G) exists

Vertices min{κ2(G) − δ(G) − 1, δ(G) − 1} δ(G) − 1 Super-κ1 [15]

Super-λ1 and λ2(G) exists Edges min{λ2(G) − δ(G) − 1, δ(G) − 1} δ(G) − 1 Super-λ1 [14]

Super-λ2,η2(G) ≥ δ(G), and λ3(G)
exists

Edges min{λ3(G) − ξ2(G) − 1, δ(G) − 1} δ(G) − 1 Super-λ2 [16]

Super-λk and λk+1(G) does not ex-
ist for 2 ≤ k ≤ δ(G)

Edges λ(G) − 1 λ(G) − 1 Super-λk this
paper

Super-λ2 and λ3(G) exists Edges min{λ3(G) − ξ2(G) − 1, η2(G) −
1,λ(G) − 1}

λ(G) − 1 Super-λ2 this
paper

Super-λ3 and λ4(G) exists Edges min{λ4(G) − ξ3(G) − 1, η3(G) −
1,λ(G) − 1}

λ(G) − 1 Super-λ3 this
paper

Super-λk and λk+1(G) exists for
k ≥ 4

Edges min{λk+1(G)− ξk(G)−1, ηk(G)−
1, δ(G) − k + 1,λ(G) − 1}

λ(G) − 1 Super-λk this
paper

λ2 and super-λ3. Furthermore, Zhao and Ou [34] provided sufficient conditions for lexicographic

product graphs to be super-λ2, and Balbuena and Marcote [1] provided sufficient conditions for

product graphs to be super-λk for k ≥ 3.

Link (edge) and process (vertex) faults may occur when a network is activated; therefore, it

is crucial to consider faulty networks. Recently, Hong and Zhang [15] discussed the vertex fault

tolerance of optimal-κ1 and super-κ1 graphs. Hong et al. [14] discussed the edge fault tolerance

of super-λ1 graphs, and Wang and Lu [26] examined the bounds in graphs in detail. Hong and

Xu [16] discussed the edge fault tolerance of super-λ2 graphs under a condition. In this paper,

we discuss the edge fault tolerance of super-λk graphs for k ≥ 2. In other words, we determine

the number of faulty edges allowed for graph to remain super-λk. We illustrate the bounds when

k = 2, k = 3, and k ≥ 4. (More details about the results are provided in Table 1.)

The remainder of this paper is organized as follows. Section 2 provides definitions and nota-

tion. Section 3 shows the edge fault tolerance of super-λ3 graphs. Section 4 shows the edge fault

tolerance of super-λk graphs when k ≥ 4. Section 4 shows the edge fault tolerance of product

graphs with some properties. Section 6 provides concluding remarks.
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2 Preliminaries

An undirected graph G = (V,E) is a pair of the vertex set V and edge set E, where V is a finite

set and E is a subset of {(u, v)| (u, v) is an unordered pair of V }. V (G) and E(G) denote the

vertex set and edge set of G, respectively. Let n(G) = |V (G)| be the order of G. Two vertices

u and v are adjacent if (u, v) is an edge in G. The edge (u, v) is incident to u and v, and u

and v are the endpoints of (u, v). The degree of vertex v, denoted by dG(v), is the number of

edges incident to it. Let δ(G) = min{dG(v)| v ∈ V (G)}. A path ⟨v1, v2, . . . , vt⟩ is a sequence of

distinct vertices such that any two consecutive vertices are adjacent. Vertices v1 and vt are the

endpoints of the path. A cycle ⟨v0, v1, . . . , vt, v0⟩ for t ≥ 2 is a sequence of vertices such that any

two consecutive vertices are adjacent, where v0, v1, . . . , vt are all distinct. A complete graph is a

simple graph whose vertices are pairwise adjacent; a (unlabeled) complete graph with n vertices

is denoted Kn

An isomorphism from a simple graph G to a simple graph H is a one-to-one and onto function

π : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (π(u), π(v)) ∈ E(H). We say that “G

is isomorphic to H”, written G ∼= H, if there is an isomorphism from G to H.

Let k ≥ 1 be an integer. An edge set S ⊆ E(G) is a k-extra edge-cut if G−S is disconnected

and each component has at least k vertices. The k-extra edge-connectivity of G, denoted by

λk(G), is defined as the minimum cardinality over all k-extra edge-cuts of G. If λk(G) exists,

then G is said to be λk-connected and λ(G) = λ1(G) ≤ λ2(G) ≤ λ3(G) ≤ · · · ≤ λk(G). The

following lemma shows the necessary and sufficient condition for a graph to be λk-connected.

Lemma 1. [23] Let k ≥ 1 be an integer and G be a connected graph. If G has an order of at

least 3k−2, then G is a λk-connected graph if and only if G contains no vertex u such that every

component of G− {u} has an order of at most k − 1.

The terms [X,X], ωG(X), and ξk(G) have been defined in Section 1. Studies have shown

that λk(G) ≤ ξk(G) holds for any λk-connected graph, where 1 ≤ k ≤ 3 [3, 4, 8, 21]. For k ≥ 4,

Bonsma et al. [4] observed that the inequality λk(G) ≤ ξk(G) is no longer true in general.
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Let G1, G2, . . . , Gm be m copies of Kt, where m ≥ 1 and t ≥ 1. Let v be a new vertex such

that v is adjacent to every vertex in ∪m
i=1V (Gi). Then, the resulting graph is denoted by G∗

m,t.

When t = 1, G∗
m,t is a star. The following lemma shows a sufficient condition for a graph G to

be λk-connected and λk(G) ≤ ξk(G) for 1 ≤ k ≤ δ(G) + 1.

Lemma 2. [33] Let G be a connected graph with an order of at least 2(δ(G) + 1). If G is not

isomorphic to G∗
m,δ(G) for any positive integer m, then λk(G) exists, and λk(G) ≤ ξk(G) for any

k with 1 ≤ k ≤ δ(G) + 1.

A graph G is said to be λk-optimal if it satisfies λk(G) = ξk(G). Some properties of λk-

optimal graphs were investigated in [32]. Moreover, if λk(G) exists and at least one component

of G − S contains exactly k vertices for any minimum k-extra edge-cut S, then G is said to

be super-λk; λk(G) = ξk(G) if G is super-λk. The following lemma shows the necessary and

sufficient condition for a λk-connected graph to be super-λk.

Lemma 3. Let G be a λk-connected graph with λk(G) ≤ ξk(G) for some k ≥ 1. Then, G

is super-λk if and only if G is not λk+1-connected or ωG(X) > ξk(G) holds for any vertex set

X ⊆ V (G) with k + 1 ≤ |X| ≤ ⌊n(G)/2⌋ and G[X], G[X] being connected.

Proof. According to Lemma 1.4 in [16], G is super-λk if and only if G is not λk+1-connected or

λk+1(G) > ξk(G) for any k ≥ 1. Because ωG(X) > ξk(G) holds for any vertex set X ⊆ V (G) with

k + 1 ≤ |X| ≤ ⌊|V (G)|/2⌋ and G[X] and G[X] being connected, λk+1(G) > ξk(G). Therefore,

the result holds.

Let ηk(G) denote the maximum number of edge-disjoint connected subtrees with order k

such that each subtree H satisfies ωG(V (H)) = ξk(G). For example, consider the graph G shown

in Fig. 1. Because vertices a and b are the only two vertices with a minimum degree in this

graph, η1(G) = 2. Moreover, because ωG({(a, b)}) = ξ2(G) = 4 and each of the other edges

e does not satisfy the condition (i.e., ωG({the endpoints of e}) ̸= ξ2(G) = 4), η2(G) = 1. The

equality η3(G) = 2 holds because we can find two edge-disjoint paths ⟨a, c, b⟩ and ⟨a, d, b⟩ such
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that ωG({a, c, b}) = ωG({a, d, b}) = ξ3(G) = 4. Finally, the equality η4(G) = 2 holds because we

can find two edge-disjoint paths ⟨a, c, d, b⟩ and ⟨d, a, b, c⟩ such that ωG({a, b, c, d}) = ξ4(G) = 2.

10K a b

c

d

Figure 1: Illustration of ηk(G) for k = 1, 2, 3, 4

Definition 1. Let k ≥ 1 be an integer. The persistence of the super-λk graph G, denoted by

ρk(G), is the maximum integer m for which G − F is still super-λk for any set F ⊆ E(G) with

|F | ≤ m.

Hong et al. [14] showed that min{λ2(G) − δ(G) − 1, δ(G) − 1} ≤ ρ1(G) ≤ δ(G) − 1 for any

super-λ1 and λ2-connected graph G. In addition, Hong and Xu [16] showed that min{λ3(G) −

ξ2(G) − 1, δ(G) − 1} ≤ ρ2(G) ≤ δ(G) − 1 for any super-λ2 and λ3-connected graph G with

η2(G) ≥ δ(G). This study determines the following bounds of ρk(G) for k ≥ 2:

1. ρk(G) = λ1(G)− 1 if graph G is super-λk, but not λk+1-connected,

2. min{λ3(G) − ξ2(G) − 1, η2(G) − 1,λ1(G) − 1} ≤ ρ2(G) ≤ λ1(G) − 1 for any super-λ2 and

λ3-connected graph G,

3. min{λ4(G) − ξ3(G) − 1, η3(G) − 1,λ1(G) − 1} ≤ ρ3(G) ≤ λ1(G) − 1 for any super-λ3 and

λ4-connected graph G, and

4. min{λk+1(G)− ξk(G)− 1, ηk(G)− 1, δ(G)− k+1,λ1(G)− 1} ≤ ρk(G) ≤ λ1(G)− 1 for any

super-λk and λk+1-connected graph G, where k ≥ 4.

3 Bounds on the persistence of super-λ3 graphs

If a graph G = (V,E) has a path with endpoints u and v, then the distance between u and

v, denoted by dG(u, v) or simply d(u, v), is the shortest length of a path between u and v. If
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G has no such path, then d(u, v) = ∞. The eccentricity of a vertex u, denoted by ϵ(u), is

maxv∈V d(u, v).

Let H1 be a connected graph that has an order of at least 6 and satisfies the following

conditions: (a) H1 contains no cycles of a length greater than 3 and (b) there exists exactly one

vertex v0 ∈ V (H1) with a degree greater than 2, and v0 has eccentricity equal to or less than

2. Fig. 2 illustrates graphs H1 and H2. The following lemma shows the necessary and sufficient

condition for a graph to be λ3-connected.

1H 2H 3H
4H

0v

... ...
... ...

... ...

... ...

...

Figure 2: Illustration of Lemmas 4 and 5

Lemma 4. [4] A connected graph with an order of 6 is not λ3-connected if and only if G is

isomorphic to H1 or H2 (Fig. 2). Furthermore, if G is λ3-connected, then λ3(G) ≤ ξ3(G).

According to Lemma 4, we can determine the edge fault tolerance of a λ3-connected graph.

Lemma 5. Let G be a λ3-connected graph with δ(G) ≥ 3. Then, G− F is a λ3-connected graph

and λ3(G− F ) ≤ ξ3(G− F ) for any F ⊆ E(G) with |F | ≤ λ1(G)− 1.

Proof. Assume that G − F is not λ3-connected. According to Lemma 4, G − F ∼= H1 or

G− F ∼= H2. Consider the following scenarios.

Case 1: δ(G−F ) ≥ 2. In this case, G−F ∼= H3 (Fig. 2) and there are at least six vertices with

a degree of 2 in G− F . Therefore,

|F | = |E(G)|− |E(G− F )| ≥ ⌈(6δ(G)− 6 · 2)
2

⌉ = 3δ(G)− 6 ≥ δ(G) ≥ λ1(G),

which leads to a contradiction.
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Case 2: δ(G− F ) = 1. Because |F | ≤ λ1(G)− 1 ≤ δ(G)− 1, exactly one vertex in G− F has

a degree of one, and all edges of F are incident to this vertex v. Therefore, G − F is not

isomorphic to H2. According to Lemma 4, G− F ∼= H4 (Fig. 2), and at least four vertices

with a degree of 2. All edges of F are incident to the vertex with a degree of 1; therefore,

|F | = |E(G)|− |E(G− F )| ≥ 4δ(G)− 4 · 2 ≥ δ(G) + 1 ≥ λ1(G),

which leads to a contradiction.

Combining the two cases completes the proof.

Next, we show the bounds of ρ3(G) for the super-λ3 graph G in Theorem 1.

Theorem 1. Let G be a super-λ3 graph with δ(G) ≥ 3. Then the following statements hold: (a)

If G is not λ4-connected, then ρ3(G) = λ1(G) − 1. (b) If G is λ4-connected, then min{λ4(G) −

ξ3(G)− 1, η3(G)− 1,λ1(G)− 1} ≤ ρ3(G) ≤ λ1(G)− 1.

Proof. There exists one edge set F with size λ1(G) such that G−F is disconnected. Then, G−F

is not super-λ3, implying that ρ3(G) ≤ |F |−1 = λ1(G)−1. Next, we determine the lower bound

of ρ3(G) according to whether G is λ4-connected.

(a) To prove that ρ3(G) ≥ λ1(G) − 1, it suffices to show that for any F ⊆ E(G) with

|F | ≤ λ1(G) − 1, G − F is super-λ3. According to Lemma 5, G − F is λ3-connected with

λ3(G − F ) ≤ ξ3(G − F ). Because G is not λ4-connected, G − F is also not λ4-connected.

According to Lemma 3, G− F is super-λ3 and (a) is proved.

(b) Let m = min{λ4(G) − ξ3(G) − 1, η3(G) − 1,λ1(G) − 1}. To prove that ρ3(G) ≥ m, it

suffices to show that for any F ⊆ E(G) with |F | ≤ m, G′ = G− F is super-λ3.

Note that |F | ≤ m ≤ λ1(G) − 1. According to Lemma 5, G − F is λ3-connected with

λ3(G − F ) ≤ ξ3(G − F ). If G − F is not λ4-connected, then according to Lemma 3, G − F is

super-λ3 and (b) is proved. If G − F is λ4-connected, then let X be any subset of V (G′) with

|X| ≥ 4 and |X| ≥ 4 such that G′[X] and G′[X] are connected. Therefore,

ωG−F (X) ≥ ωG(X)− |F | ≥ λ4(G)− (λ4(G)− ξ3(G)− 1) = ξ3(G) + 1. (1)
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Because |F | ≤ m ≤ η3(G) − 1, there exists one subtree A with an order of 3 such that

ωG(A) = ξ3(G) and A = A− F . In other words,

ξ3(G) = ωG(A) ≥ ωG−F (A) ≥ ξ3(G− F ). (2)

According to equations (1) and (2), ωG−F (X) > ξ3(G − F ). According to Lemma 3, G − F

is super-λ3 and (b) is proved.

Evidently, λ1(G) − 1 is a necessary term in the proposed lower bound formula because the

value is also used as an upper bound in Theorem 1. Examples 1 and 2 demonstrate that the

other values are also necessary.

v 6K

5H 6H

2e
1e

...

...

...

1u

2u

1v

tu

1-tu

2v

3v

4v

22 -tv
32 -tv

12 -tv

tv2

v
7K

e

Figure 3: Illustration of Examples 1 and 2

Example 1. Consider the graph G ∼= H5 shown in Fig. 3. A vertex v ∈ V (H) is adjacent to

all the other vertices in G. Because λ1(G) = λ3(G) = ξ3(G) = 3 and λ4(G) = 6, according to

Lemma 3, G is super-λ3. Moreover, min{λ4(G)−ξ3(G)−1,λ1(G)−1} = 2 and G′ = G−{e1, e2}

is not super-λ3 because λ3(G
′) = λ4(G

′) = 6. Therefore, η3(G) − 1 is a necessary term in the

proposed lower bound formula (in this case, η3(G)− 1 = 0).

Example 2. Consider the graph G ∼= H6 shown in Fig. 3; {u1, u2, ..., ut} and {v1, v2, ..., v2t}

form two separate cycles. The vertices ui and vj are adjacent when j ∈ {2i − 1, 2i}. Because

λ1(G) = 4, λ3(G) = ξ3(G) = 6, and λ4(G) = 7, according to Lemma 3, G is super-λ3. Moreover,

min{η3(G)− 1,λ1(G)− 1} = 3 and G′ = G− {e} is not super-λ3 because λ3(G
′) = λ4(G

′) = 6.

Therefore, λ4(G) − ξ3(G) − 1 is a necessary term in the proposed lower bound formula (in this

case, λ4(G)− ξ3(G)− 1 = 0).
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7H

Figure 4: Illustration of Example 3

Example 3. Consider the graph G ∼= H7 shown in Fig. 4; ρ3(G) = 2. Because λ1(G) = λ3(G) =

ξ3(G) = 3 and λ4(G) = 6, according to Lemma 3, G is super-λ3. According to Theorem 1,

min{λ4(G)− ξ3(G)−1, η3(G)−1,λ1(G)−1} = 2 = λ1(G)−1. Therefore, the lower bound given

in Theorem 1 is sharp.

Corollary 1. Let G be a super-λ2 and λ3-connected graph. Then, min{λ3(G)−ξ2(G)−1, η2(G)−

1,λ1(G)− 1} ≤ ρ2(G) ≤ λ1(G)− 1.

Proof. Note that n(G) ≥ 6 because G is λ3-connected. Let m = min{λ3(G)− ξ2(G)− 1, η2(G)−

1,λ1(G) − 1}. We first prove that G − F is λ2-connected with λ2(G − F ) ≤ ξ2(G − F ) for any

F ⊆ E(G) with |F | ≤ m.

When δ(G) = 1, |F | ≤ λ1(G)− 1 ≤ δ(G)− 1 ≤ 0 and G = G− F . Therefore, G = G− F is

not a star because G is λ3-connected. When δ(G) ≥ 2, assume that G − F is a star, and there

exists n(G)− 1 vertices with a degree of 1 in G− F . Because δ(G) ≥ 2, at least δ(G)− 1 edges

of F are incident to each of the aforementioned n(G)− 1 vertices. Consequently,

⌈([n(G)− 1][δ(G)− 1])

2
⌉ ≤ |E(G)|− |E(G− F )| = |F | ≤ λ1(G)− 1 ≤ δ(G)− 1.

In other words, n(G) ≤ 3, which leads to a contradiction. Therefore, G − F is not a star.

According to the results of [3, 21], G− F is λ2-connected with λ2(G− F ) ≤ ξ2(G− F ) if G− F

is not a star; therefore, G− F is λ2-connected with λ2(G− F ) ≤ ξ2(G− F ). Consequently, this

result of Corollary 1 can be proved using a method similar to that used in Theorem 1.

Figure 1 of [16] shows that the lower bound given in Corollary 1 is sharp.
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4 Bounds on the persistence of super-λk graphs for k ≥ 4

First, we determine the edge fault tolerance of λk-connected graphs for a positive integer k ≥ 2.

Lemma 6. Let G be a λk-connected graph with 2 ≤ k ≤ δ(G), and n(G) ≥ 3δ(G) − 2. Then,

G− F is λk-connected graph for any F ⊆ E(G) with |F | ≤ λ1(G)− 1.

Proof. Apparently, G− F is connected because |F | ≤ λ1(G)− 1. If G− F is not λk-connected,

according to Lemma 1, there exists n(G) − 1 vertices with a degree of at most k − 1 in G− F .

Because δ(G) ≥ k, at least one edge of F is incident to each of the aforementioned n(G) − 1

vertices. Thus,

|F | ≥ ⌈(n(G)− 1)/2⌉ ≥ ⌈(3δ(G)− 3)/2⌉ > δ(G)− 1 ≥ λ1(G)− 1,

which leads to a contradiction. Therefore, G− F is a λk-connected graph.

Now, let G be a super-λk graph, but not λk+1-connected for k ≥ 2. We show the bounds of

ρk(G) in Theorem 2.

Theorem 2. Let G be a super-λk graph with 2 ≤ k ≤ δ(G), and n(G) ≥ 3δ(G)− 2. If G is not

λk+1-connected, then ρk(G) = λ1(G)− 1.

Proof. There exists one edge set F with size λ1(G) such that G−F is disconnected. Then, G−F

is not super-λk. We have ρk(G) ≤ |F |− 1 = λ1(G)− 1.

To prove that ρk(G) ≥ λ1(G) − 1, it suffices to show that for any F ⊆ E(G) with |F | ≤

λ1(G) − 1, G − F is super-λk. According to Lemma 6, G − F is λk-connected. Because G is

not λk+1-connected, G − F is also not λk+1-connected. Thus, every minimum k-extra edge-cut

of G− F isolates at least one connected subgraph of order k. Therefore, G− F is super-λk and

this theorem is proved.

Next, we determine the bounds of ρk(G) for a super-λk and λk+1-connected graph G.

Lemma 7. Let G be a λk-connected graph with λk(G) ≤ ξk(G), k ≤ δ(G) + 1, and n(G) ≥

2δ(G) + 2. Then, G−F is a λk-connected graph and λk(G−F ) ≤ ξk(G−F ) for any F ⊆ E(G)

with |F | ≤ min{δ(G)− k + 1,λ1(G)− 1}.
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Proof. Because |F | ≤ λ1(G)− 1, G− F is connected. If G− F is not isomorphic to G∗
m,k−1 for

any positive integer m, according to Lemma 2, G−F is λk-connected and λk(G−F ) ≤ ξk(G−F )

because n(G) ≥ 2δ(G) + 2 ≥ 2δ(G− F ) + 2.

Therefore, we consider only the case when G−F is isomorphic to G∗
m,k−1 for a positive integer

m. Consider the following scenarios.

Case 1: δ(G) ≥ k. Because G − F ∼= G∗
m,k−1, there exists n(G) − 1 vertices with degree k − 1

in G− F . Because δ(G) ≥ k, at least δ(G)− k + 1 edges of F are incident to each of the

aforementioned n(G)− 1 vertices. Therefore,

⌈([n(G)− 1][δ(G)− k + 1])

2
⌉ ≤ |E(G)|− |E(G− F )| = |F | ≤ δ(G)− k + 1,

which implies that n(G) ≤ 3 and leads to a contradiction.

Case 2: δ(G) = k − 1. In this case, |F | = δ(G)− k + 1 = 0 and G− F = G. Evidently, G− F

is a λk-connected graph and λk(G− F ) ≤ ξk(G− F ).

Theorem 3. Let G be a super-λk graph with k ≥ 4 and n(G) ≥ 2δ(G)+2. If G is λk+1-connected,

then min{λk+1(G)− ξk(G)− 1, ηk(G)− 1, δ(G)− k + 1,λ1(G)− 1} ≤ ρk(G) ≤ λ1(G)− 1.

Proof. There exists one edge set F with size λ1(G) such that G−F is disconnected. Then, G−F

is not super-λk. We have ρk(G) ≤ |F |− 1 = λ1(G)− 1.

Let m = min{λk+1(G) − ξk(G) − 1, ηk(G) − 1, δ(G) − k + 1,λ1(G) − 1}. To prove that

ρk(G) ≥ m, it suffices to show that for any F ⊆ E(G) with |F | ≤ m, G′ = G − F is super-λk.

Note that |F | ≤ m ≤ min{δ(G)− k + 1,λ1(G)− 1}; therefore, according to Lemma 7, G− F is

λk-connected with λk(G− F ) ≤ ξk(G− F ).

If G− F is not λk+1-connected, according to Lemma 3, G− F is super-λk and this theorem

is proved. If G− F is λk+1-connected, then let X be any subset of V (G′) with |X| ≥ k + 1 and

|X| ≥ k + 1 such that G′[X] and G′[X] are connected. Therefore,

ωG−F (X) ≥ ωG(X)− |F | ≥ λk+1(G)− (λk+1(G)− ξk(G)− 1) = ξk(G) + 1. (3)
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Because |F | ≤ m ≤ ηk(G)−1, there exists one subtreeA with order k such that ωG(A) = ξk(G)

and A = A− F . In other words,

ξk(G) = ωG(A) ≥ ωG−F (A) ≥ ξk(G− F ). (4)

According to equations (3) and (4), ωG−F (X) > ξk(G − F ). According to Lemma 3, G − F

is super-λk and this theorem is proved.

5 Bounds on the persistence of product graphs

In this section, the results obtained in Sections 3 and 4 are applied to product graphs. The

product graph G ∗H of two graphs G and H was introduced in [2].

Definition 2. [2] Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. Let πxy be a

permutation of V(H) such that π−1
xy = πyx for each edge xy ∈ E(G). Then, the product graph

G ∗H is the graph with V (G)× V (H) as its vertex set, and two vertices, (x, x′) and (y, y′), are

adjacent in G ∗H if and only if either x = y and x′y′ ∈ E(H) or xy ∈ E(G) and y′ = πxy(x
′).

Lemma 8. [1] Let k ≥ 1 be an integer. Let G be an r-regular connected graph and let H be

an s-regular connected graph, with r ≥ 2k − 1 and s ≥ r + 2k − 1, respectively. Assume that

λ1(G)|V (H)| ≥ 2k(s − k) + 2 and H is λk+1-connected with λk+1(H) ≥ 2(s − k). Then, the

(r + s)-regular graph G ∗H is super-λk.

According to Lemma 8, Corollary 1, and ξ2(G) = 2r + 2s − 2 for any (r + s)-regular graph

G, the following result is true.

Corollary 2. Let G be an r-regular connected graph and let H be an s-regular connected graph,

with r ≥ 3, s ≥ r+3. Suppose that λ1(G)|V (H)| ≥ 4s− 6, and also that H is λ3-connected with

λ3(H) ≥ 2s − 4. Then the (r + s)-regular graph G ∗ H is super-λ2 and min{λ3(G ∗ H) − 2r −

2s+ 1, η2(G ∗H)− 1,λ1(G ∗H)− 1} ≤ ρ2(G ∗H) ≤ λ1(G ∗H)− 1.

If G is an (r + s)-regular graph, then ξ3(G) = 3r + 3s − 6 if G contains a triangle or

ξ3(G) = 3r + 3s − 4 if G contains no triangle. According to Lemma 8 and Theorem 1, the
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following results are true.

Corollary 3. Let G be an r-regular connected graph and let H be an s-regular connected graph,

with r ≥ 5 and s ≥ r+5, respectively. Assume that λ1(G)|V (H)| ≥ 6s−16 and H is λ4-connected

with λ4(H) ≥ 2s−6. If H has a triangle subgraph, then the (r+s)-regular graph G∗H is super-λ3

and min{λ4(G ∗H)− 3r − 3s+ 5, η3(G ∗H)− 1,λ1(G ∗H)− 1} ≤ ρ3(G ∗H) ≤ λ1(G ∗H)− 1.

Corollary 4. Let G be an r-regular connected graph and let H be an s-regular connected graph,

with r ≥ 5 and s ≥ r+5, respectively. Assume that λ1(G)|V (H)| ≥ 6s−16 and H is λ4-connected

with λ4(H) ≥ 2s−6. If G and H have no triangle subgraph, then the (r+s)-regular graph G∗H is

super-λ3 and min{λ4(G∗H)−3r−3s+3, η3(G∗H)−1,λ1(G∗H)−1} ≤ ρ3(G∗H) ≤ λ1(G∗H)−1.

According to Lemma 8 and Theorem 3, the following result is true.

Corollary 5. Let k ≥ 4 be an integer. Let G be an r-regular connected graph and let H be

an s-regular connected graph, with r ≥ 2k − 1 and s ≥ r + 2k − 1, respectively. Assume that

λ1(G)|V (H)| ≥ 2k(s − k) + 2 and H is λk+1-connected with λk+1(H) ≥ 2(s − k). Then, the

(r+ s)-regular graph G ∗H is super-λk and min{λk+1(G ∗H)− ξk(G ∗H)− 1, ηk(G ∗H)− 1, r+

s− k + 1,λ1(G ∗H)− 1} ≤ ρk(G ∗H) ≤ λ1(G ∗H)− 1.

In [1], the super-λk property of a product of two complete graphs was proved.

Lemma 9. [1] For all integers k ≥ 1, r ≥ 2k + 1, and s ≥ r + 2k − 1, the graph Kr ∗ Ks is

super-λj for every 1 ≤ j ≤ k.

According to Lemma 9, Corollary 1, and η2(G) = |E(G)|, for any regular graph G, the

following result is true.

Corollary 6. For all integers r ≥ 5 and s ≥ r + 3, the graph G = Kr ∗ Ks is super-λ2 and

min{λ3(G)− 2r − 2s+ 5,λ1(G)− 1} ≤ ρ2(G) ≤ λ1(G)− 1.

For any complete graph Ks for s ≥ 4, we can prove that η3(Ks) ≥ s − 1 by induction on s.

When s = 4, there are three edge-disjoint paths with an order of 3. Therefore, η3(K4) = 3 ≥ s−1.

Assume that the result holds when s ≤ t. Consider s = t + 1 > 4, and let v be a vertex of Ks.
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According to the induction hypothesis, there are at least (s − 2) edge-disjoint paths with an

order of 3 in Ks − {v}. The vertex v and two other vertices in Ks − {v} can form additional

edge-disjoint paths with an order of 3. Then, η3(Ks) ≥ s−1. Moreover, η3(Kr ∗Ks) ≥ r(s−1) ≥

r+s−2 ≥ λ1(Kr ∗Ks) for r ≥ 1 and s ≥ 4. According to Lemma 9 and Theorem 1, the following

result is true.

Corollary 7. For all integers r ≥ 7 and s ≥ r + 5, the graph G = Kr ∗ Ks is super-λ3 and

min{λ4(G)− 3r − 3s+ 11,λ1(G)− 1} ≤ ρ3(G) ≤ λ1(G)− 1.

We have

ξk(Kr ∗Ks) = k(r + s− 2)− k(k − 1) = k(r + s− 1)− k2.

According to Lemma 9 and Theorem 3, the following result is true.

Corollary 8. For all integers k ≥ 4, r ≥ 2k+1, and s ≥ r+2k−1, the graph Kr∗Ks is super-λk

and min{λk+1(G)+k2−k(r+s−1)−1, ηk(G)−1, r+s−k−1,λ1(G)−1} ≤ ρ2(G) ≤ λ1(G)−1.

6 Conclusion

Fault tolerance is critical for retaining a system’s reliability. This study investigates the edge

fault tolerance of super-λk graphs. The bounds of this result for k ∈ {1, 2} have recently been

presented. In this paper, we show that (1) ρk(G) = λ1(G)−1 if the graph G is super-λk, but not

λk+1-connected for k ≥ 2, (2) min{λ3(G)− ξ2(G)− 1, η2(G)− 1,λ1(G)− 1} ≤ ρ2(G) ≤ λ1(G)− 1

for any super-λ2 and λ3-connected graph G, (3) min{λ4(G)− ξ3(G)− 1, η3(G)− 1,λ1(G)− 1} ≤

ρ3(G) ≤ λ1(G)− 1 for any super-λ3 and λ4-connected graph G, and (4) min{λk+1(G)− ξk(G)−

1, ηk(G)− 1, δ(G)− k+1,λ1(G)− 1} ≤ ρk(G) ≤ λ1(G)− 1 for any super-λk and λk+1-connected

graph G, where k ≥ 4. Future studies should evaluate tighter bounds of ρk(G) for graphs that

satisfy specific conditions.
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